THE STABILITY OF THE EQUATION $f(x y)-f(x)-f(y)=0$ ON GROUPS

V. FA ĬZIEV

Abstract

Let G be a group and let E be a Banach space. Suppose that a mapping $f: G \rightarrow E$ satisfies the relation $\|f(x y)-f(x)-f(y)\| \leq c$ for some $c>0$ and any $x, y \in G$. The problem of existence of mappings $l: G \rightarrow E$ such that the following relations hold 1) $l(x y)-l(x)-l(y)=0$ for any $x, y \in G ; 2)$ the set $\{\|l(x)-f(x)\| ; \forall x, y \in G\}$ is bounded is considered.

The question 'if we replace a given functional equation by a functional inequality, then under what conditions we can state that the solutions of the inequality are close to the solutions of the equation' was posed for the functional equation $f(x y)=f(x) \cdot f(y)$ for x, y in the group G in $[\mathbf{1 1}]$ in connection with the results of the papers [6-8].

For a mapping f of the group G into a semigroup of linear transformations of a vector space, in the papers $[\mathbf{1}],[\mathbf{2}],[\mathbf{1 0}]$ the problem on sufficient conditions of the coincidence of the solution of a functional inequality $\|f(x y)-f(x) \cdot f(y)\|<c$ with a solution of the corresponding functional equation $f(x y)-f(x) \cdot f(y)=0$ was studied. In the papers [4], [5], [9] it was independently shown that if a continuous mapping f of a compact group G into the algebra of endomorphisms of a Banach space satisfies the relation $\|f(x y)-f(x) \cdot f(y)\| \leqslant \delta$ for all $x, y \in G$ with a sufficiently small $\delta>0$, then it is ε-close to a continuous representation g of the same group in the same Banach space (i.e., we have $\|f(x)-g(x)\|<\varepsilon$ for all $x \in G$).

In the paper [6] D. H. Hayers proved that if $f: E \rightarrow E^{\prime}$ is a mapping between Banach spaces such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon
$$

for some $\varepsilon>0$ and any $x, y \in E$, then there is unique mapping $l: E \rightarrow E^{\prime}$ such that the following relations hold

$$
\|f(x)-l(x)\| \leq \varepsilon, \quad l(x+y)-l(x)-l(y)=0, \quad \forall x, y \in E .
$$

[^0]This property Hyers in [6] and Ulam in [11] called the stability of the equation

$$
f(x+y)-f(x)-f(y)=0 .
$$

Suppose that G is an arbitrary group and E is an arbitrary Banach space. Consider the following equation

$$
\begin{equation*}
f(x y)-f(x)-f(y)=0, \quad x, y \in G, \quad f(x) \in E \tag{1}
\end{equation*}
$$

Definition 1. We say that the equation (1) is (G, E)-stable if for any $\psi: G \rightarrow$ E satisfying the functional inequality

$$
\begin{equation*}
\|\psi(x y)-\psi(x)-\psi(y)\| \leq \varepsilon \tag{2}
\end{equation*}
$$

for some $\varepsilon>0$ and any $x, y \in G$ there is $l: G \rightarrow E$ such that for some $\delta>0$ the following relations hold

$$
\begin{equation*}
\|\psi(x)-l(x)\| \leq \delta, \quad l(x y)-l(x)-l(y)=0, \quad \forall x, y \in G \tag{3}
\end{equation*}
$$

Let T be nonempty set, by $B(T)$ we denote the Banach space of real bounded functions on T.

In this paper we consider the problem of $(G, B(T))$ stability.
Definition 2. By a quasicharacter of group G we mean real-valued function f such that the set $\{f(x y)-f(x)-f(y) ; x, y \in G\}$ is bounded.

The set of quasicharacters of group G is real linear space (with respect to the usual operations of addition of functions and their multiplication by numbers) which we denote by $K X(G)$.

Definition 3. We say that a quasicharacter φ is a pseudocharacter if for any $x \in G$ and any $n \in Z$ the relation $f\left(x^{n}\right)=n f(x)$ holds.

