EXISTENCE OF CONSERVATION LAWS IN NILPOTENT CASE

M. MEHDI

ABSTRACT. Using the Spencer-Goldschmidt version of the Cartan-Kähler theorem, we prove the local existence of conservation laws for analytical quasi-linear systems of two independent variables in the nilpotent and 2-cyclic case.

INTRODUCTION

A conservation law for a (1-1) tensor field h on a manifold M, dim M = n, is a 1-form θ which satisfies $d\theta = 0$ and $dh^*\theta = 0$, where h^* is the transpose of $h: h^*\theta := \theta \circ h$. Conservation laws arise, for example, in the following classical problem. Consider a system of n quasi-linear equations in two independent variables:

(*)
$$\frac{\partial x^i}{\partial u} + h^i_j(x)\frac{\partial x^j}{\partial v} = 0 \quad (i, j = 1, \dots, n).$$

If $\theta := \lambda_i(x)dx^i$ is a conservation law with respect to the (1-1) tensor field h defined by the matrix h_j^i , there exist locally two functions f and g so that $\theta = df$ and $h^*\theta = dg$, (i.e. $\lambda_i = \frac{\partial f}{\partial x^i}$ and $h_j^i \lambda_i = \frac{\partial g}{\partial x^j}$), and we have

$$0 = \lambda_i \frac{\partial x^i}{\partial u} + \lambda_i h^i_j(x) \frac{\partial x^j}{\partial v} = \frac{\partial f}{\partial x^j} \frac{\partial x^j}{\partial u} + \frac{\partial g}{\partial x^j} \frac{\partial x^j}{\partial v} = 0.$$

Then for any solution $x^{i}(u, v)$ of the system (*), we have

$$\frac{\partial f(x(u,v))}{\partial u} + \frac{\partial g(x(u,v))}{\partial v} = 0,$$

and it contains a conservation law in the sense of Lax ([6]).

Locally, giving a conservation law is equivalent to giving a function f such that $(dh^*d)(f) = 0$. Thus the study of the local existence of conservation laws is equivalent (in an analytic context) to the study of the formal integrability of the differential operator dh^*d .

Received May 19, 1999; revised September 14, 1999.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 35G20, 35N10; Secondary 58F07, 58G30.

 $Key\ words\ and\ phrases.$ Conservation laws, completely integrable systems, Cartan-Kähler theorem, Nijenhuis-manifolds.

M. MEHDI

This problem has already been studied by Osborn, who, using Cartan's theory of exterior differential systems, showed the existence of conservation laws when h has constant coefficients in a suitable coordinate system ([7]).

In a paper published in 1964, Osborn ([8]) proved the formal Integrability of the operator dh^*d in the case when h is cyclic and if there exists a generator v^1 such that $v^1, \ldots, h^{n-1}v^1$ commutes in the sense of the square bracket.

Using the theory presented by Spencer and Goldschmidt ([4], [9]), we improve in ([2]) the case when h is cyclic, by getting rid of the supplementary condition given by Osborn. Recently, we show in ([5]) the following theorem:

Theorem. Suppose that h is nilpotent of order p, $(p \ge 2)$, analytic and such that [h, h] = 0. Fix $x_0 \in M$. Then there exists a neighborhood U of x_0 such that any $x \in U$ admits a "complete system" of conservation laws (i.e. every $\omega_0 \in T_x^*(M)$ can be prolonged in a germ of conservation laws) if and only if ker h, ker h^2, \ldots , ker h^{p-1} are involutive.

In this case the operator dh^*d is completely integrable ([5]).

The main result of the present paper, whose essential ideas were given in ([5]), can be expressed as following theorem:

Theorem. Suppose that h is nilpotent of order p, $(p \ge 2)$, analytic, [h, h] = 0and such that dim $(\text{Im } h^{p-1}) \ge \text{dim}(\text{ker } h) - 1$. Fix $x_0 \in M$. Then there exists a neighborhood U of x_0 such that any $x \in U$ admits a "complete system" of conservation laws.

