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HOMOMORPHISMS OF SEMIHOLONOMIC

VERMA MODULES: AN EXCEPTIONAL CASE

It is well known that Verma module homomorphisms correspond to
invariant operators on homogeneous spaces, which in certain situations can be re-
garded as the flat models of specific differential geometries. This can be generalised
to curved space by introducing semiholonomic Verma modules, whose homomor-
phisms give rise to invariant operators on curved space. In this article we investigate
from a purely algebraic point of view which Verma module homomorphisms lift to
the semiholonomic case for the exceptional Lie algebra E6.

1. Introduction

Semiholonomic Verma modules were introduced in [4]. The motivation was the
construction of curved analogues of invariant operators on homogeneous spaces,
particularly for conformal geometry. If a homomorphism of Verma modules lifts
to a homomorphism of semiholonomic Verma modules then the corresponding
invariant operator has a curved analogue. In their article, Eastwood and Slovák
give a complete classification of which homomorphisms lift in the case of conformal
geometry. Here we investigate the same (algebraic) question for the exceptional
Lie algebra E6.

Our method of constructing semiholonomic lifts will be essentially the same as
in the conformal case, namely the translation principle, though here we introduce
a variation which we call one-way translations. For our non-existence result we
also reduce to the equivalent statement in the conformal case. Unfortunately these
methods do not give us a complete classification, but we can almost guess what
the complete picture will be.

Rather than duplicate the theory of [4], we will assume the reader has a copy
of that article to refer to while reading this one, and we will cite results directly
from it.
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2. Preliminaries

Let g be the exceptional Lie algebra E6, and let p be the parabolic Lie subalgebra
with Dynkin diagram

Here (and throughout) we use the same notation as that which appears in [1]. Let
α1, . . . , α6 denote the simple roots of g, corresponding to the labelling

1 2 3 4 5

6

of the nodes of the Dynkin diagram. This root system can be embedded in C8 if
we let

α1 =
1
2
(ε1 + ε8 − ε2 − · · · − ε7), α2 = ε2 − ε1, α3 = ε3 − ε2,

α4 = ε4 − ε3, α5 = ε5 − ε4, α6 = ε1 + ε2.

Let λ1, . . . , λ6 denote the fundamental weights. An irreducible representation Eλ

of g will have lowest weight −λ = −(aλ1 + · · · + fλ6)1 where a, . . . , f are non-
negative integers. We will sometimes use

a b c d e

f

and
a b c d e

f

to denote both the g-dominant (respectively p-dominant) weight and the cor-
responding g-module (respectively p-module). In the latter case a needn’t be
non-negative, i.e. an irreducible representation of p (also denoted Eλ) is con-
structed from the direct sum of the representation of so(10) with lowest weight
−(bλ2 + · · ·+ fλ6) and the representation of the abelian part with lowest weight
−a ∈ C, extended trivially to all of p.

1Thus λ is the highest weight of the dual representation E∗λ and the Verma module V (Eλ).
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As a representation of the subalgebra p, the adjoint representation of g on itself
decomposes into the composition series

0 0 0 0 0

1

= 0 0 0 0 0

1

+ -1 0 0 1 0

0

+ -2 1 0 0 0

0

⊕
0 0 0 0 0

0

which we write as g = g−1 +g0 +g1. Thus we have [gi, gj ] ⊂ gi+j (where g±2 = 0),
and a Lie algebra with such a decomposition is called |1|-graded. The subalgebra
p is given by g0 +g1, and g0 is the Levi part of p, which further decomposes into a
semisimple Lie algebra [g0, g0] isomorphic to so(10) and a one-dimensional centre.

Choosing a Serre basis for g, with Cartan subalgebra generated by h1, . . . , h6,
we find that the one-dimensional centre of g0 is generated by H = 1

3 (4h1 + 5h2 +
6h3 + 4h4 + 2h5 + 3h6). We obtain a (g0-invariant) linear functional on weights
from the action of H ,

` :
a b c d e

f

7→ 1
3
(4a + 5b + 6c + 4d + 2e + 3f),

and this functional is constant on the weights of a given irreducible p-module.
For example, [H, gi] = igi. A general irreducible g−module E decomposes into a
composition series of some finite length n,

E = Eα + Eα+1 + · · ·+ Eα+n,

where each Eα+j is a (not necessarily irreducible) representation of g0 which has
H-eigenvalue α+j (where α is some number). The actions of g−1 and g1 moves us
backwards and forwards (respectively) along the series. Regarded as p-modules,
we get a p-invariant inclusion

Eα+n → E = Eα + Eα+1 + · · ·+ Eα+n,

and a p-invariant projection

E = Eα + Eα+1 + · · ·+ Eα+n → Eα.