The subspace of $K X(G)$ consisting of pseudocharacters denote by $P X(G)$. By $X(G)$ denote the subspace of $P X(G)$ consisting of real additive characters of the group G.

We say that a pseudocharacter φ of a group G is nontrivial if $\varphi \notin X(G)$.
Proposition 1. If a group G has nontrivial pseudocharacter, then the equation (1) is not (G, E) stable for any Banach space E.

Proof. Let φ be a nontrivial pseudocharacter of group G and let e be an element of E such that $\|e\|=1$. Define a map $f: G \rightarrow E$ as follows: for any $x \in G$ we set $f(x)=\varphi(x) e$. Then for some $\varepsilon>0$ the function f satisfies to (2). Suppose that there is $l: G \rightarrow E$ such that for some $\delta>0$ the relation (3) holds. Then for any $x \in G$ and any $n \in Z$ we have $n\|f(x)-l(x)\|=\left\|f\left(x^{n}\right)-l\left(x^{n}\right)\right\| \leq \delta$. Hence, $f \equiv l$. This contradicts to the relation $\varphi \notin X(G)$.

The Proposition is proved.

Lemma 1. Let G be a group and $\varphi \in P X(G)$. Suppose that for any $x, y \in G$ we have $|\varphi(x \cdot y)-\varphi(x)-\varphi(y)|<\varepsilon$; then

1) the inequality $\left|\varphi\left(x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n+1}\right)-\sum_{i=1}^{n+1} \varphi\left(x_{i}\right)\right|<n \cdot \varepsilon$ holds for any positive integer n and any $x_{1}, x_{2}, \ldots, x_{n} \in G$;
2) if φ is a bounded function, then $\varphi \equiv 0$;
3) the set $\left\{\varphi\left(a^{-1} b^{-1} a b\right) ; \forall a, b \in G\right\}$ is bounded;
4) $\varphi\left(a^{-1} b a\right)=\varphi(b)$ for any $a, b \in G$.

Proof. Assertion 1) is easily proved by induction on n. Let us prove 2). If δ is a positive number such that $|\varphi(x)|<\delta$ for any $x \in G$, then for any positive integer n we have $n|\varphi(x)|=\left|\varphi\left(x^{n}\right)\right|<\delta$, therefore, $\varphi(x)=0$. Assertion 3)immediately follows from 1). Let us prove 4).

From assertion 1) it follows that $\left|\varphi\left(\left(a^{-1} b a\right)^{n}\right)-\varphi\left(a^{-1}\right)-\varphi\left(b^{n}\right)-\varphi(a)\right|<2 \varepsilon$. Hence, $\left|\varphi\left(a^{-1} b^{n} a\right)-\varphi\left(b^{n}\right)\right|<2 \cdot \varepsilon$, or $n\left|\varphi\left(a^{-1} b a\right)-\varphi(b)\right|<2 \cdot \varepsilon$. Since the latter inequality holds for all $n>1$, we obtain $\varphi\left(a^{-1} b a\right)=\varphi(b)$.

The Lemma is proved.
Proposition 2. Let G be a group and $\varphi \in K X(G)$. Then:

1) for each $x \in G$ there exist $a \lim _{n \rightarrow \infty} \frac{1}{n} \varphi\left(x^{n}\right)$;
2) a function $\widehat{\varphi}(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \varphi\left(x^{n}\right)$ is a pseudocharacter of G and the following decomposition

$$
K X(G)=P X(G) \dot{+} B(G)
$$

holds;
3) the kernel of the mapping $\varphi \rightarrow \widehat{\varphi}$ coincide with the space $B(G)$.

