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EXISTENCE OF CONSERVATION LAWS IN NILPOTENT CASE

M. MEHDI

Abstract. Using the Spencer-Goldschmidt version of the Cartan-Kähler theorem,
we prove the local existence of conservation laws for analytical quasi-linear systems

of two independent variables in the nilpotent and 2-cyclic case.

Introduction

A conservation law for a (1-1) tensor field h on a manifold M , dimM = n, is a
1-form θ which satisfies dθ = 0 and dh∗θ = 0, where h∗ is the transpose of h : h∗θ :=
θ ◦ h. Conservation laws arise, for example, in the following classical problem.
Consider a system of n quasi-linear equations in two independent variables:

(∗) ∂xi

∂u
+ hij(x)

∂xj

∂v
= 0 (i, j = 1, . . . , n).

If θ := λi(x)dxi is a conservation law with respect to the (1-1) tensor field h

defined by the matrix hij , there exist locally two functions f and g so that θ = df

and h∗θ = dg, (i.e. λi = ∂f
∂xi and hijλi = ∂g

∂xj ), and we have

0 = λi
∂xi

∂u
+ λih

i
j(x)

∂xj

∂v
=

∂f

∂xj
∂xj

∂u
+

∂g

∂xj
∂xj

∂v
= 0.

Then for any solution xi(u, v) of the system (∗), we have

∂f(x(u, v))
∂u

+
∂g(x(u, v))

∂v
= 0,

and it contains a conservation law in the sense of Lax ([6]).
Locally, giving a conservation law is equivalent to giving a function f such

that (dh∗d)(f) = 0. Thus the study of the local existence of conservation laws is
equivalent (in an analytic context) to the study of the formal integrability of the
differential operator dh∗d.
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This problem has already been studied by Osborn, who, using Cartan’s theory
of exterior differential systems, showed the existence of conservation laws when h

has constant coefficients in a suitable coordinate system ([7]).
In a paper published in 1964, Osborn ([8]) proved the formal Integrability of

the operator dh∗d in the case when h is cyclic and if there exists a generator v1

such that v1, . . . , hn−1v1 commutes in the sense of the square bracket.
Using the theory presented by Spencer and Goldschmidt ([4], [9]), we improve

in ([2]) the case when h is cyclic, by getting rid of the supplementary condition
given by Osborn. Recently, we show in ([5]) the following theorem:

Theorem. Suppose that h is nilpotent of order p, (p ≥ 2), analytic and such
that [h, h] = 0. Fix x0 ∈ M . Then there exists a neighborhood U of x0 such
that any x ∈ U admits a “complete system” of conservation laws (i.e. every
ω0 ∈ T ∗x (M) can be prolonged in a germ of conservation laws) if and only if
kerh, kerh2, . . . , kerhp−1 are involutive.

In this case the operator dh∗d is completely integrable ([5]).

The main result of the present paper, whose essential ideas were given in ([5]),
can be expressed as following theorem:

Theorem. Suppose that h is nilpotent of order p, (p ≥ 2), analytic, [h, h] = 0
and such that dim(Im hp−1) ≥ dim(kerh) − 1. Fix x0 ∈ M . Then there exists
a neighborhood U of x0 such that any x ∈ U admits a “complete system” of
conservation laws.

Corollary. Suppose that h is nilpotent of order p, (p ≥ 2), analytic, [h, h] = 0
and such that h is 2-cyclic, (1-1) form. Fix x0 ∈ M . Then there exists a neigh-
borhood U of x0 such that any x ∈ U admits a “complete system” of conservation
laws.

1. Algebraic preliminaries

Using Frölicher-Nijenhuis formalism ([3]), we know that for any point x ∈ M
and for any (1-1) tensor field h there exists a neighborhood U of x such that h
decomposes TU as a direct sum of the cyclic subspaces Vi, i = 1, . . . , s stable for h,
(i.e. the restriction of h to Vi is cyclic) ([1], [7], [8]). Let qi designate the dimension
of Vi at x and at any point in U . We suppose that Vi, i = 1, . . . , s are arranged in
such a way that q1 ≥ q2 ≥ · · · ≥ qs. In this and following section we designe by v1

i

a generator of Vi (for i = 1, . . . , s) and denote vαii := hαi−1v1
i , αi = 1, . . . , qi. The

vectors {(vα1
1 )α1=1,...,q1 , . . . , (v

αs
s )αs=1,...,qs} ≡ {v

αi
i } i=1,...,s

αi=1,...,qi

, form a basis of TU

which called “adapted” to the decomposition into cyclic subspaces. By convention,
we write vβi = 0 for β > qi.
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Proposition 1.1. If h is nilpotent of order p and r ∈ {1, . . . , p}, we have:

1. kerhr is generated by {vαi+qi−ri }
i=1,...,s
αi=1,...,qi

2. Im hr is generated by {vαi+ri }
i=1,...,s
αi=1,...,qi

3. dim kerh = s.

Proof. Conformally to the introduction of this section we can write the fol-
lowing table ([5]), which explain the relation between the elements of the set
{vαii } i=1,...,s

αi=1,...,qi

. In fact:

dimension cyclic sequence defined by h
of Vi subspaces

q1 V1 v1
1
h→ v2

1
h→ . . . vα1

h→ . . .
h→ vq11

h→ 0
...

...
...

qi Vi v1
i
h→ v2

i
h→ . . .

h→ vqii
h→ 0

...
...

