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REGULARISING NATURAL DUALITIES

B. A. DAVEY and B. J. KNOX

Abstract. Given an algebra M we may adjoin an isolated zero to form an algebra

M∞ satisfying all identities u ≈ v true in M for which u and v contain the same
variables. Drawing on the structure theory of P lonka sums, we show that if M is
a finite, dualisable algebra which is strongly irregular, then M∞ is also dualisable.

Turning the construction of M∞ upside-down for the two-element left-zero band,
we exhibit a duality for quasi-regular left-normal bands.

1. Introduction

At the present time it is not clear how common algebraic constructions interact
with the theory of natural dualities. For example, it is not known in general
whether a finite product of dualisable algebras is dualisable. Even the familiar act
of passing to a subalgebra may lead to complications – recently, non-dualisable
algebras that may be embedded into dualisable algebras have been discovered (see
Clark, Davey and Pitkethly [3]). In this paper we consider the general algebraic
analogue of adding a zero to a semigroup and investigate when this construction
preserves dualisability.

We aim to take a finite, dualisable algebra M and obtain a natural duality for
the quasi-variety generated by the algebra M∞, formed by adding a zero to M.
This has been achieved by Gierz and Romanowska [7] in the case that M is the
two-element distributive lattice, thus giving an explicit natural duality for the
variety of distributive bisemilattices. Romanowska and Smith, in [13] and [14],
give a more conceptual treatment of the general case and show that a full (not
necessarily natural) duality for a strongly irregular variety V lifts to a full duality
for its regularisation. If V = ISPM and its full duality can be realised using
a schizophrenic object M (for example, when the duality is natural), then the
induced full duality for ISPM∞ can also be realised using a schizophrenic object
M∞. While the algebraic personality of M∞ is exactly M∞, it is not clear how the
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structured topological personality of M∞ may be distilled from the schizophrenic
object M∞ described by Romanowska and Smith.

In this paper, we give direct algebraic paths in the vain of the Gierz-Roma-
nowska duality from a (not necessarily full nor strong) natural duality for M to
one for M∞. However, one result assumes almost nothing about the algebra M
and may lead to a new binary operation in the type of the adjoined-zero algebra.
This operation turns out to be superfluous exactly when M is strongly irregular, so
in Section 3 we work under this assumption, allowing use of the beautiful structure
theory of P lonka sums and regularisations of strongly irregular varieties.

Finally, we exhibit a bare hands natural duality for a semigroup obtained by
“shadowing” an element of the two-element left-zero semigroup. This construction
(again a type of P lonka sum) relates to quasi-regularisations of strongly irregular
varieties as adjoining a zero relates to regularisations.

We firstly review the setting of Davey and Werner for producing dualities. A
leisurely introduction may be found in [5] while [2] gives a detailed account.

Let M be a finite algebra and consider a type G ∪H ∪ R of total operation
symbols G, partial operation symbols H, and relation symbols R. Let
M∼ = 〈M ; GM ,HM , RM ; τ〉 be a topological structure having the same underlying
set as M, where

(a) each g ∈ G is interpreted as a homomorphism gM : Mn → M for some
n ∈ N ∪ {0},

(b) each h ∈ H is interpreted as a homomorphism hM : dom(hM )→M where
dom(hM ) is a subalgebra of Mn for some n ∈ N,

(c) each r ∈ R is interpreted as a subalgebra rM of Mn for some n ∈ N,
(d) τ is the discrete topology.

Whenever (a), (b) and (c) hold, we say that GM ∪ HM ∪ RM is algebraic
over M. Under these conditions, there is a naturally defined dual adjunction
between the quasi-variety A := ISPM and the topological quasi-variety X :=
IScP

+M∼ consisting of isomorphic copies of topologically closed substructures of
non-trivial powers of M∼ . For each A ∈ A the homset D(A) := A(A,M) (that
is, the set of homomorphisms A → M) is a closed substructure of M∼

A and for
each X ∈ X the homset E(X) := X(X,M∼ ) (that is, the set of continuous maps
X →M that preserve each total operation, partial operation and relation symbol
in G ∪H ∪R) forms a subalgebra of MX . It follows that the contravariant hom-
functors A(−,M) : A→ S and X(−,M∼ ) : X→ S, where S is the category of sets,
lift to contravariant functors D : A→ X and E : X→ A. For each A ∈ A, define
the evaluation map eA : A→ ED(A) by

eA(a)(x) := x(a)

for each a ∈ A and each x ∈ D(A). It may be shown that eA is an embedding
for each A ∈ A, as is the similarly defined εX : X → DE(X) for each X ∈ X.
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A simple calculation shows that e : idA → ED and ε : idX → DE are natural
transformations.