Corollary. Suppose that h is nilpotent of order p, $(p \ge 2)$, analytic, [h, h] = 0 and such that h is 2-cyclic, (1-1) form. Fix $x_0 \in M$. Then there exists a neighborhood U of x_0 such that any $x \in U$ admits a "complete system" of conservation laws.

1. Algebraic preliminaries

Using Frölicher-Nijenhuis formalism ([3]), we know that for any point $x \in M$ and for any (1-1) tensor field h there exists a neighborhood U of x such that hdecomposes TU as a direct sum of the cyclic subspaces V_i , $i = 1, \ldots, s$ stable for h, (i.e. the restriction of h to V_i is cyclic) ([1], [7], [8]). Let q_i designate the dimension of V_i at x and at any point in U. We suppose that V_i , $i = 1, \ldots, s$ are arranged in such a way that $q_1 \ge q_2 \ge \cdots \ge q_s$. In this and following section we designe by v_i^1 a generator of V_i (for $i = 1, \ldots, s$) and denote $v_i^{\alpha_i} := h^{\alpha_i - 1} v_i^1$, $\alpha_i = 1, \ldots, q_i$. The vectors $\{(v_1^{\alpha_1})_{\alpha_1 = 1, \ldots, q_1}, \ldots, (v_s^{\alpha_s})_{\alpha_s = 1, \ldots, q_s}\} \equiv \{v_i^{\alpha_i}\}_{\substack{i=1,\ldots,s\\\alpha_i=1,\ldots,q_i}}$, form a basis of TUwhich called "adapted" to the decomposition into cyclic subspaces. By convention, we write $v_i^{\beta} = 0$ for $\beta > q_i$. **Proposition 1.1.** If h is nilpotent of order p and $r \in \{1, ..., p\}$, we have:

- 1. ker h^r is generated by $\{v_i^{\alpha_i+q_i-r}\}_{\substack{i=1,\ldots,s\\\alpha_i=1,\ldots,q_i}}$ 2. Im h^r is generated by $\{v_i^{\alpha_i+r}\}_{\substack{i=1,\ldots,s\\\alpha_i=1,\ldots,q_i}}$
- 3. dim ker h = s.

Proof. Conformally to the introduction of this section we can write the following table ([5]), which explain the relation between the elements of the set $\{v_i^{\alpha_i}\}_{\substack{i=1,\ldots,g_i\\\alpha_i=1,\ldots,q_i}}$. In fact:

dimension of V_i	cyclic subspaces	sequence defined by h
q_1	V_1	$v_1^1 \xrightarrow{h} v_1^2 \xrightarrow{h} \dots v_1^{\alpha} \xrightarrow{h} \dots \xrightarrow{h} v_1^{q_1} \xrightarrow{h} 0$
÷	•	:
q_i	V_i	$v_i^1 \xrightarrow{h} v_i^2 \xrightarrow{h} \dots \xrightarrow{h} v_i^{q_i} \xrightarrow{h} 0$
÷	•	: :
q_s	V_s	$v_s^1 \xrightarrow{h} \dots \xrightarrow{h} v_s^{q_s} \xrightarrow{h} 0$

We prove this proposition by simple application of this table ([5]).