3. Verma Modules and Semiholonomic Verma Modules2

Let E be a p-module. We shall use the notation V (E) (and V̄ (E)) to denote
the Verma module (respectively, semiholonomic Verma module) associated to E.

2In the following sections, the reader should consult [4] for the definitions of Verma
modules and semiholonomic Verma modules, and for proofs of the relevant theory.
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Then our main purpose is to find when a g-module homomorphism

V (F) → V (E)

lifts to a homomorphism of the semiholonomic Verma modules,

V̄ (F) → V̄ (E).

The classification of all g-module homomorphisms V (F) → V (E) has been carried
out by Boe and Collingwood [2].

Theorem 1. The Verma module homomorphisms for the exceptional Lie al-
gebra E6 (with parabolic subalgebra p) are classified by the patterns in Figure 1.3

Each Verma module occurs in precisely one such pattern from which the g-module
homomorphisms can be read off.

The patterns are parametrised by the highest weight

λ =
a b c d e

f

of the first Verma module, and we shall call this the λ-pattern. If we denote the
weight λ1 + · · ·+λ6 by δ, then λ+ δ must be g-dominant, and the highest weights
of the other Verma modules in the pattern are obtained by the affine action of the
Weyl group on λ. If λ+δ lies strictly inside the dominant Weyl chamber we call the
pattern regular. If it lies on precisely one wall we call the pattern singular, and we
need to omit some of the Verma modules corresponding to non-p-dominant highest
weights. If it lies on more than one wall we get no non-trivial homomorphisms.
These three situations correspond to the integers a, . . . , f being all non-negative,
precisely one being equal to −1, and at least two being equal to −1 respectively.

The short arrows which act between adjacent levels are known as the standard
homomorphisms, and the longer arrows are known as the non-standard homomor-
phisms. In the 0-pattern the standard homomorphisms are all first order and the
non-standard homomorphisms are of higher order.

In order to prove the existence of certain lifts, we shall use the semiholonomic
version of the translation principle, Theorem 4 of [4]. Our initial data will be:

• the standard homomorphisms in the 0-pattern,
• the standard homomorphisms in the singular −λ1-pattern, −λ2-pattern,

etc.

Note that all of these Verma module homomorphisms are first order, which means
that the existence of lifts for them is immediate. To use homomorphisms can be
obtained from this initial data in the holonomic case. We consider several cases.

3Note that we have omitted the V ’s so as not to overcrowd the diagram.
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Figure 1. Homomorphisms of Verma modules.
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Regular Standard Homomorphisms
Our starting point is the standard homomorphisms in the 0-pattern. By trans-

lating with the g-module W = Eλ1 and its dual W∗ = E∗
λ1

= Eλ5 , we will show
that we can obtain the standard homomorphisms in a pattern with any of a, . . . , f

increased by one. Proposition 9 of [4] will ensure all of these translations result
in non-zero homomorphisms, so inductively we obtain all regular standard homo-
morphisms.

A homomorphism in a λ-pattern must look like

V (Ew′.λ) → V (Ew.λ),

for some w and w′ in the Weyl group W , acting affinely on the weight λ. Since
by assumption λ + δ lies strictly inside the dominant Weyl chamber, w.λ + δ and
w′.λ + δ must lie in the Weyl chambers corresponding to w and w′ respectively.

Consider the p-modules occurring in the decomposition of the tensor product
Ew.λ ⊗ W. All of the weights in W are obtained from the action of the Weyl
group on the lowest weight −λ1, so they have the same Euclidean length

√
4/3

(as calculated from our embedding of the weight system in C8 given in Section 2).
On the other hand, the walls of the Weyl chambers are the planes perpendicular
to the simple roots α1, . . . , α6, and thus the weight λ + δ (and hence also w.λ + δ)
will be distance

(λ + δ).αi/|αi| ≥ 1/
√

2

from the walls. In particular, w.λ + δ will be distance at least
√

2 from another
regular weight inside an adjacent Weyl chamber, so the weights we are translating
by (of length

√
4/3) are not long enough to move us into another chamber.

