THE STABILITY OF THE EQUATION

f(xy) - f(x) - f(y) = 0 ON GROUPS

V. FAĬZIEV

ABSTRACT. Let G be a group and let E be a Banach space. Suppose that a mapping $f: G \to E$ satisfies the relation $||f(xy) - f(x) - f(y)|| \le c$ for some c > 0 and any $x, y \in G$. The problem of existence of mappings $l: G \to E$ such that the following relations hold 1) l(xy) - l(x) - l(y) = 0 for any $x, y \in G$; 2) the set $\{ ||l(x) - f(x)|| ; \forall x, y \in G \}$ is bounded is considered.

The question 'if we replace a given functional equation by a functional inequality, then under what conditions we can state that the solutions of the inequality are close to the solutions of the equation' was posed for the functional equation $f(xy) = f(x) \cdot f(y)$ for x, y in the group G in [11] in connection with the results of the papers [6–8].

For a mapping f of the group G into a semigroup of linear transformations of a vector space, in the papers [1], [2], [10] the problem on sufficient conditions of the coincidence of the solution of a functional inequality $||f(xy) - f(x) \cdot f(y)|| < c$ with a solution of the corresponding functional equation $f(xy) - f(x) \cdot f(y) = 0$ was studied. In the papers [4], [5], [9] it was independently shown that if a continuous mapping f of a compact group G into the algebra of endomorphisms of a Banach space satisfies the relation $||f(xy) - f(x) \cdot f(y)|| \leq \delta$ for all $x, y \in G$ with a sufficiently small $\delta > 0$, then it is ε -close to a continuous representation gof the same group in the same Banach space (i.e., we have $||f(x) - g(x)|| < \varepsilon$ for all $x \in G$).

In the paper [6] D. H. Hayers proved that if $f: E \to E'$ is a mapping between Banach spaces such that

$$||f(x+y) - f(x) - f(y)|| \le \varepsilon$$

for some $\varepsilon > 0$ and any $x, y \in E$, then there is unique mapping $l: E \to E'$ such that the following relations hold

$$||f(x) - l(x)|| \le \varepsilon, \quad l(x+y) - l(x) - l(y) = 0, \quad \forall x, y \in E.$$

Received February 12, 1999.

 $^{1980\} Mathematics\ Subject\ Classification\ (1991\ Revision).\ Primary\ 20M15,\ 20M30.$

Key words and phrases. Equation, stability, pseudocharacter, group.

V. FAĬZIEV

This property Hyers in [6] and Ulam in [11] called the stability of the equation

$$f(x+y) - f(x) - f(y) = 0.$$

Suppose that G is an arbitrary group and E is an arbitrary Banach space. Consider the following equation

(1)
$$f(xy) - f(x) - f(y) = 0, \quad x, y \in G, \quad f(x) \in E$$

Definition 1. We say that the equation (1) is (G, E)-stable if for any $\psi \colon G \to E$ satisfying the functional inequality

(2)
$$||\psi(xy) - \psi(x) - \psi(y)|| \le \epsilon$$

for some $\varepsilon > 0$ and any $x, y \in G$ there is $l: G \to E$ such that for some $\delta > 0$ the following relations hold

(3)
$$||\psi(x) - l(x)|| \le \delta, \quad l(xy) - l(x) - l(y) = 0, \quad \forall x, y \in G.$$

Let T be nonempty set, by B(T) we denote the Banach space of real bounded functions on T.

In this paper we consider the problem of (G, B(T)) stability.

Definition 2. By a **quasicharacter** of group G we mean real-valued function f such that the set $\{f(xy) - f(x) - f(y); x, y \in G\}$ is bounded.

The set of quasicharacters of group G is real linear space (with respect to the usual operations of addition of functions and their multiplication by numbers) which we denote by KX(G).

Definition 3. We say that a quasicharacter φ is a **pseudocharacter** if for any $x \in G$ and any $n \in Z$ the relation $f(x^n) = nf(x)$ holds.

The subspace of KX(G) consisting of pseudocharacters denote by PX(G). By X(G) denote the subspace of PX(G) consisting of real additive characters of the group G.

We say that a pseudocharacter φ of a group G is **nontrivial** if $\varphi \notin X(G)$.