If, for an algebra A ∈ A, the embedding eA is an isomorphism we say that M∼
yields a duality on A. In case eA is an isomorphism for all A ∈ A, we say that
M∼ dualises M or that GM ∪HM ∪RM is a dualising structure for M. Here,
the natural dual adjunction between A and X is actually a dual representation.
If there is some choice of GM ∪HM ∪ RM such that M∼ dualises M, we say that
M is dualisable.

One of the aims of natural duality theory is to take the category theoretic
and topological conditions for M∼ to dualise M and distill them into (finitary)
algebraic conditions. The following three results follow this programme and will
be the foundation of the duality results in this paper. The reader is referred to [2]
for the proofs.

Theorem 1.1 (First Duality Theorem). M∼ yields a duality on A ∈ A = ISPM
if and only if every morphism α : D(A) →M∼ extends to an A-ary term function
t : MA →M of M.

Theorem 1.2 (Duality Compactness Theorem). If M∼ is of finite type (that is,
G ∪ H ∪ R is finite) and yields a duality on each finite algebra A ∈ A, then M∼
dualises M.

Theorem 1.3 (IC Duality Theorem). Suppose G ∪ H ∪ R is finite. Then M∼
dualises M provided the following interpolation condition is satisfied:

(IC)
For each n ∈ N and each substructure X of M∼

n, every morphism
α : X→M∼ extends to an n-ary term function t : Mn →M of M.

2. Algebras with an Adjoined Isolated Zero

An algebra A∞ of type F is said to have a zero element, ∞ ∈ A∞, if there are
no nullary operation symbols in F and for every fundamental operation symbol
f ∈ F (f n-ary) we have fA∞(x1, . . . , xn) =∞ whenever xi =∞ for some i. If, in
addition, A := 〈A∞\{∞};F 〉 is a subalgebra of A∞, we call ∞ an isolated zero.

Clearly, if there is an f ∈ F with arity greater than 1, then an algebra of type
F may have at most one zero.

For the remainder of this section we will work in a fixed type F having no
nullary operation symbols. Given an algebra, we may adjoin an isolated zero via
the following construction.

Definition 1. Let M = 〈M ;F 〉 be an algebra with ∞ /∈ M . Define M∞ to
be the algebra with universe M∞ = M ∪̇{∞} and fundamental operations given
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by:

fM∞(x1, . . . , xn) =
{
fM(x1, . . . , xn), if x1, . . . , xn ∈M ,

∞ otherwise,

where f ∈ F is n-ary and x1, . . . , xn ∈M∞.

We will be considering the situation where M in the above definition is a finite
algebra which is dualised by some structure M∼ = 〈M ;GM ,HM , RM ; τ〉. We would
like to dualise M∞ by some simple modification of GM ∪HM ∪RM .

A result may be obtained using Theorem 3.1 of [6] (see also Theorem 7.7.2
in [2]) in the case where M has a one-element subalgebra {a} and a zero b with
a 6= b. We may embed M∞ into M2 via the map sending each x ∈ M to (x, a)
and∞ to (b, b), hence M∞ ∈ ISPM. Also, the map M∞ →M sending∞ to b and
fixing M is a retraction.

Proposition 2.1. Suppose that

M∼ = 〈M ;GM ,HM , RM ; τ〉

dualises M where M has a one-element subalgebra {a} and a zero b with a 6= b.
Then

M∼∞ = 〈M∞; End(M∞), GM ∪HM , RM ; τ〉

dualises M∞.

Returning to the general case, assuming nothing about the algebra M will lead
us to a stronger assumption on M∼ , namely that it satisfies (IC). As a further
detour, we will in this section be producing a duality for the algebra

M∗
∞ := 〈M∞;FM∞ ∪ {∗}〉,

where the binary operation ∗ : M∞2 →M∞ given by

x ∗ y :=
{
x if x, y ∈M,

∞ otherwise,

has been added to M∞ as a new fundamental operation. The following Lemma
indicates when M∗

∞ is term equivalent to M∞.

Lemma 2.2. The binary operation ∗ is a term function of M∞ if and only if
M has a left-zero term, that is, a binary term t involving v1 and v2 such that
M satisfies the identity

t(v1, v2) ≈ v1.

Proof. Suppose ∗ is a term function of M∞, that is, ∗ = tM∞ for some binary
term t. To see that t involves the variable v1, let (x, y), (z, y) ∈M∞2 with x, y ∈M
and z =∞. Then

tM∞(x, y) = x ∗ y = x 6=∞ = z ∗ y = tM∞(z, y).
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Similarly, we see that t involves v2 by letting (x, y), (x, z) ∈ M∞2 with x, y ∈ M
and z =∞ and observing

tM∞(x, y) = x ∗ y = x 6=∞ = x ∗ z = tM∞(x, z).