So if −η is the lowest weight of a p-module in Ew.λ ⊗ W, then η + δ will be
inside (or at worst on the boundary) of the Weyl chamber corresponding to w. In
particular, all the p-modules in the decomposition of this tensor product must have
distinct central characters (two distinct weights cannot be in the same Weyl group
orbit if they lie in, or on the boundary of, the same Weyl chamber). Of course,
the same is true for Ew′.λ ⊗ W, and if we replace W by W∗. Indeed whenever
we translate one of these regular homomorphisms with W or W∗, everything will
split off with unique central character. This is precisely the hypothesis of Propo-
sition 9 of [4], which thus tells us that all of these translations result in non-zero
homomorphisms.

We now outline the inductive step. The lowest weight of W is −λ1, and hence
−wλ1 will also occur as a weight of this g-module. Thus there will be a p-module
in the tensor product Ew.λ ⊗ W with lowest weight −w.λ − wλ1 = −w.(λ + λ1).
The same is true if we replace w by w′, and hence translating with W gives us a
non-zero homomorphism

V (Ew′.(λ+λ1)) → V (Ew.(λ+λ1)).
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Of course, adding λ1 to λ simply increases a by one. Similarly, using W∗ instead
of W increases e by one.

We can increase each of b, c, d, and f by one in several steps. For example,
first increase a by one then translate with W again. Since the weights λ1−λ2 and
w(λ1−λ2) occur amongst the weights of W, the tensor product Ew.(λ+λ1)⊗W, will
contain a component with lowest weight −w.(λ+λ1)+w(λ1 −λ2) = −w.(λ+λ2).
Thus we have increased b by one.

We have shown that all the standard homomorphisms in the regular patterns
can be obtained by translating from the regular initial data. In fact, the above
argument applies equally well to the non-standard homomorphisms in the regular
patterns, but we first need some initial data, namely the non-standard homo-
morphisms in the 0-pattern. We will see that some of these can be obtained by
translating from singular patterns.

Singular Standard Homomorphisms
Essentially the same argument as above shows that all the standard homomor-

phisms in the singular patterns can be obtained inductively by translating from the
singular initial data. The main difference between the regular and singular cases
is that with the former we are dealing with weights strictly inside Weyl chambers
whereas with the latter the weights lie on walls. Nevertheless, it is still possible to
show that when we translate weights along walls, the relevant modules will split off
with unique central characters. Hence Proposition 9 of [4] is applicable as before,
and translation results in non-zero homomorphisms.

Singular Non-Standard Homomorphisms
As with the regular case, all the non-standard homomorphisms in the singular

patterns can be obtained by translating, but only when we first have some initial
data to begin with. In fact, all of this initial data (namely the non-standard
operators in the singular −λ1-pattern, −λ2-pattern, etc.) can be obtained by
translating from the standard singular initial data. This can be exhibited in a
case by case way. For example, when we translate the standard homomorphism

V (E−5λ1+λ4) → V (E−4λ1+λ6)

from the −λ4-pattern by W, one of the (non-zero) homomorphisms which we get
is the non-standard homomorphism

V (E−5λ1+λ5) → V (E−3λ1)

from the −λ3-pattern. Further translations result in all of the singular non-
standard initial data. Note that while it appears that we will eventually arrive at
regular non-standard initial data in this way, in fact this is precisely the point at
which translation breaks down (in the final translation the relevant modules do not
split off with unique central characters, and hence we cannot apply Proposition 9
of [4] to ensure non-vanishing of the resulting homomorphisms).
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4. One-way Translation

So far we have relied solely on Proposition 9 of [4] to ensure that our transla-
tions give us non-zero homomorphisms, but even when the relevant modules do not
always split off with unique central characters we may still get non-zero homomor-
phisms. We will describe such a situation, which results in one-way translations,
i.e. translating in one direction gives a non-zero homomorphism but translating
back gives zero. This situation occurs when we try to translate between singular
and regular homomorphisms.