Proposition 1. If a group G has nontrivial pseudocharacter, then the equation (1) is not (G, E) stable for any Banach space E.

Proof. Let φ be a nontrivial pseudocharacter of group G and let e be an element of E such that ||e|| = 1. Define a map $f: G \to E$ as follows: for any $x \in G$ we set $f(x) = \varphi(x)e$. Then for some $\varepsilon > 0$ the function f satisfies to (2). Suppose that there is $l: G \to E$ such that for some $\delta > 0$ the relation (3) holds. Then for any $x \in G$ and any $n \in Z$ we have $n||f(x) - l(x)|| = ||f(x^n) - l(x^n)|| \le \delta$. Hence, $f \equiv l$. This contradicts to the relation $\varphi \notin X(G)$.

The Proposition is proved.

Lemma 1. Let G be a group and $\varphi \in PX(G)$. Suppose that for any $x, y \in G$ we have $|\varphi(x \cdot y) - \varphi(x) - \varphi(y)| < \varepsilon$; then

- 1) the inequality $|\varphi(x_1 \cdot x_2 \cdot \ldots \cdot x_{n+1}) \sum_{i=1}^{n+1} \varphi(x_i)| < n \cdot \varepsilon$ holds for any positive integer n and any $x_1, x_2, \ldots, x_n \in G$;
- 2) if φ is a bounded function, then $\varphi \equiv 0$;
- 3) the set { $\varphi(a^{-1}b^{-1}ab)$; $\forall a, b \in G$ } is bounded;
- 4) $\varphi(a^{-1}ba) = \varphi(b)$ for any $a, b \in G$.

Proof. Assertion 1) is easily proved by induction on n. Let us prove 2). If δ is a positive number such that $|\varphi(x)| < \delta$ for any $x \in G$, then for any positive integer n we have $n|\varphi(x)| = |\varphi(x^n)| < \delta$, therefore, $\varphi(x) = 0$. Assertion 3)immediately follows from 1). Let us prove 4).

From assertion 1) it follows that $|\varphi((a^{-1}ba)^n) - \varphi(a^{-1}) - \varphi(b^n) - \varphi(a)| < 2\varepsilon$. Hence, $|\varphi(a^{-1}b^n a) - \varphi(b^n)| < 2 \cdot \varepsilon$, or $n|\varphi(a^{-1}ba) - \varphi(b)| < 2 \cdot \varepsilon$. Since the latter inequality holds for all n > 1, we obtain $\varphi(a^{-1}ba) = \varphi(b)$.

The Lemma is proved.

Proposition 2. Let G be a group and $\varphi \in KX(G)$. Then:

- 1) for each $x \in G$ there exist a $\lim_{n\to\infty} \frac{1}{n}\varphi(x^n)$;
- 2) a function $\widehat{\varphi}(x) = \lim_{n \to \infty} \frac{1}{n} \varphi(x^n)$ is a pseudocharacter of G and the following decomposition

$$KX(G) = PX(G) \dot{+} B(G)$$

holds;

3) the kernel of the mapping $\varphi \to \widehat{\varphi}$ coincide with the space B(G).

Proof. 1) Let c be a positive number such that

(4)
$$|\varphi(xy) - \varphi(x) - \varphi(y)| \le c, \quad \forall x, y \in G.$$

The assertion 1) from the Lemma 1 implies that for any $x\in G$ and any $n\in N$ the following relations hold

(5)
$$\begin{aligned} |\varphi(x^n) - n\varphi(x)| &\leq (n-1) \cdot c, \\ \left|\frac{1}{n}\varphi(x^n) - \varphi(x)\right| &\leq c. \end{aligned}$$

Let us fix $x \in G$. Denote by S(x) the subsemigroup of G generated by element x. From (5) it follows that there exist a sequence of positive integers $M = \{m_i; i \in N\}$, such that there exist a limit

$$a(x) = \lim_{\substack{m \to \infty \\ m \in M}} \frac{1}{m} \varphi(x^m).$$

Let us show that for each $y \in S(x)$ there exist a limit

$$a(y) = \lim_{\substack{m \to \infty \\ m \in M}} \frac{1}{m} \varphi(y^m)$$

and if $y = x^k$ $k \in N$, then a(y) = ka(x). Indeed, from (5) it follows

(5-a)
$$\left|\frac{1}{n}\varphi(x^{k\cdot n}) - \varphi(x^k)\right| \le c.$$

Hence,

$$\left|\frac{1}{k \cdot n}\varphi(x^{k \cdot n}) - \frac{1}{k}\varphi(x^k)\right| \le \frac{1}{k}c.$$