Proof. 1) Let c be a positive number such that

$$
\begin{equation*}
|\varphi(x y)-\varphi(x)-\varphi(y)| \leq c, \quad \forall x, y \in G \tag{4}
\end{equation*}
$$

The assertion 1) from the Lemma 1 implies that for any $x \in G$ and any $n \in N$ the following relations hold

$$
\begin{align*}
\left|\varphi\left(x^{n}\right)-n \varphi(x)\right| & \leq(n-1) \cdot c \\
\left|\frac{1}{n} \varphi\left(x^{n}\right)-\varphi(x)\right| & \leq c \tag{5}
\end{align*}
$$

Let us fix $x \in G$. Denote by $S(x)$ the subsemigroup of G generated by element x. From (5) it follows that there exist a sequence of positive integers $M=\left\{m_{i}\right.$; $i \in N\}$, such that there exist a limit

$$
a(x)=\lim _{\substack{m \rightarrow \infty \\ m \in M}} \frac{1}{m} \varphi\left(x^{m}\right)
$$

Let us show that for each $y \in S(x)$ there exist a limit

$$
a(y)=\lim _{\substack{m \rightarrow \infty \\ m \in M}} \frac{1}{m} \varphi\left(y^{m}\right)
$$

and if $y=x^{k} \quad k \in N$, then $a(y)=k a(x)$. Indeed, from (5) it follows

$$
\begin{equation*}
\left|\frac{1}{n} \varphi\left(x^{k \cdot n}\right)-\varphi\left(x^{k}\right)\right| \leq c . \tag{5-a}
\end{equation*}
$$

Hence,

$$
\left|\frac{1}{k \cdot n} \varphi\left(x^{k \cdot n}\right)-\frac{1}{k} \varphi\left(x^{k}\right)\right| \leq \frac{1}{k} c .
$$

The latter estimation implies

$$
\frac{1}{n} \lim _{\substack{k \rightarrow \infty \\ k \in M}} \frac{1}{k} \varphi\left(x^{k n}\right)=a(x),
$$

and

$$
\begin{equation*}
\lim _{\substack{m \rightarrow \infty \\ m \in M}} \frac{1}{m} \varphi\left(x^{m \cdot n}\right)=n \cdot a(x), \quad \forall n \in N . \tag{6}
\end{equation*}
$$

From (6) it follows that $\forall y \in S(x)$ there exists

$$
\lim _{\substack{m \rightarrow \infty \\ m \in M}} \frac{1}{m} \varphi\left(y^{m}\right)
$$

Denote this limit by $a(y)$. Let $y=x^{n}$, from (6) we get $a(y)=n a(x)$. For $l \in N$ we have $y^{l}=x^{n l}$, therefore $a\left(y^{l}\right)=l \cdot n \cdot a(x)=l \cdot a(y)$. And we obtain the following equality

$$
\begin{equation*}
a\left(y^{l}\right)=l \cdot a(y), \quad \forall y \in S(x), \forall l \in N \tag{7}
\end{equation*}
$$

From (5-a) it follows that $\forall y \in S(x)$ we have the inequality

$$
\begin{equation*}
|a(y)-\varphi(y)| \leq c . \tag{8}
\end{equation*}
$$

Now suppose that K is a sequence of positive integers different from M such that there exists a limit

$$
b(x)=\lim _{\substack{k \rightarrow \infty \\ k \in K}} \frac{1}{k} \varphi\left(y^{k}\right) .
$$

Then as above we obtain that for each $l \in N$ and each $y \in S(x)$ the following relations hold

$$
\begin{align*}
b\left(y^{l}\right) & =l \cdot b(y), \tag{7-a}\\
|b(y)-\varphi(y)| & \leq c . \tag{8-a}
\end{align*}
$$

From (8) and (8-a) it follows

$$
|a(y)-b(y)| \leq 2 c, \quad \forall y \in S(x)
$$

Taking into account (7), (7-a), we get that for each $l \in N$ the relation

$$
2 \cdot c \geq\left|a\left(y^{l}\right)-b\left(y^{l}\right)\right|=l|a(y)-b(y)|
$$

holds. This means that $a(y)=b(y), \forall y \in S(x)$. From the latter we obtain that for each $x \in G$ there exist $\lim _{n \rightarrow \infty} \frac{1}{n} \varphi\left(x^{n}\right)$.
2) Denote by $\widehat{\varphi}$ which is given by the formula

$$
\widehat{\varphi}(x)=\lim _{n \rightarrow \infty} \frac{1}{n} \varphi\left(x^{n}\right), \quad x \in G .
$$

