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NOTE ON SEED GRAPHS WITH

COMPONENTS OF GIVEN ORDER

D. FRON�CEK

Abstract. A closed neighbourhood NG[x] of a vertex x in a graph G is the
subgraph of G induced by x and all neighbours of x. A seed of a vertex x ∈ G is

the subgraph of G induced by all vertices of G \NG[x] and we denote it by SG(x).
A graph F is a seed graph if there exists a graph G such that SG(x) ∼= F for each
x ∈ G. In this paper seed graphs with more than two components are studied. It is
shown that if all components are of equal order, then they are all isomorphic to a
complete graph. In the general case it is shown how the structure of any component

Fi of a seed graph F depends on the structure of all components of smaller order.

1. Introduction

The notion of seed graphs arose in connection with a “complementary” (in a
sense) approach to the study of local properties of graphs. A closed neighbour-
hood of a vertex x ∈ G, denoted NG[x], is the subgraph of G induced by x and
all neighbours of x. We define a seed of a vertex x in a graph G as the subgraph
of G induced by all vertices of G \ NG[x] and denote it by SG(x). A graph F is
a seed graph if there exists a graph G such that SG(x) ∼= F for each x ∈ G.
The graph G is then called an isomorphic survivor graph with the seed F . We
also say, as in the case of graphs with constant neighbourhoods, that such G is a
realization of F . The “complementarity” of the notions of graphs with constant
neighbourhoods and the isomorphic survivor graphs is obvious. We use the stan-
dard notation: A graph G is a complement of a graph G = (V,E) if V (G) = V (G)
and E(G) = {uv|u, v ∈ V (G) and uv /∈ E(G)}. If G is an isomorphic survivor
graph with a seed F , then SG(x) ∼= F and hence SG(x) ∼= F for every x ∈ G.
But SG(x) is the open neighbourhood of x in G and SG(x) = NG(x). G is then
a graph with constant neighbourhood SG(x). The reason why seed graphs are
studied instead of their complements as constant neighbourhoods (or isomorphic
survivor graphs instead of graphs with complementary constant neighbourhoods)
is that some properties are much easier to describe when seed graphs are con-
sidered. This occurs, for example, when a seed graph is a minimal connected or
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disconnected graph. The former case was studied by Gunther and Hartnell [2] and
Hartnell and Kocay [3]. It is worth mentioning that while they proved in their
papers, among other results, that the only cycles which are seed graphs are C3

([2]), C4, C5 and C6 ([3]), the same result was obtained in terms of graphs with
constant neighbourhoods by Zelinka [5]. The case of disconnected seed graphs was
studied for two components by Markus and Rall [4]. In [1] the author presents
related results for disconnected seed graphs with more than two components which
are either regular or of a given size.

All graphs discussed here are finite, simple, and undirected. We denote the
order (i.e., the number of vertices) of a graph G by |G| while its size (i.e., the
number of edges) by ||G||. The graph induced by a vertex set U will be denoted
〈U〉. The disjoint unionG = G1∪G2∪· · ·∪Gk of graphsG1, G2, . . . , Gk is a graph
G with components G1, G2, . . . , Gk. We denote nH the graph H∪H∪· · ·∪H with
n components isomorphic to H. We also define a composition G[H] (sometimes
called a lexicographic product) of graphs G and H as follows: V (G[H]) =
V (G) × V (H) and two vertices (x1, y1) and (x2, y2) are adjacent in G[H] if and
only if either x1x2 ∈ E(G), or x1 = x2 and y1y2 ∈ E(H). In other words, take
a graph G, take a copy of H in place of every vertex of G and replace each edge
of G by Kn,n, where n = |H|. The composition appears to be a useful tool in
constructions of isomorphic survivor graphs.

In this article we are interested in disconnected seed graphs with more than two
components. The aim of this article is to show that the structure of every seed
graph is relatively strictly determined by its smallest component.

2. Preliminaries

We start with some lemmas that will be repeatedly used in proofs leading to our
main result. We use the following notation: The intersection of a neighbourhood
NG(x) of a vertex x of G with a subset V of the vertex set of G, NG(x) ∩ V , will
be denoted by NV (x). By the neighbourhood of a subgraph F of G (denoted
NG(F )) we understand the set of all neighbours of vertices of F which do not
belong to F .