The latter estimation implies

$$\frac{1}{n}\lim_{\substack{k\to\infty\\k\in M}}\frac{1}{k}\varphi(x^{kn}) = a(x)$$

 $\quad \text{and} \quad$

(6)
$$\lim_{\substack{m \to \infty \\ m \in M}} \frac{1}{m} \varphi(x^{m \cdot n}) = n \cdot a(x), \quad \forall n \in N.$$

From (6) it follows that $\forall y \in S(x)$ there exists

$$\lim_{\substack{m \to \infty \\ m \in M}} \frac{1}{m} \varphi(y^m).$$

Denote this limit by a(y). Let $y = x^n$, from (6) we get a(y) = na(x). For $l \in N$ we have $y^l = x^{nl}$, therefore $a(y^l) = l \cdot n \cdot a(x) = l \cdot a(y)$. And we obtain the following equality

(7)
$$a(y^l) = l \cdot a(y), \quad \forall y \in S(x), \ \forall l \in N.$$

From (5-a) it follows that $\forall y \in S(x)$ we have the inequality

(8)
$$|a(y) - \varphi(y)| \le c.$$

Now suppose that K is a sequence of positive integers different from M such that there exists a limit

$$b(x) = \lim_{\substack{k \to \infty \\ k \in K}} \frac{1}{k} \varphi(y^k).$$

Then as above we obtain that for each $l \in N$ and each $y \in S(x)$ the following relations hold

(7-a)
$$b(y^l) = l \cdot b(y),$$

$$(8-a) |b(y) - \varphi(y)| \le c.$$

From (8) and (8-a) it follows

$$|a(y) - b(y)| \le 2c, \quad \forall y \in S(x).$$

Taking into account (7), (7-a), we get that for each $l \in N$ the relation

$$2 \cdot c \ge |a(y^l) - b(y^l)| = l|a(y) - b(y)|$$

holds. This means that $a(y) = b(y), \forall y \in S(x)$. From the latter we obtain that for each $x \in G$ there exist $\lim_{n\to\infty} \frac{1}{n}\varphi(x^n)$.

2) Denote by $\hat{\varphi}$ which is given by the formula

$$\widehat{\varphi}(x) = \lim_{n \to \infty} \frac{1}{n} \varphi(x^n), \quad x \in G.$$

From (7), (7-a) we obtain

(9)
$$\widehat{\varphi}(x^l) = l\widehat{\varphi}(x), \quad \forall x \in G, \quad \forall l \in N.$$

From (5) it follows that

$$|\widehat{\varphi}(x) - \varphi(x)| \le c, \quad \forall x \in G.$$

Hence, taking into account (4), we get

(10)
$$|\widehat{\varphi}(xz) - \widehat{\varphi}(x) - \widehat{\varphi}(z)| \le 4c, \quad \forall x, z \in G.$$

From (9) it follows that $\widehat{\varphi}(1) = 0$. Further, $|\widehat{\varphi}(xx^{-1}) - \widehat{\varphi}(x) - \widehat{\varphi}(x^{-1})| \leq 4c$. Hence, for each $x \in G$ the following inequality $|\widehat{\varphi}(x) + \widehat{\varphi}(x^{-1})| \leq 4c$ holds. Therefore, $\forall m \in N$ we obtain

$$4c \ge |\widehat{\varphi}(x^m) + \widehat{\varphi}((x^{-1})^m)| = m |\widehat{\varphi}(x^m) + \widehat{\varphi}(x^{-1})|.$$

From the latter we have

(11)
$$\widehat{\varphi}(x^{-1}) = -\widehat{\varphi}(x), \quad \forall x \in G.$$

Now let $m \in N$, then from (11) and (9) it follows $\widehat{\varphi}(x^{-m}) = \widehat{\varphi}((x^m)^{-1}) = -\widehat{\varphi}(x^m) = -m\widehat{\varphi}(x)$.