First we will show that translating from the regular homomorphism V (F) →
V (E) to the singular homomorphism V (F1) → V (E1) will result in the zero homo-
morphism. In the tensor product

V (E ⊗W) = V (E) ⊗W∗,

V (E1) will split off with unique central character, as we have translated from a
regular highest weight inside a Weyl chamber4 to a singular highest weight on a
wall of that Weyl chamber. The same is true if we replace E with F, and hence
we get a new homomorphism

V (F1) // V (F⊗W)

yyrrrrrrrrrr

��
V (E1) V (E⊗W).oo

It follows from the tautological isomorphism (11) in [4] that the diagonal homo-
morphism is equivalent to

V (F)

xxqqqqqqqqqq

��
V (E1 ⊗W∗) V (E).oo

Now V (E) must occur in the decomposition of V (E1 ⊗ W∗), but it cannot have
unique central character. Indeed, we are translating from a singular weight on
a wall to a regular weight inside a chamber, so there must be a second module
V (E′) whose highest weight is related to the highest weight of V (E) by a reflection
in that wall. In particular, these modules have the same central character. So
assume we get a composition series that looks like either

V (E1 ⊗W∗) = (· · · ) + (V (E′)⊕ · · · ) + (V (E) ⊕ · · · )
4Here, and in what follows, we will talk about highest weights when we really mean the weight

translated by δ.
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or
V (E1 ⊗W∗) = (V (E′)⊕ · · · ) + (V (E) ⊕ · · · ) + (· · · ),

where we have not shown modules with other central characters. Thus we have
an invariant inclusion

V (E′) → V (E1 ⊗W∗)

and an invariant projection

V (E1 ⊗W∗) → V (E),

but note that these Verma modules do not split off completely. In particular, the
composition of the bottom two homomorphisms in

V (F)

xxrrrrrrrrrr

��
V (E) V (E1 ⊗W∗)oo V (E)oo

must be zero, and hence the diagonal homomorphism must factor through V (E′):

V (F)

{{wwwwwwwww

V (E1 ⊗W∗) V (E′)oo

If no non-zero homomorphism V (F) → V (E′) exists (this can be checked from the
classification of homomorphisms of Verma modules, Theorem 2), it follows that
the diagonal homomorphism must necessarily be zero, and hence translating from
the regular homomorphism to the singular homomorphism gives us zero.

We now show that translating from the singular homomorphism to the regular
homomorphism gives a non-zero homomorphism, and so we have an example of
a one-way translation. We have already made an assumption about the form of
the composition series for V (E1 ⊗W∗). We further assume that the composition
series for V (F1 ⊗W∗) looks like either

V (F1 ⊗W∗) = (· · · ) + (V (F)⊕ · · · ) + (V (F′)⊕ · · · )
or

V (F1 ⊗W∗) = (V (F)⊕ · · · ) + (V (F′)⊕ · · · ) + (· · · ).
In other words, the necessary inclusions and projections of Verma modules will
exist for us to translate the singular homomorphism to obtain

V (F) // V (F1 ⊗W∗)

xxqqqqqqqqqq

��
V (E) V (E1 ⊗W∗).oo
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Again using the isomorphism (11) of [4], the diagonal homomorphism is equivalent
to

V (F1)

yyrrrrrrrrrr

��
V (E⊗W) V (E1).oo

If this diagonal homomorphism was zero, then the composition

V (F1)

yyrrrrrrrrrr

��
V (E1) V (E⊗W)oo V (E1)oo

would be too. However, V (E1) splits off from V (E ⊗ W) with unique central
character, so the composition of the bottom two homomorphisms is the identity
on V (E1). It would then follow that the original singular homomorphism V (F1) →
V (E1) that we are translating from is zero, which is absurd. Hence these diagonal
homomorphisms must be non-zero, i.e.

V (F1 ⊗W∗)

xxrrrrrrrrrr

��
V (E) V (E1 ⊗W∗)oo

is non-zero. Finally, if we assume that no homomorphism V (F′) → V (E) exists,
then when we compose the diagonal homomorphism with the inclusion

V (F) → V (F1 ⊗W∗)

we necessarily get a non-zero composition V (F) → V (E).
Thus under the right conditions, it will be possible to translate the singular

homomorphism V (F1) → V (E1) to obtain the regular one V (F) → V (E), even
though translating in the reverse direction gives zero.

For example, translation of the non-standard homomorphism

V (E−12λ1+3λ2+λ5) → V (E−7λ1+λ3+2λ6)

from the singular (λ2 − λ6)-pattern by W to get the regular non-standard initial
homomorphism

V (E−11λ1+2λ2+λ4) → V (E−7λ1+λ4+2λ6)

fits precisely into this scenario.
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Using this one-way translation we can obtain all but five of the regular initial
non-standard homomorphisms. These are the five homomorphisms

V (E−8λ1+4λ5) → V (E0), V (E−12λ1 ) → V (E−8λ1+4λ5),

V (E−9λ1+2λ3) → V (E−5λ1+2λ4), V (E−11λ1+2λ4) → V (E−9λ1+2λ3),

and
V (E−12λ1+3λ2) → V (E−6λ1+3λ6)

from the 0-pattern. Apart from the families of regular non-standard homomor-
phisms corresponding to these exceptional homomorphisms (i.e. from arbitrary
regular λ-patterns), all other regular homomorphisms and all singular homomor-
phisms can be obtained by translating from the standard initial data.