Lemma 2.1. Let F = F1 ∪ F2 ∪ · · · ∪ Fk be a seed graph with k ≥ 3 and G be
its realization. Let u be a vertex of G and SG(u) = H1 ∪H2 ∪ · · · ∪Hk be its seed
such that Hi

∼= Fi for each i = 1, 2, . . . , k. If V = NG(u) and |Hi| ≤ |Hj |, then
NG(x) ∩NG(u) = NV (x) ⊇ NV (y) = NG(y) ∩NG(u) for each x ∈ Hi, y ∈ Hj.

Proof. First we define for every vertex x ∈ G and every non-negative integer
p a function s(x, p) as the number of vertices of all components of SG(x), whose
order is greater than p. As G is an isomorphic survivor graph, it is obvious that
s(x, p) = s(y, p) for each pair x, y ∈ G and every p, namely s(x, |Hi|) = s(u, |Hi|).
To prove the assertion, we proceed by contradiction. Suppose that |Hi| ≤ |Hj |
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and there exist vertices x ∈ Hi and y ∈ Hj such that NV (x) + NV (y). Then there
exists a vertex v ∈ V = NG(u) which is adjacent to y but not to x. If z is now
any vertex of Hk, where |Hk| > |Hi|, then z is not adjacent to x and therefore
z ∈ SG(x). The number of such vertices equals exactly to s(u, |Hi|). Moreover,
since v is not adjacent to x but is a neighbour of y, the graph H ′ = 〈Hj∪v〉 belongs
to a component of order at least |Hj |+ 1 > |Hi|. Hence s(x, |Hi|) ≥ s(u, |Hi|) + 1,
which is impossible, as G is an isomorphic survivor graph. Therefore no such a
vertex v exists and NV (y) ⊆ NV (x). �

The following corollary is an immediate consequence of the Lemma and the
proof can therefore be omitted.

Corollary 2.2. Let F = F1∪F2∪· · ·∪Fk be a seed graph with k ≥ 3 and G be
its realization. Let u be a vertex of G, V = NG(u) and SG(u) = H1∪H2∪· · ·∪Hk

be its seed such that Hi
∼= Fi for each i = 1, 2, . . . , k. If |Hi| ≤ |Hj | and x ∈ Hi,

then NV (x) ⊇ NG(Hj) and hence NG(Hi) ⊇ NG(Hj).

Lemma 2.3. Let F , G, H, u, and V be as in Lemma 2.1. Let Hi and Hj , i 6= j,
have the property that for each x ∈ Hi and each y ∈ Hj it holds that NV (x) =
NV (y). Then Hi

∼= Hj and therefore Fi ∼= Fj.

Proof. To obtain the desired result, we compare the seeds of arbitrary vertices
x ∈ Hi and y ∈ Hj . Recall that NV (x) = NG(x) ∩NG(u) and NV (y) = NG(y) ∩
NG(u). As NV (x) = NV (y), we can see that both SG(x) and SG(y) contain all
components Hl of SG(u) such that l 6= i, j and NG(Hl) ⊆ NV (x) (= NV (y)).
They also both contain a connected graph that includes vertex u, all vertices of
NG(u)\NV (x) and all vertices of the components Hm of SG(u) such that NV (x) =
NV (y) is a proper subset of NG(Hm). Besides these common components, SG(x)
contains Hj and a graph SHi(x) (which is empty if x is adjacent to all vertices of
Hi). Similarly, SG(y) contains besides the common components the component
Hi and a graph SHj (y) (which is again empty if y is adjacent to all vertices of
Hj). Because G is an isomorphic survivor graph, SG(x) is isomorphic to SG(y)
and therefore Hj ∪SHi(x) must be isomorphic to Hi∪SHj (y). As SHi(x) is either
empty or a proper subgraph of Hi, it follows that Hi

∼= Hj , which we wanted to
prove. �

Combining Lemmas 2.1 and 2.3, we immediately get the following theorem.

Theorem 2.4. Let F = F1 ∪ F2 ∪ · · · ∪ Fk be a seed graph with k ≥ 3 and G

be one of its realizations. Let u be a vertex of G, V = NG(u) and SG(u) = H =
H1 ∪H2 ∪ · · · ∪Hk be its seed such that Hi

∼= Fi for each i = 1, 2, . . . , k. Then the
following conditions are equivalent:

(i) |Fi| = |Fj |,
(ii) NV (x) = NV (y) for each x ∈ Hi and each y ∈ Hj,
(iii) Fi ∼= Fj.
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Proof. The implication (i) ⇒ (ii) follows from Lemma 2.1. If |Hi| = |Hj | then
NV (x) ⊆ NV (y) and NV (y) ⊆ NV (x) for each x ∈ Hi and each y ∈ Hj . This
yields NV (x) = NV (y). The second implication, (ii) ⇒ (iii), follows from Lemma
2.3, and the last one, (iii) ⇒ (i), is trivial and the proof is complete. �

The following corollary is an easy consequence of the Theorem and appears to
be useful later.