Now, for all x, y ∈M ,

tM(x, y) = tM∞�
M2 (x, y) = x ∗ y = x,

as M is a subalgebra of M∞, showing that M satisfies the identity t(v1, v2) ≈ v1.
Conversely, suppose that M has a left-zero term t. We observe that t must

contain a fundamental operation symbol of arity at least two, hence by an easy
induction on the complexity of t,

tM∞(x, y) =
{
tM(x, y) = x if x, y ∈M,

∞ otherwise,

for all x, y ∈M∞, therefore ∗ = tM∞ . �

Note that, regardless of whether or not ∗ is artificially introduced, it is imme-
diately seen to be a homomorphism M∞

2 → M∞. Also, for all x, y, z ∈ M∞ we
have

x ∗ x = x

(x ∗ y) ∗ z = x ∗ (y ∗ z)
x ∗ y ∗ z = x ∗ z ∗ y.

That is, 〈M∞; ∗〉 is a left normal idempotent semigroup. From the above identi-
ties we may obtain the entropic law

x ∗ y ∗ w ∗ z = x ∗ w ∗ y ∗ z,

so it follows that ∗ is a homomorphism (M∗
∞)2 →M∗

∞.

Definition 2. Given a set GM ∪HM ∪RM of operations, partial operations
and relations algebraic over M, there is a natural way to lift this structure to M∞

via a construction similar to that used in Definition 1.
For each n-ary g ∈ G, with n > 1, define gM∞ : (M∞)n →M∞ by:

gM∞(x1, . . . , xn) =
{
gM (x1, . . . , xn), if x1, . . . , xn ∈M ,

∞ otherwise,

for all x1, . . . , xn ∈M∞. If g ∈ G is nullary, then we define gM∞ := gM .
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For each n-ary h ∈ H, let dom(hM∞) = dom(hM )∪̇{∞} where∞ is the constant
n-tuple (∞, . . . ,∞) and define hM∞ : dom(hM∞)→M∞ by:

hM∞(x1, . . . , xn) =
{
hM (x1, . . . , xn), if x1, . . . , xn ∈ dom(hM ),

∞ if (x1, . . . , xn) =∞,

for all x1, . . . , xn ∈ dom(hM∞).
Finally, for each n-ary relation symbol r ∈ R, we let

rM∞ = rM ∪̇{∞}.

If GM ∪ HM ∪ RM is algebraic over M, it follows that the resulting (partial)
operations and relations GM∞ ∪HM∞ ∪RM∞ arising from Definition 2.3 are alge-
braic over M∞. Further, since our constructions are compatible with ∗, we have
GM∞ ∪HM∞ ∪RM∞ algebraic over the extension M∗

∞.

Theorem 2.3. Let M be a finite algebra and suppose GM ∪HM ∪RM satisfies
(IC). Then

M∼∞ := 〈M∞;GM∞ ∪ {∗} ∪ {∞},HM∞ , RM∞ ∪ {M}; τ〉

satisfies (IC) with respect to M∗
∞, hence if GM ∪HM ∪RM is finite, M∼∞ dualises

M∗
∞.

Proof. Let n ∈ N and let X be a (closed) substructure of (M∼∞)n and let λ : X→
M∼∞ be a morphism. Our goal is to extend λ to a term function (M∗

∞)n →M∗
∞.

In the first case, if λ(x) =∞ for all x ∈ X, we must have X ∩Mn = ∅ since λ
preserves the unary relation M . That is, for every x ∈ X, there is an i ∈ {1, . . . , n}
such that xi =∞. It is then easy to see that for all x ∈ X, x1∗· · ·∗xn =∞ = λ(x),
showing the n-ary term function (v1 ∗ · · · ∗ vn)M∗∞ extends λ.

If λ is not the constant map onto {∞}, the set

N := {x ∈ X |λ(x) 6=∞}

is non-empty. We define
xN := x1 ∗ · · · ∗ xl

where x1, . . . , xl is some fixed sequence of the elements of N . Since λ preserves ∗,
we must have xN ∈ N , for otherwise

λ(xN ) =∞⇒ λ(x1) ∗ · · · ∗ λ(xl) =∞⇒ λ(xj) =∞ for some xj ∈ N,

a contradiction. Also, note that x ∈ N if and only if xN ∗ x = xN .
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Let
Z := {i ∈ {1, . . . , n} |xi 6=∞ for all x ∈ N}.