Thus, for any $x \in G$ and any $m \in Z$ the following relation $\widehat{\varphi}(x^m) = m\widehat{\varphi}(x)$ holds. Hence, taking into account (10), we get $\widehat{\varphi} \in PX(G)$.

Now let us verify the following decomposition KX(G) = PX(G) + B(G).

It is clear that subspace of KX(G) generated by PX(G) and B(G) is their direct sum. Let us show that the latter is coincide with KX(G).

Suppose that $\varphi \in KX(G), c > 0$ and

$$|\varphi(xy) - \varphi(x) - \varphi(y)| < c, \quad \forall x, y \in G.$$

From the assertion 1) we have $\widehat{\varphi} \in PX(G)$ and $|\varphi(x) - \widehat{\varphi}(x)| \leq c$. Hence, $\varphi(x) = \widehat{\varphi}(x) + \delta(x)$, where $\delta \in B(G)$.

3) It is evidently that the mapping $\varphi \to \widehat{\varphi}$ is linear. Now 3) follows from 2) and the relation

$$\widehat{\varphi} = \varphi, \quad \forall \varphi \in PX(G).$$

The Proposition is proved.

Proposition 3. Suppose $\varphi \in KX(G)$; then the following conditions are equivalent:

- 1) $\varphi \in PX(G);$
- 2) φ is a real additive character on each abelian subgroup in G;
- 3) $\varphi(x^n) = n\varphi(x), \forall x \in G, \forall n \in N;$
- 4) there exists integer m such that |m| > 1 and $\varphi(x^m) = m\varphi(x), \forall x \in G$.

Proof.

 $1) \to 2$). Let c > 0 such that for any x, y from G the following inequality $|\varphi(xy) - \varphi(x) - \varphi(y)| \le c$ holds. Suppose that A is an abelian subgroup of G and $a, b \in A$. Then for each $n \in N$ we get

$$c \ge |\varphi(a^{n}b^{n}) - \varphi(a^{n}) - \varphi(b^{n})|$$

= $|\varphi((ab)^{n}) - \varphi(a^{n}) - \varphi(b^{n})| = n|\varphi(ab) - \varphi(a) - \varphi(b)|.$

Hence, $\varphi(ab) = \varphi(a) - \varphi(b)$. 2) \rightarrow 3) Obviously. 3) \rightarrow 1) Obviously. 1) \rightarrow 4) Obviously. 4) \rightarrow 3) Let m > 1. Let

1) 0) 200 100 10 200

(12)
$$\varphi = \widehat{\varphi} + \delta$$
, where $\widehat{\varphi} \in PX(G)$, $\delta \in B(G)$

From the condition it follows that for each $k \in N$ and each $x \in G$ the equality $\varphi(x^{m^k}) = m^k \varphi(x)$ holds. Taking into account (12), we obtain $\delta(x^{m^k}) = m^k(\varphi(x) - \widehat{\varphi}(x))$. Therefore, $\delta \equiv 0$ and $\varphi \equiv \widehat{\varphi}$.

Now assume that m < -1. Then $m^2 > 1$ and $\varphi(x^{m^2}) = m^2 \varphi(x), \forall x \in G$. Hence, $\varphi \equiv \widehat{\varphi}$ and $\varphi \in PX(G)$. The Proposition is proved.

Denote by **NPX** the class of groups consistion of all groups G such that PX(G) = X(G). And denote by **PX** the class of groups consisting of all groups G such that $PX(G) \neq X(G)$.

The class \mathbf{PX} is not empty because any noncyclic free group F belongs to \mathbf{PX} . In the paper [3] a description of the space PX(F) is given.

Suppose that E is finite dimensional Banach space. It is easy to see that the equation (1) is (G, E) stable if and only if $G \in \mathbf{NPX}$.

Now consider the problem of (G, E) stability for E = B(T).

Let $\psi \in B(T)$ and let $||\psi||$ denote a usual norm of element ψ in B(T). Let $f: G \to E$ and $\varepsilon > 0$ such that the relation (2) holds. The mapping $f: G \to E$ may by considered as a function on two arguments $(x,t); x \in G, t \in T$. For any $t_0 \in T$ the function $x \to f(x,t_0)$ is an element from KX(G) such that the relation

(13)
$$||f(xy,t_0) - f(x,t_0) - f(y,t_0)|| \le \varepsilon, \quad \forall x,y \in G$$

holds.