Corollary 2.5. Let F , G, H, u, and V be as in Lemma 2.1 and let |Hi| = |Hj |.
Then for each x, y ∈ Hi it holds that NV (x) = NV (y).

Proof. Let z be any vertex of Hj . Then, by the Theorem, NV (x) = NV (z) and
NV (y) = NV (z), which yields NV (x) = NV (y). �

It seems quite natural now that from the assumption of Corollary 2.5 it also
follows that the graph Hi is an isomorphic survivor graph itself. We prove this
result in the following section. The last result in this section is another useful tool.

In Corollary 2.2 we have shown that for every Hi,Hj with |Hi| < |Hj | it holds
that NG(Hj) ⊆ NG(Hi). However, if the seed graph H contains two or more
components of the same order |Hj |, we can even prove that NG(Hj) is a proper
subset of NG(Hi). Hence we can state another corollary, which is in certain sense
a stronger version of Corollary 2.2.

Corollary 2.6. Let F , G, H, u, and V be as in Lemma 2.1. If there exist
components Hj, Hm and Hi such that |Hi| < |Hj | = |Hm|, then for every x ∈
Hi, y ∈ Hj it holds that NV (y) is a proper subset of NV (x) .

Proof. Because |Hi| < |Hj |, then Hi � Hj and by Theorem 2.4 there must be
vertices x ∈ Hi, y ∈ Hj such that NV (x) 6= NV (y). From Lemma 2.1 it follows
that for each x ∈ Hi, y ∈ Hj it holds that NV (y) ⊆ NV (x). Therefore there
must be a vertex v ∈ V which is adjacent to x but not to y. But according to
Corollary 2.5 all vertices of Hj have the same neighbours in V as y and hence none
of them is adjacent to v. Thus the vertex v ∈ NV (x) ⊆ NG(Hi) does not belong
to NG(Hj) and NG(Hj) is a proper subset of NG(Hi). �

3. Seed Graphs With Components Of Given Order

In this section we prove that if F is a seed graph with at least three compo-
nents F1, F2, . . . , Fk with orders |F1| ≤ |F2| ≤ · · · ≤ |Fk|, then the structure of a
component Fi is more or less determined by the components of smaller orders. If
there are two or more components of the same order, then they have interesting
properties, as we have already mentioned. They are mutually isomorphic, they
are themselves isomorphic survivor graphs and if |Fi−1| < |Fi| = |Fi+1|, then their
seeds, SFi(x), are isomorphic to F1∪F2∪· · ·∪Fi−1. Similar results for components
of equal size and regularity are proved in [1].
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First we show that although in the general case the components of a seed graph
F do not have to be isomorphic survivor graphs themselves, the seed of every
vertex x of a component Fi with respect to Fi, SFi(x), always contains components
that are isomorphic to all components of F which are of smaller order than the
component Fi. We split the proof into two lemmas, as the first lemma will be
useful later.

Lemma 3.1. Let F = F1∪F2∪· · ·∪Fk be a seed graph with k ≥ 3 and G be its
realization. Let u be a vertex of G, V = NG(u) and SG(u) = H = H1∪H2∪· · ·∪Hk

be its seed such that

(i) Hi
∼= Fi for each i = 1, 2, . . . , k,

(ii) NV (x) is a proper subset of NG(Hl) for each x ∈ Hi and each Hl, l =
1, 2, . . . , i− 1,

(iii) NV (x) ⊇ NG(Hl) for each x ∈ Hi and each Hl, l = i+ 1, i+ 2, . . . , k.

Then the seed of every vertex x of the component Fi with respect to Fi, SFi(x) =
SG(x)∩Fi, contains an induced subgraph isomorphic to F ′ = F1 ∪F2 ∪ · · · ∪Fi−1.