...

qs Vs v1
s
h→ . . .

h→ vqss
h→ 0

We prove this proposition by simple application of this table ([5]). �

Definition 1. We call a Nijenhuis-manifold (M,h) every C∞ manifold M

equipped with a (1 − 1) tensor field h such that [h, h] = 0. [h, h] being the
Nijenhuis square bracket of h defined by:

1
2

[h, h](X,Y ) := [hX, hY ] + h2[X,Y ]− h[hX, Y ]− h[X,hY ] ∀X,Y ∈ TM.

Proposition 1.2. On the Nijenhuis-manifold (M,h) we have:

hα[X,Y ] = −
α−1∑
j=1

[hα−jX,hjY ] +
α−1∑
j=0

h[hα−j−1X,hjY ]

∀α = 1, . . . and ∀X,Y ∈ TM .

Proof. It is easy to prove by induction the proposition, which holds when
[h, h] = 0. In fact, it is true for α = 2. Suppose it is true up the order α−1. Then
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∀X,Y ∈ TM ; ∀α = 1, 2, . . . we have:

hα[X,Y ] = hhα−1[X,Y ] = −
α−2∑
j=1

h[hα−j−1X,hjY ] +
α−2∑
j=0

h2[hα−j−2X,hjY ]

= −
α−2∑
j=1

h[hα−j−1X,hjY ]−
α−1∑
j=1

[hα−jX,hjY ] +
α−1∑
j=0

h[hα−j−1X,hjY ]

+
α−1∑
j=1

h[hα−j−1X,hjY ]− h[X,hα−1Y ]

= −
α−1∑
j=1

[hα−jX,hjY ] +
α−1∑
j=0

h[hα−j−1X,hjY ].

�

2. Complete Integrability of dh∗d in the Nilpotent Case

Suppose, in this section, that (M,h) is a Nijenhuis-manifold, h is nilpotent and
decomposes TM in s cyclic subspaces. Using the notations of section 1 we have:

Proposition 2.3. The subspaces kerhr; r = 1, . . . p − 1 are involutive if and
only if ∀i, j = 1, . . . , s such that j ≥ i, we have; [vαi , v

β
j ] ∈ kerhqi for α = 1, . . . , qi,

β = 1, . . . , qj.

Proof. The condition is sufficient. Let r ∈ {1, . . . , p− 1}. kerhr is involutive,
In fact: Let X := hqi−r

′
(v1
i ) , Y := hqj−r

′′
(v1
j ) where r′′ ≥ r and r′ ≥ r, be two

elements of kerhr. We suppose that i, j are arranged in such a way i ≤ j. If
r′′ ≥ r′ ≥ r we have:

0 = hqi [v1
i , h

qj−r′′(v1
j )]

= −
qi−1∑
u=1

[hqi−u(v1
i ), hqj−r

′′+u(v1
j )] +

qi−1∑
u=0

h[hqi−u−1(v1
i ), hqj−r

′′+u(v1
j )]

= −
r′′−1∑
u=1

[hqi−u(v1
i ), hqj−r

′′+u(v1
j )] +

r′′−1∑
u=0

h[hqi−u−1(v1
i ), hqj−r

′′+u(v1
j )]

= −
r′−1∑
u=1

[hr
′−uhqi−r

′
(v1
i ), huhqj−r

′′
(v1
j )]+

r′−1∑
u=0

h[hr
′−u−1hqi−r

′
(v1
i ), huhqj−r

′′
(v1
j )]

= hr
′
[X,Y ].

We deduce that [X,Y ] ∈ kerhr
′

and consequently [X,Y ] ∈ kerhr because
r′ ≤ r. Similarly, if r′ ≥ r′′ ≥ r, then

0 = hqi [vr
′′−r′+1
i , v

qj−r′′+1
j )] = hqi [hr

′′−r′v1
i , h

qj−r′′v1
j )] = hr

′′
[X,Y ].
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Consequently [X,Y ] ∈ kerhr. Therefore kerhr is involutive for every natural
integer r. Conversely, let vαi ∈ kerhqi , vβj ∈ kerhqj , i ≤ j. We deduce that
kerhqj ⊆ kerhqi since qi ≥ qj but kerhqi is involutive, then [vαi , v

β
j ] ∈ kerhqi .

Theorem 2.1. Suppose that h is nilpotent of order p, (p ≥ 2), analytic, [h, h] =
0 and such that dim(Im hp−1) ≥ dim(kerh) − 1. Fix x0 ∈ M . Then there exists
a neighborhood U of x0 such that any x ∈ U admits a “complete system” of
conservation laws.

Proof. dim(Im hp−1) ≥ dim(kerh) − 1 implies that dimVi = qi = p for i =
1, . . . , s − 1. In the other hand, all the cyclic subspaces but the last are of the
same dimension. In this case the order of nilpotence of h is equal to p, which
implies that the square bracket of two arbitrary vector fields, at point x0 is an
element of kerhpx0

= Tx0M . Then, ∀i, j = 1, . . . , s such that j ≥ i, we have:
[vαi , v

β
j ] ∈ kerhqi for α = 1, . . . , qi, β = 1, . . . , qj . In particular case, if j = i = s

the two vectors vαs , v
β
s are in the cyclic subspace Vs, so the bracket of the two

vectors is an element of Vs then [vαs , v
β
s ] ∈ kerhqs . This allows us to apply the

previous proposition and say that the operator dh∗d is completely integrable. �

Corollary 2.1. If h is nilpotent of order p, (p ≥ 2), analytic, [h, h] = 0 and
such that h is 2-cyclic, then the operator dh∗d is completely integrable.

Proof. It’s particular case of the previous theorem. In fact s − 1 = 1 and
dimV1 = p. �
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