Now for every $t_0 \in T$ let us fix some quasicharacter $x \to f(x, t_0)$ such that the relation (13) holds. Then it is clear that the function $x \to f(x, t) \in B(T)$ satisfies to (2).

Now from Proposition 2 we obtain the following fact.

Proposition 4. The equation (1) is (G, B(T)) stable if and only if $G \in \mathbf{NPX}$.

Lemma 2. Let G be an arbitrary group and let G' be its commutator subgroup. Suppose that φ is a pseudocharacter of G, such that $\varphi|_{G'} \equiv 0$. Then $\varphi \in X(G)$.

Proof. First consider the case when G = F is a free group of rank two with free generators x, y. Suppose that $\varphi(x) = \alpha$, $\varphi(y) = \beta$ and ξ is real additive character of group F such that $\xi(x) = \alpha$, $\xi(y) = \beta$. Then $\psi = \varphi - \xi \in PX(F)$ and $\psi(x) = \psi(y) = 0$. Each element z of group F is uniquely representable in the form

$$z = x^i y^j \cdot c$$

where $c \in F'$. Let $\varepsilon > 0$ such that the relation

$$|\varphi(uv) - \varphi(u) - \varphi(v)| \le \varepsilon, \qquad \forall u, v \in F$$

holds.

Then from Lemma 1 we get $|\psi(z) - \psi(x^i) - \psi(y^j) - \psi(c)| \le 2\varepsilon$. The latter implies $|\psi(z)| \le 2\varepsilon$, $\forall z \in F$. Hence, $\psi \equiv 0$.

Thus we have $\varphi \equiv \xi$ on F and $\varphi \in X(F)$.

Now assume that F is a free group of arbitrary rank, $\varphi \in PX(F)$ and $\varphi|_{F'} \equiv 0$. Let a, b be an arbitrary elements from F. Then the subgroup generated by elements $\{a, b\}$ is either cyclic or free group of rank two. Hence, $\varphi(ab) = \varphi(a) + \varphi(b)$ and $\varphi \in X(F)$.

Now let G be an arbitrary group and $\tau: F \to G$ an epimorphism of some free group F onto G. Suppose that φ is an element from PX(G) such that $\varphi|_{C'} \equiv 0$. Consider the mapping $\psi = \varphi \circ \tau \in PX(F)$. Since $\tau \colon F' \to G'$ then $\psi \Big|_{F'} \equiv 0$. Therefore $\psi \in X(F)$.

Let us check that $\varphi \in X(G)$. Indeed, suppose that there are $a, b \in G$ such that $\varphi(ab) \neq \varphi(a) + \varphi(b)$. Let u, v be elements from F such that $u^{\tau} = a, v^{\tau} = b$. Then $\psi(u) = \varphi(a), \ \psi(v) = \varphi(b), \ \psi(uv) = \varphi(ab).$

Hence, $\psi(uv) \neq \psi(u) + \psi(v)$ and we come to contradiction to the relation $\psi \in X(F)$. Thus, for any u, v from G we have $\varphi(uv) = \varphi(u) + \varphi(v)$.

The Lemma 2 is proved.

Suppose that G is an arbitrary group and a, b, $\alpha, \beta \in G$. It is easily to verify that the following relations hold:

(14)
$$[a,b]^{\alpha} = [a\alpha,b] \cdot [\alpha,b]^{-1}, \quad [a,b]^{\beta} = [a,\beta]^{-1} \cdot [a,b\beta],$$

Theorem 1. Let G be an arbitrary group and let $G^{(k)}$ be k-th member of its derivative series. If $\varphi \in PX(G)$ and $\varphi|_{G^{(k)}}$ is a character of $G^{(k)}$, then $\varphi \in X(G)$.

Proof. First consider the case when G = F is a free group. Suppose that $\varphi|_{F'} \in X(F')$, then from (14) we obtain the following equalities:

 $\varphi([a\alpha, b]) = \varphi([a, b]) + \varphi([\alpha, b]) , \quad \varphi([a, b\beta]) = \varphi([a, b]) + \varphi([a, \beta]).$

Therefore,

$$\varphi([a^n, b^m]) = n \cdot m\varphi([a, b]) \quad \forall n, m \in N.$$

Now from Lemma 1 assertions 2) and 3) it follows $\varphi|_{F'} \equiv 0$. Therefore, by Lemma 2 we get $\varphi \in X(F)$.