Definition 1. We call a Nijenhuis-manifold (M, h) every C^{∞} manifold M equipped with a (1 - 1) tensor field h such that [h, h] = 0. [h, h] being the Nijenhuis square bracket of h defined by:

$$\frac{1}{2}[h,h](X,Y) := [hX,hY] + h^2[X,Y] - h[hX,Y] - h[X,hY] \qquad \forall X,Y \in TM.$$

Proposition 1.2. On the Nijenhuis-manifold (M, h) we have:

$$h^{\alpha}[X,Y] = -\sum_{j=1}^{\alpha-1} [h^{\alpha-j}X, h^{j}Y] + \sum_{j=0}^{\alpha-1} h[h^{\alpha-j-1}X, h^{j}Y]$$

 $\forall \alpha = 1, \dots \text{ and } \forall X, Y \in TM.$

Proof. It is easy to prove by induction the proposition, which holds when [h, h] = 0. In fact, it is true for $\alpha = 2$. Suppose it is true up the order $\alpha - 1$. Then

 $\forall X, Y \in TM; \forall \alpha = 1, 2, \dots$ we have:

$$\begin{split} h^{\alpha}[X,Y] &= hh^{\alpha-1}[X,Y] = -\sum_{j=1}^{\alpha-2} h[h^{\alpha-j-1}X,h^{j}Y] + \sum_{j=0}^{\alpha-2} h^{2}[h^{\alpha-j-2}X,h^{j}Y] \\ &= -\sum_{j=1}^{\alpha-2} h[h^{\alpha-j-1}X,h^{j}Y] - \sum_{j=1}^{\alpha-1} [h^{\alpha-j}X,h^{j}Y] + \sum_{j=0}^{\alpha-1} h[h^{\alpha-j-1}X,h^{j}Y] \\ &+ \sum_{j=1}^{\alpha-1} h[h^{\alpha-j-1}X,h^{j}Y] - h[X,h^{\alpha-1}Y] \\ &= -\sum_{j=1}^{\alpha-1} [h^{\alpha-j}X,h^{j}Y] + \sum_{j=0}^{\alpha-1} h[h^{\alpha-j-1}X,h^{j}Y]. \end{split}$$

2. Complete Integrability of dh^*d in the Nilpotent Case

Suppose, in this section, that (M, h) is a Nijenhuis-manifold, h is nilpotent and decomposes TM in s cyclic subspaces. Using the notations of section 1 we have:

Proposition 2.3. The subspaces ker h^r ; r = 1, ..., p-1 are involutive if and only if $\forall i, j = 1, ..., s$ such that $j \ge i$, we have; $[v_i^{\alpha}, v_j^{\beta}] \in \ker h^{q_i}$ for $\alpha = 1, ..., q_i$, $\beta = 1, ..., q_j$.

Proof. The condition is sufficient. Let $r \in \{1, \ldots, p-1\}$. ker h^r is involutive, In fact: Let $X := h^{q_i - r'}(v_i^1)$, $Y := h^{q_j - r''}(v_j^1)$ where $r'' \ge r$ and $r' \ge r$, be two elements of ker h^r . We suppose that i, j are arranged in such a way $i \le j$. If $r'' \ge r' \ge r$ we have:

$$\begin{split} 0 &= h^{q_i}[v_i^1, h^{q_j - r''}(v_j^1)] \\ &= -\sum_{u=1}^{q_i-1} [h^{q_i-u}(v_i^1), h^{q_j - r''+u}(v_j^1)] + \sum_{u=0}^{q_i-1} h[h^{q_i-u-1}(v_i^1), h^{q_j - r''+u}(v_j^1)] \\ &= -\sum_{u=1}^{r''-1} [h^{q_i-u}(v_i^1), h^{q_j - r''+u}(v_j^1)] + \sum_{u=0}^{r''-1} h[h^{q_i-u-1}(v_i^1), h^{q_j - r''+u}(v_j^1)] \\ &= -\sum_{u=1}^{r'-1} [h^{r'-u}h^{q_i-r'}(v_i^1), h^u h^{q_j - r''}(v_j^1)] + \sum_{u=0}^{r'-1} h[h^{r'-u-1}h^{q_i-r'}(v_i^1), h^u h^{q_j - r''}(v_j^1)] \\ &= h^{r'}[X, Y]. \end{split}$$