From (7), (7-a) we obtain

$$
\begin{equation*}
\widehat{\varphi}\left(x^{l}\right)=l \widehat{\varphi}(x), \quad \forall x \in G, \quad \forall l \in N . \tag{9}
\end{equation*}
$$

From (5) it follows that

$$
|\widehat{\varphi}(x)-\varphi(x)| \leq c, \quad \forall x \in G .
$$

Hence, taking into account (4), we get

$$
\begin{equation*}
|\widehat{\varphi}(x z)-\widehat{\varphi}(x)-\widehat{\varphi}(z)| \leq 4 c, \quad \forall x, z \in G . \tag{10}
\end{equation*}
$$

From (9) it follows that $\widehat{\varphi}(1)=0$. Further, $\left|\widehat{\varphi}\left(x x^{-1}\right)-\widehat{\varphi}(x)-\widehat{\varphi}\left(x^{-1}\right)\right| \leq 4 c$. Hence, for each $x \in G$ the following inequality $\left|\widehat{\varphi}(x)+\widehat{\varphi}\left(x^{-1}\right)\right| \leq 4 c$ holds. Therefore, $\forall m \in N$ we obtain

$$
4 c \geq\left|\widehat{\varphi}\left(x^{m}\right)+\widehat{\varphi}\left(\left(x^{-1}\right)^{m}\right)\right|=m\left|\widehat{\varphi}\left(x^{m}\right)+\widehat{\varphi}\left(x^{-1}\right)\right| .
$$

From the latter we have

$$
\begin{equation*}
\widehat{\varphi}\left(x^{-1}\right)=-\widehat{\varphi}(x), \quad \forall x \in G . \tag{11}
\end{equation*}
$$

Now let $m \in N$, then from (11) and (9) it follows $\widehat{\varphi}\left(x^{-m}\right)=\widehat{\varphi}\left(\left(x^{m}\right)^{-1}\right)=$ $-\widehat{\varphi}\left(x^{m}\right)=-m \widehat{\varphi}(x)$.

Thus, for any $x \in G$ and any $m \in Z$ the following relation $\widehat{\varphi}\left(x^{m}\right)=m \widehat{\varphi}(x)$ holds. Hence, taking into account (10), we get $\widehat{\varphi} \in P X(G)$.

Now let us verify the following decomposition $K X(G)=P X(G) \dot{+} B(G)$.
It is clear that subspace of $K X(G)$ generated by $P X(G)$ and $B(G)$ is their direct sum. Let us show that the latter is coincide with $K X(G)$.

Suppose that $\varphi \in K X(G), c>0$ and

$$
|\varphi(x y)-\varphi(x)-\varphi(y)|<c, \quad \forall x, y \in G
$$

From the assertion 1) we have $\widehat{\varphi} \in P X(G)$ and $|\varphi(x)-\widehat{\varphi}(x)| \leq c$. Hence, $\varphi(x)=$ $\widehat{\varphi}(x)+\delta(x)$, where $\delta \in B(G)$.
3) It is evidently that the mapping $\varphi \rightarrow \widehat{\varphi}$ is linear. Now 3) follows from 2) and the relation

$$
\widehat{\varphi}=\varphi, \quad \forall \varphi \in P X(G) .
$$

The Proposition is proved.
Proposition 3. Suppose $\varphi \in K X(G)$; then the following conditions are equivalent:

1) $\varphi \in P X(G)$;
2) φ is a real additive character on each abelian subgroup in G;
3) $\varphi\left(x^{n}\right)=n \varphi(x), \forall x \in G, \forall n \in N$;
4) there exists integer m such that $|m|>1$ and $\varphi\left(x^{m}\right)=m \varphi(x), \forall x \in G$.

Proof.