Suppose that for numbers $1, \ldots, k$ the theorem in the case G = F is true. Let us prove for k+1. Let $\varphi|_{F^{(k+1)}}$ be a character. Let us check that in this case the function $\varphi|_{F^{(k)}}$ is a character too. Suppose that there are $a, b \in F^{(k)}$ such that $\varphi(ab) \neq \varphi(a) + \varphi(b)$. Then subgroup H generated by elements a, b is free group of rank two. Since $H' \subset F^{(k+1)}$, then by the induction hypothesis we obtain that $\varphi|_{H'}$ is a character. From Lemma 2 it follows that the function $\varphi|_{H}$ is character. Thus, $\varphi|_{F^{(k)}}$ is a character. By the induction hypothesis the function φ is a character of group F.

Now let G be an arbitrary group and let τ be an epimorphism of free group F onto G. Then for each $k \in N$ we have $\tau(F^{(k)}) = G^{(k)}$. Let $\varphi \in PX(G)$ and

 $\varphi|_{G^{(k)}} \in X(G^{(k)})$. Then the function $\psi = \varphi \circ \tau$ is a pseudocharacter of group F such that $\psi|_{F^{(k)}} \in X(F^{(k)})$. Hence, $\psi \in X(F)$. Thus, $\varphi \in X(G)$.

The Theorem is proved.

It is evidently that any periodical group belongs to NPX. Theorem implies that if a group G is solvable, then G is an **NPX**-group.

Corollary 1. Let G be an arbitrary group. Suppose that H is an invariant subgroup of G, G/H is a solvable group and PX(H) = X(H). Then PX(G) =X(G), i.e., the class **NPX** relatively solvable extensions is closed.

Proof. There exists $k \in N$ such that $G^{(k)} \subset H$. Hence, $\forall \varphi \in PX(G)$ the relation $\varphi|_{G^{(k)}} \in X(G^{(k)})$ holds. Now from Theorem 1 we obtain $\varphi \in X(G)$.

References

- **1.** Baker J., Lawrence L. and Zorzitto F., The stability of the equation $f(x+y) = f(x) \cdot f(y)$, Proc. Amer. Math. Soc. 74 no. 2 (1979), 242-246.
- 2. Cencer D., The stability problem for transformation of the circle, Proc. Roy. Soc. Edinburg A. 84 (1979), 279-281.
- 3. Faiziev V. A., Pseudocharacters on free group, Izvestya Russ. Ak. Nauk ser. mathem. 58 no. 1 (1994), 121-143.
- 4. Grove K., Karcher H. and Roh E. A., Jacobi fields and Finsler metrics on a compact Lie groups with an application to differential pinching problems, Math. Ann. 211 no. 1 (1974), 7 - 21.
- 5. de la Harpe P. and Karoubi M., Represéntations approchées d'un groupe dans une algébre de Banach, Manuscripta math. 22 no. 3 (1977), 297-310.
- 6. Hyers D. H., On the stability of the linear functional equation, Proc Nat. Acad. Sci. USA 27 no. 2 (1941), 222-224.
- 7. Hyers D. H. and Ulam S. M., On approximate isometry, Bull. Amer. Math. Soc. 51 (1945), 228 - 292
- 8. _, Approximate isometry on the space of continuous functions, Ann. of Math. 48 no. 2 (1947), 285-289.
- 9. Kazhdan D., On ε-representations, Israel J. Math. 43 no. 4 (1982), 315-323.
- 10. Shtern A. I., Stability of homomorphisms into the group R^* , Vestnik MGU, Ser. matem. mekh. 37 no. 3 (1982), 33-36. 11. Ulam S. M., A Collection of Mathematical Problems, Wiley& Sons, Interscience Publ., New
- York-London, 1960.

V. Faĭziev, Tver State Agreecultural Academy, Sakharovo Tver, Russia; current address: Tereshkova Sq. 47/27-43, Tver, 170037 Russia; e-mail: p001655@tversu.ru