We deduce that $[X,Y] \in \ker h^{r'}$ and consequently $[X,Y] \in \ker h^r$ because $r' \leq r$. Similarly, if $r' \geq r'' \geq r$, then

$$0 = h^{q_i}[v_i^{r''-r'+1}, v_j^{q_j-r''+1})] = h^{q_i}[h^{r''-r'}v_i^1, h^{q_j-r''}v_j^1)] = h^{r''}[X, Y].$$

246

247

Consequently $[X, Y] \in \ker h^r$. Therefore $\ker h^r$ is involutive for every natural integer r. Conversely, let $v_i^{\alpha} \in \ker h^{q_i}$, $v_j^{\beta} \in \ker h^{q_j}$, $i \leq j$. We deduce that $\ker h^{q_j} \subseteq \ker h^{q_i}$ since $q_i \geq q_j$ but $\ker h^{q_i}$ is involutive, then $[v_i^{\alpha}, v_j^{\beta}] \in \ker h^{q_i}$.

Theorem 2.1. Suppose that h is nilpotent of order $p, (p \ge 2)$, analytic, [h, h] = 0 and such that dim $(\text{Im } h^{p-1}) \ge \text{dim}(\text{ker } h) - 1$. Fix $x_0 \in M$. Then there exists a neighborhood U of x_0 such that any $x \in U$ admits a "complete system" of conservation laws.

Proof. dim(Im h^{p-1}) \geq dim(ker h) -1 implies that dim $V_i = q_i = p$ for $i = 1, \ldots, s - 1$. In the other hand, all the cyclic subspaces but the last are of the same dimension. In this case the order of nilpotence of h is equal to p, which implies that the square bracket of two arbitrary vector fields, at point x_0 is an element of ker $h_{x_0}^p = T_{x_0}M$. Then, $\forall i, j = 1, \ldots, s$ such that $j \geq i$, we have: $[v_i^{\alpha}, v_j^{\beta}] \in \ker h^{q_i}$ for $\alpha = 1, \ldots, q_i, \beta = 1, \ldots, q_j$. In particular case, if j = i = s the two vectors $v_s^{\alpha}, v_s^{\beta}$ are in the cyclic subspace V_s , so the bracket of the two vectors is an element of V_s then $[v_s^{\alpha}, v_s^{\beta}] \in \ker h^{q_s}$. This allows us to apply the previous proposition and say that the operator dh^*d is completely integrable. \Box

Corollary 2.1. If h is nilpotent of order p, $(p \ge 2)$, analytic, [h,h] = 0 and such that h is 2-cyclic, then the operator dh^*d is completely integrable.

Proof. It's particular case of the previous theorem. In fact s - 1 = 1 and $\dim V_1 = p$.

References

- 1. Bourbaki N., Théorie des ensembles, chapitre 3, Hermann, 1963.
- Cabau P., Grifone J. and Mehdi M., Existence des lois de conservations dans le cas cyclique, Ann. Inst. Henri. Poincarré 55 (1991), 789–803.
- Frölicher A. and Nijenhuis A., Theory of vector-valued differential forms, I, Nedel. Akad. Wetinsch. Proc. 59 (1956), 338–359.
- Goldschmidt H., Existence theorems for analytic differential equations, Ann. of Math. (1967), 246–270.
- Grifone J. and Mehdi M., Existence of conservation laws and characterization of recursion operators for completely integrable systems, Transactions of AMS 349(11) (1997), 4609–4633.
- Lax P. D., Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math. 10 (1957), 537–566.
- 7. Osborn H., The existence of conservation laws, I, Ann. of Math. 69 (1959), 105-118.
- 8. _____, Les lois de conservations, Ann. Inst. Fourier 14 (1964), 71–82.
- Spencer D. C., Overdetermined systems of linear partial differential equations, Bull. AMS 75 (1969), 179–239.

M. Mehdi, Lebanese University, Faculty of science I, BP 13.5292 chouran, Beirut, Lebanon; e-mail: mehdi@ul.edu.lb