1) $\rightarrow 2$). Let $c>0$ such that for any x, y from G the following inequality $|\varphi(x y)-\varphi(x)-\varphi(y)| \leq c$ holds. Suppose that A is an abelian subgroup of G and $a, b \in A$. Then for each $n \in N$ we get

$$
\begin{aligned}
c & \geq\left|\varphi\left(a^{n} b^{n}\right)-\varphi\left(a^{n}\right)-\varphi\left(b^{n}\right)\right| \\
& =\left|\varphi\left((a b)^{n}\right)-\varphi\left(a^{n}\right)-\varphi\left(b^{n}\right)\right|=n|\varphi(a b)-\varphi(a)-\varphi(b)| .
\end{aligned}
$$

Hence, $\varphi(a b)=\varphi(a)-\varphi(b)$.
2) $\rightarrow 3$) Obviously.
3) \rightarrow 1) Obviously.

1) \rightarrow 4) Obviously.
2) \rightarrow 3) Let $m>1$. Let

$$
\begin{equation*}
\varphi=\widehat{\varphi}+\delta, \quad \text { where } \widehat{\varphi} \in P X(G), \quad \delta \in B(G) \tag{12}
\end{equation*}
$$

From the condition it follows that for each $k \in N$ and each $x \in G$ the equality $\varphi\left(x^{m^{k}}\right)=m^{k} \varphi(x)$ holds. Taking into account (12), we obtain $\delta\left(x^{m^{k}}\right)=m^{k}(\varphi(x)-$ $\widehat{\varphi}(x))$. Therefore, $\delta \equiv 0$ and $\varphi \equiv \widehat{\varphi}$.

Now assume that $m<-1$. Then $m^{2}>1$ and $\varphi\left(x^{m^{2}}\right)=m^{2} \varphi(x), \forall x \in G$. Hence, $\varphi \equiv \widehat{\varphi}$ and $\varphi \in P X(G)$.

The Proposition is proved.
Denote by NPX the class of groups consistion of all groups G such that $P X(G)=X(G)$. And denote by $\mathbf{P X}$ the class of groups consisting of all groups G such that $P X(G) \neq X(G)$.

The class $\mathbf{P X}$ is not empty because any noncyclic free group F belongs to $\mathbf{P X}$. In the paper [3] a description of the space $P X(F)$ is given.

Suppose that E is finite dimensional Banach space. It is easy to see that the equation (1) is (G, E) stable if and only if $G \in \mathbf{N P X}$.

Now consider the problem of (G, E) stability for $E=B(T)$.
Let $\psi \in B(T)$ and let $\|\psi\|$ denote a usual norm of element ψ in $B(T)$. Let $f: G \rightarrow E$ and $\varepsilon>0$ such that the relation (2) holds. The mapping $f: G \rightarrow E$ may by considered as a function on two arguments $(x, t) ; x \in G, t \in T$. For any $t_{0} \in T$ the function $x \rightarrow f\left(x, t_{0}\right)$ is an element from $K X(G)$ such that the relation

$$
\begin{equation*}
\left\|f\left(x y, t_{0}\right)-f\left(x, t_{0}\right)-f\left(y, t_{0}\right)\right\| \leq \varepsilon, \quad \forall x, y \in G \tag{13}
\end{equation*}
$$

holds.
Now for every $t_{0} \in T$ let us fix some quasicharacter $x \rightarrow f\left(x, t_{0}\right)$ such that the relation (13) holds. Then it is clear that the function $x \rightarrow f(x, t) \in B(T)$ satisfies to (2).

Now from Proposition 2 we obtain the following fact.
Proposition 4. The equation (1) is $(G, B(T))$ stable if and only if $G \in \mathbf{N P X}$.
Lemma 2. Let G be an arbitrary group and let G^{\prime} be its commutator subgroup. Suppose that φ is a pseudocharacter of G, such that $\left.\varphi\right|_{G^{\prime}} \equiv 0$. Then $\varphi \in X(G)$.