Proof. Let G,H, u and V be again as above and let x be any vertex of Hi. Then
all componentsHi+1,Hi+2, . . . ,Hk of SG(u) are also components of SG(x), because
NV (x) ⊇ NV (t) for each t ∈ Hl, l = i + 1, i + 2, . . . , k. Denote now Vi = NG(u) \
NG(Hi). Because by Corollary 2.6 NV (x) is for every z ∈ Hl, l = 1, 2, . . . , i − 1,
a proper subset of NV (z), it is clear that each NV (z), z ∈ Hl, l = 1, 2, . . . , i − 1
contains a vertex of Vi. Hence 〈H1 ∪ H2 ∪ · · · ∪ Hi−1 ∪ Vi ∪ u〉 is a connected
graph and therefore a subgraph of some component H∗ of SG(x). Obviously, H∗

cannot be isomorphic to any of H1,H2, . . . ,Hi−1 and therefore is isomorphic to
Hi. Let us denote H∗ = H ′i. We can see now that every vertex of G \Hi belongs
either to NV (x) or to one of the components H ′i,Hi+1,Hi+2, . . . ,Hk of SG(x).
It is obvious that all other components of SG(x), namely those isomorphic to
H1,H2, . . . ,Hi−1, must be induced subgraphs of Fi and therefore of SFi(x), which
we wanted to prove. �

Further we prove that a component Hi of SG(u) in an isomorphic survivor graph
G with the property that |F1| ≤ · · · ≤ |Fi−1| < |Fi| ≤ |Fi+1| ≤ · · · ≤ |Fk| satisfies
the assumptions of Lemma 3.1.

Lemma 3.2. Let G be an isomorphic survivor graph and let SG(u) = H =
H1∪H2∪· · ·∪Hk with k ≥ 3 and |H1| ≤ · · · ≤ |Hi−1| < |Hi| ≤ |Hi+1| ≤ · · · ≤ |Hk|.
Then Hi satisfies assumptions (ii) and (iii) of Lemma 3.1.

Proof. The condition (iii) is satisfied by Corollary 2.2. Without loss of general-
ity we can assume that H contains m copies of Hi, namely Hi, . . . Hi+m−1, where
1 ≤ m ≤ k − i + 1. Suppose, to the contrary, that there is a vertex y ∈ Hi such
that NV (y) is not a proper subset of NV (Hj) for some j < i. Then, by Lemma 2.1,
NV (y) = NV (x) for every x ∈ Hj and also for every x ∈ Hs, s = j + 1, . . . , i − 1.
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There must be a vertex z ∈ Hi and v ∈ NV (y) such that v is not adjacent to z,
otherwise for every vertex t of Hi we have NV (t) = NV (x) and by Lemma 2.3
Hj
∼= Hi, which is impossible. Because by Lemma 2.1 NV (z) ⊇ NV (Hl) for each

l > i, SG(z) contains the components Hi+1,Hi+2, . . . ,Hk. On the other hand,
all vertices of H1,H2, . . . ,Hi−1 are adjacent to v and therefore they must all be-
long to the same component H∗ of SG(z). Hence it is clear that H∗ ∼= Hi and
|Hi| = |H∗| ≥ 1 + |NG(u)| − |NV (z)| + |H1| + |H2| + · · · + |Hi−1|. At the same
time SG(y) also contains for the same reasons the components Hi+1,Hi+2, . . . ,Hk.
SG(y) also contains the components Hj ,Hj+1, . . . ,Hi−1 that are all of smaller or-
der than Hi and are not isomorphic to Hi. Because the component H ′i ∼= Hi of
SG(y) cannot obviously be a subgraph of Hi, H ′i must be the one containing the
vertex u. The order ofH ′i is at most 1+|NG(u)|−|NV (y)|+|H1|+|H2|+· · ·+|Hj−1|.
This is of course less than |Hi|, because |NV (z)| < |NV (y)|. Thus SG(y) contains
at most m − 1 components isomorphic to Hi, which is a contradiction. Hence
there must be a vertex non-adjacent to y in every NG(Hj), j = 1, 2, . . . i− 1, the
condition (ii) is also satisfied and the proof is complete. �

The lemmas immediately yield the following theorem.

Theorem 3.3. Let F = F1 ∪ F2 ∪ · · · ∪ Fk with k ≥ 3 components be a seed
graph such that |F1| ≤ · · · ≤ |Fi−1| < |Fi| ≤ |Fi+1| ≤ · · · ≤ |Fk|. Then for
every x ∈ Fi it holds that SFi(x) contains an induced subgraph isomorphic to
F ′ = F1 ∪ F2 ∪ · · · ∪ Fi−1.

To present an example of such a seed graph F , we use the recursive composition
of a sequence of isomorphic survivor graphs.