Since the homomorphisms in the standard initial data are all first order, they
trivially lift to the semiholonomic case. Then the semiholonomic translation prin-
ciple, Theorem 4 of [4], tells us that every homomorphism which can be obtained
from the initial data by translation also lifts to the semiholonomic case.5 Therefore
at this stage the only homomorphisms for which we don’t know whether a lift to
the semiholonomic case exists are the five exceptional families mentioned above.

5. The Non-Existence of Lifts of the First Exceptional Family

It is enough to show that a lift to the semiholonomic case does not exist for the
first exceptional homomorphism V (E−8λ1+4λ5) → V (E0). Notice that this homo-
morphism looks remarkably like the long homomorphism in the eight-dimensional
conformal case. Ignoring the fifth nodes of the terms in the classifying pattern,
what we get is precisely the classifying pattern for the parabolic Lie subalgebra

sitting inside so(10, C), which is the eight-dimensional conformal case studied
in [4]. Indeed, so(10, C) itself sits inside g as a Lie subalgebra: if X ∈ g be-
longs to the root space Xa1α1+···+a6α6 , then the subalgebra {X ∈ g|a5 = 0} with
Cartan subalgebra 〈h1, h2, h3, h4, h6〉 is isomorphic to so(10, C). Furthermore, the
parabolic

5Theorem 4 of [4] applies to usual applications of the translation principle, but the argument
applies equally well to one-way translations.
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intersects this so(10, C) subalgebra in the parabolic⋂
=

.

Now let us rewrite the highest weights of the relevant Verma modules in terms of
the simple roots {α1, . . . , α6} instead of the fundamental weights {λ1, . . . , λ6}:

−8λ1 + 4λ5 = (−8,−8,−8,−4, 0,−4) and 0 = (0, 0, 0, 0, 0, 0).

Recall that to find a Verma module homomorphism V (E−8λ1+4λ5) → V (E0), we
need to find a maximal (that is, killed by all raising operators) element v = q⊗w in
V (E0) with the appropriate weight, where w is a highest weight vector for E∗

0 and q

is an element of
⊙∗

g−1 (or in the semiholonomic case, an element of
⊗∗

g−1). We
see from above that achieving the appropriate weight will mean that the element
q can involve only elements in g−1 which belong to root spaces X−a1α1−···−a6α6

with a5 = 0. In other words, q only involves lowering operators belonging to the
subalgebra isomorphic to so(10, C). Furthermore, we know a priori that v is killed
by raising operators which do not lie in the so(10, C) subalgebra (such raising
operators must necessarily commute past the lowering operators occurring in q,
and then kill the maximal weight vector w). Thus if v is maximal for so(10, C)
then it is maximal for all of g.

Suppose it is possible to choose such a maximal element v. Then precisely the
same element q could be used to construct a maximal weight vector in the eight-
dimensional conformal case. Thus there would exist a lift to the semiholonomic
case of the so-called long homomorphism:

V

 −8 0 0 0

0

 → V

 0 0 0 0

0

 .

However, we know from Proposition 5 of [4] that the long homomorphism does not
admit a lift to the semiholonomic case in any of the even-dimensional conformal
cases. This contradiction implies that there cannot exist a lift to the semiholonomic
case of the exceptional homomorphism V (E−8λ1+4λ5) → V (E0).

6. Final Comments

As far as the other exceptional families are concerned, the situation is not so
clear. While there appears to be similarities with the long homomorphisms in
conformal geometry, the approach considered above only works for the first ex-
ceptional homomorphism. However, if we consider the geometric interpretation
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of Verma module homomorphisms as invariant operators then we can make some
further observations. For example, there is a geometric notion of adjoint operators,
and a recent result of Eastwood [3] shows that, at least for the holonomic case, this
can be formulated purely in algebraic terms. A semiholonomic analogue of this
result would imply the equivalence of the existence of lifts of the first and second
exceptional homomorphisms, and of the third and fourth exceptional homomor-
phisms. In particular, we could conclude that the second exceptional family does
not admit lifts to the semiholonomic case.
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