Proof. First consider the case when $G=F$ is a free group of rank two with free generators x, y. Suppose that $\varphi(x)=\alpha, \varphi(y)=\beta$ and ξ is real additive character of group F such that $\xi(x)=\alpha, \xi(y)=\beta$. Then $\psi=\varphi-\xi \in P X(F)$ and $\psi(x)=\psi(y)=0$. Each element z of group F is uniquely representable in the form

$$
z=x^{i} y^{j} \cdot c
$$

where $c \in F^{\prime}$. Let $\varepsilon>0$ such that the relation

$$
|\varphi(u v)-\varphi(u)-\varphi(v)| \leq \varepsilon, \quad \forall u, v \in F
$$

holds.
Then from Lemma 1 we get $\left|\psi(z)-\psi\left(x^{i}\right)-\psi\left(y^{j}\right)-\psi(c)\right| \leq 2 \varepsilon$. The latter implies $|\psi(z)| \leq 2 \varepsilon, \forall z \in F$. Hence, $\psi \equiv 0$.

Thus we have $\varphi \equiv \xi$ on F and $\varphi \in X(F)$.

Now assume that F is a free group of arbitrary rank, $\varphi \in P X(F)$ and $\left.\varphi\right|_{F^{\prime}} \equiv 0$. Let a, b be an arbitrary elements from F. Then the subgroup generated by elements $\{a, b\}$ is either cyclic or free group of rank two. Hence, $\varphi(a b)=\varphi(a)+\varphi(b)$ and $\varphi \in X(F)$.

Now let G be an arbitrary group and $\tau: F \rightarrow G$ an epimorphism of some free group F onto G. Suppose that φ is an element from $P X(G)$ such that $\left.\varphi\right|_{G^{\prime}} \equiv 0$. Consider the mapping $\psi=\varphi \circ \tau \in P X(F)$. Since $\tau: F^{\prime} \rightarrow G^{\prime}$ then $\left.\psi\right|_{F^{\prime}} \equiv 0$. Therefore $\psi \in X(F)$.

Let us check that $\varphi \in X(G)$. Indeed, suppose that there are $a, b \in G$ such that $\varphi(a b) \neq \varphi(a)+\varphi(b)$. Let u, v be elements from F such that $u^{\tau}=a, v^{\tau}=b$. Then $\psi(u)=\varphi(a), \psi(v)=\varphi(b), \psi(u v)=\varphi(a b)$.

Hence, $\psi(u v) \neq \psi(u)+\psi(v)$ and we come to contradiction to the relation $\psi \in X(F)$. Thus, for any u, v from G we have $\varphi(u v)=\varphi(u)+\varphi(v)$.

The Lemma 2 is proved.
Suppose that G is an arbitrary group and $a, b, \alpha, \beta \in G$. It is easily to verify that the following relations hold:

$$
\begin{equation*}
[a, b]^{\alpha}=[a \alpha, b] \cdot[\alpha, b]^{-1}, \quad[a, b]^{\beta}=[a, \beta]^{-1} \cdot[a, b \beta] \tag{14}
\end{equation*}
$$

Theorem 1. Let G be an arbitrary group and let $G^{(k)}$ be k-th member of its derivative series. If $\varphi \in P X(G)$ and $\left.\varphi\right|_{G^{(k)}}$ is a character of $G^{(k)}$, then $\varphi \in X(G)$.

Proof. First consider the case when $G=F$ is a free group. Suppose that $\left.\varphi\right|_{F^{\prime}} \in X\left(F^{\prime}\right)$, then from (14) we obtain the following equalities:

$$
\varphi([a \alpha, b])=\varphi([a, b])+\varphi([\alpha, b]), \quad \varphi([a, b \beta])=\varphi([a, b])+\varphi([a, \beta]) .
$$

Therefore,

$$
\varphi\left(\left[a^{n}, b^{m}\right]\right)=n \cdot m \varphi([a, b]) \quad \forall n, m \in N .
$$