Example 3.4. Let G1 = C6. We construct an isomorphic survivor graph
G = Gk with a seed graph F with k components recursively. For i = 2, 3, . . . , k
we define Gi = C6[Gi−1]. Then F ∼= F1 ∪ F2 ∪ · · · ∪ Fk with |F1| < |F2| < · · · <
|Fk|, where F1

∼= P3, F2
∼= P3[C6] = P3[G1], F3

∼= P3[C6[C6]] = P3[G2], . . . Fi ∼=
P3[Gi−1], . . . , Fk ∼= P3[Gk−1]. One can check that for every i = 2, 3, . . . , k and
every x ∈ Fi the seed of x in the graph Fi, SFi(x), contains an induced subgraph
isomorphic to F1 ∪ F2 ∪ · · · ∪ Fi−1. However, there are two classes of vertices in
every Fi, 2 ≤ i ≤ k. For instance in F2 there are 12 vertices x21, x22, . . . , x2 12 with
SF2(x2i) ∼= P3∪C6

∼= F1∪G1 for each i = 1, 2, . . . , 12 and 6 vertices x′21, x
′
22, . . . , x

′
26

with SF2(x′2j) ∼= P3
∼= F1 for each j = 1, 2, . . . , 6. Similarly in F3 there are 72

vertices x31, x32, . . . , x3 72 with SF3(x3i) ∼= P3 ∪ P3[C6] ∪ C6[C6] ∼= F1 ∪ F2 ∪ G2

for each i = 1, 2, . . . , 72 and 36 vertices x′31, x
′
32, . . . , x

′
3 36 with SF3(x′3j) ∼= P3 ∪

P3[C6] ∼= F1 ∪ F2 for each j = 1, 2, . . . , 36. In general, every Fl, l = 2, 3, . . . , k
contains vertices xli with SFl(xli) ∼= F1 ∪ F2 ∪ · · · ∪ Fl−1 ∪ Gl−1 and vertices x′lj
with SFl(x

′
lj) ∼= F1 ∪ F2 ∪ · · · ∪ Fl−1.

We can also use the same idea to construct more general seed graphs with
k ≥ 3 components of different orders. Let G1, G2, . . . , Gk be arbitrary isomorphic
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survivor graphs with connected seed graphs F1, F2, . . . , Fk, respectively, and let
G′1 = G1. We then define G′i = Gi[G′i−1] for i = 2, 3 . . . , k to obtain an isomorphic
survivor graph G = G′k with the seed F ′ = F ′1∪F ′2∪· · ·∪F ′k, where F ′1 ∼= F1, F

′
2
∼=

F2[G1] ∼= F2[G′1], . . . , F ′i ∼= Fi[G′i−1], . . . , F ′k ∼= Fk[G′k−1].
Finally we show that if Fi, Fj are components of the smallest order among all

components of F , then Fi ∼= Fj ∼= Kp for p = |Fi|.

Theorem 3.5. Let F = F1 ∪ F2 ∪ · · · ∪ Fk, k ≥ 3 be a seed graph with |F1| =
|F2| = · · · = |Fm| ≤ · · · ≤ |Fk|, where 2 ≤ m ≤ k. Then F1

∼= F2
∼= · · · ∼= Fm is a

complete graph.

Proof. Let G be a realization of F and u a vertex of G. Let SG(u) = H =
H1 ∪H2 ∪ · · · ∪Hk and Hi

∼= Fi for i = 1, 2, . . . , k. If x ∈ H1, then according to
Lemma 2.1 and Theorem 2.4 NG(Hl) ⊆ NV (x) for each l = 2, 3, . . . , k and hence
SG(x) contains k − 1 components H2,H3, . . . ,Hk. Moreover, SG(x) contains the
vertex u which therefore belongs to a component H ′1 ∼= H1

∼= F1. If there was a
vertex y ∈ H1 nonadjacent to x, then SG(x) would have more than k components,
because by Corollary 2.5 NV (y) = NG(x) and hence y does not belong to any of
the components H ′1,H2, . . . ,Hk. This is absurd. Therefore x is adjacent to all
vertices of H1 and H1

∼= Kp. By Theorem 2.4 H1
∼= H2

∼= · · · ∼= Hm and the proof
is complete. �

The following corollary follows directly from the previous theorem and treats
the special case when all components have the same order.

Corollary 3.6. Let F = F1 ∪ F2 ∪ · · · ∪ Fk be a seed graph with |F1| = |F2| =
· · · = |Fk| and k ≥ 3. Then F1

∼= F2
∼= · · · ∼= Fk ∼= Kp for p = |F1|.
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