Now from Lemma 1 assertions 2) and 3) it follows $\left.\varphi\right|_{F^{\prime}} \equiv 0$.
Therefore, by Lemma 2 we get $\varphi \in X(F)$.
Suppose that for numbers $1, \ldots, k$ the theorem in the case $G=F$ is true. Let us prove for $k+1$. Let $\left.\varphi\right|_{F^{(k+1)}}$ be a character. Let us check that in this case the function $\left.\varphi\right|_{F^{(k)}}$ is a character too. Suppose that there are $a, b \in F^{(k)}$ such that $\varphi(a b) \neq \varphi(a)+\varphi(b)$. Then subgroup H generated by elements a, b is free group of rank two. Since $H^{\prime} \subset F^{(k+1)}$, then by the induction hypothesis we obtain that $\left.\varphi\right|_{H^{\prime}}$, is a character. From Lemma 2 it follows that the function $\left.\varphi\right|_{H}$ is character. Thus, $\left.\varphi\right|_{F^{(k)}}$ is a character. By the induction hypothesis the function φ is a character of group F.

Now let G be an arbitrary group and let τ be an epimorphism of free group F onto G. Then for each $k \in N$ we have $\tau\left(F^{(k)}\right)=G^{(k)}$. Let $\varphi \in P X(G)$ and
$\left.\varphi\right|_{G^{(k)}} \in X\left(G^{(k)}\right)$. Then the function $\psi=\varphi \circ \tau$ is a pseudocharacter of group F such that $\left.\psi\right|_{F^{(k)}} \in X\left(F^{(k)}\right)$. Hence, $\psi \in X(F)$. Thus, $\varphi \in X(G)$.

The Theorem is proved.
It is evidently that any periodical group belongs to NPX. Theorem implies that if a group G is solvable, then G is an NPX-group.

Corollary 1. Let G be an arbitrary group. Suppose that H is an invariant subgroup of $G, G / H$ is a solvable group and $P X(H)=X(H)$. Then $P X(G)=$ $X(G)$, i.e., the class NPX relatively solvable extensions is closed.

Proof. There exists $k \in N$ such that $G^{(k)} \subset H$. Hence, $\forall \varphi \in P X(G)$ the relation $\left.\varphi\right|_{G^{(k)}} \in X\left(G^{(k)}\right)$ holds. Now from Theorem 1 we obtain $\varphi \in X(G)$.

References

1. Baker J., Lawrence L. and Zorzitto F., The stability of the equation $f(x+y)=f(x) \cdot f(y)$, Proc. Amer. Math. Soc. 74 no. 2 (1979), 242-246.
2. Cencer D., The stability problem for transformation of the circle, Proc. Roy. Soc. Edinburg A. 84 (1979), 279-281.
3. Faiziev V. A., Pseudocharacters on free group, Izvestya Russ. Ak. Nauk ser. mathem. 58 no. 1 (1994), 121-143.
4. Grove K., Karcher H. and Roh E. A., Jacobi fields and Finsler metrics on a compact Lie groups with an application to differential pinching problems, Math. Ann. 211 no. 1 (1974), 7-21.
5. de la Harpe P. and Karoubi M., Represéntations approchées d'un groupe dans une algébre de Banach, Manuscripta math. 22 no. 3 (1977), 297-310.
6. Hyers D. H., On the stability of the linear functional equation, Proc Nat. Acad. Sci. USA 27 no. 2 (1941), 222-224.
7. Hyers D. H. and Ulam S. M., On approximate isometry, Bull. Amer. Math. Soc. 51 (1945), 228-292.
8. , Approximate isometry on the space of continuous functions, Ann. of Math. 48 no. 2 (1947), 285-289.
9. Kazhdan D., On ع-representations, Israel J. Math. 43 no. 4 (1982), 315-323.
10. Shtern A. I., Stability of homomorphisms into the group R^{*}, Vestnik MGU, Ser. matem. mekh. 37 no. 3 (1982), 33-36.
11. Ulam S. M., A Collection of Mathematical Problems, Wiley\& Sons, Interscience Publ., New York-London, 1960.
V. Faŭziev, Tver State Agreecultural Academy, Sakharovo Tver, Russia; current address: Tereshkova Sq. 47/27-43, Tver, 170037 Russia; e-mail: p001655@tversu.ru

[^0]: Received February 12, 1999.
 1980 Mathematics Subject Classification (1991 Revision). Primary 20M15, 20M30.
 Key words and phrases. Equation, stability, pseudocharacter, group.