We claim that Z 6= ∅. Indeed, xN 6= ∞, that is xNi 6= ∞ for some index i.
Supposing that there exists an x ∈ N with xi =∞ gives xNi =∞, a contradiction.
Therefore i ∈ Z. In fact,

Z = {i ∈ {1, . . . , n} |xNi 6=∞}.

We have
N = {x ∈ X |xi 6=∞ for all i ∈ Z}

since x ∈ N ⇐⇒ xN ∗ x = xN ⇐⇒ xi 6=∞ for all i ∈ Z.
Comparing our two descriptions of N , we conclude that for all x ∈ X, one has

λ(x) = ∞ if and only if there exists i ∈ Z such that xi = ∞. This indicates that
an n-ary term function, if it is to extend λ, must involve all of the variables with
indices in Z.

Let πZ : M∞n → M∞
Z be restriction to Z. It is clear that πZ(N) ⊆ MZ . We

will now argue that πZ(N) is a substructure of M∼
Z .

Let g ∈ G be m-ary and let y1, . . . , ym ∈ πZ(N). To show gM
Z

(y1, . . . , ym) is
in πZ(N), let x1, . . . , xm ∈ N be such that πZ(x1) = y1, . . . , πZ(xm) = ym. Then
gX(x1, . . . , xm) ∈ X and for all i ∈ Z, we have gX(x1, . . . , xm)i ∈ M . Hence, by
our previous claim, λ(gX(x1, . . . , xm)) 6=∞, that is gX(x1, . . . , xm) is in N . Since
the xj agree with the yj on Z, we have

gM
Z

(y1, . . . , ym) = πZ(gX(x1, . . . , xm)) ∈ πZ(N).

Let h ∈ H be an m-ary partial operation symbol and let y1, . . . , ym ∈ πZ(N)
with y1, . . . , ym ∈ dom(hM

Z

). That is, y1
i , . . . y

m
i ∈ dom(hM ) for each i ∈ Z.

Let x1, . . . , xm ∈ N be such that πZ(x1) = y1, . . . , πZ(xm) = ym. We then have
x1 ∗ xN , . . . , xm ∗ xN ∈ X and again πZ(x1 ∗ xN ) = y1, . . . , πZ(xm ∗ xN ) = ym.
Checking that x1 ∗ xN , . . . , xm ∗ xN ∈ dom(hX), as before we conclude

hM
Z

(y1, . . . , ym) = πZ(hX(x1 ∗ xN , . . . , xm ∗ xN )) ∈ πZ(N),

completing the argument.
Now, suppose x, y ∈ N agree on Z, that is πZ(x) = πZ(y). Since x∗xN = y∗xN

and λ preserves ∗, we have

λ(x) = λ(x) ∗ λ(xN ) = λ(x ∗ xN ) = λ(y ∗ xN ) = λ(y) ∗ λ(xN ) = λ(y).

This shows that the map λ′ : πZ(N)→M given for all z ∈ πZ(N) by

λ′(z) = λ(x), where x is any element of N such that πZ(x) = z,
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is well defined. In fact, one may show that λ′ is a morphism from πZ(N) to M∼
by using an argument similar to the one above and the fact that λ preserves the
(partial) operations and relations in GM∞ ∪HM∞ ∪RM∞ .

We now have a substructure πZ(N) of M∼
Z and a morphism λ′ : πZ(N) →M∼ ,

so, by invoking (IC) for M , our induced λ′ extends to a Z-ary term function
tM : MZ → M. To complete the proof, it remains to show that the n-ary term
function

sM
∗
∞ = (t ∗ vi1 ∗ · · · ∗ vik)M∗∞ ,

where Z = {i1, . . . , ik}, extends λ.
We have already shown that for all x ∈ X, one has λ(x) = ∞ if and only if

xi =∞ for some i ∈ Z. It is easy to see that for all x ∈M∞n,

sM
∗
∞(x) =∞ ⇐⇒ xi =∞ for some i ∈ Z,

since s involves all variables with indices in Z. Hence

λ(x) =∞ ⇐⇒ sM
∗
∞(x) =∞ for all x ∈ X.

Finally, let x ∈ N . Since xi ∈M for all i ∈ Z, we have

λ(x) = λ′(πZ(x)) = tM(πZ(x)) = tM(x) = tM
∗
∞(x)

= tM
∗
∞(x) ∗ xi1 ∗ · · · ∗ xik = (t ∗ vi1 ∗ · · · ∗ vik)M∗∞(x) = sM

∗
∞(x),

as required. �

The following proposition shows the necessity of the relation M in the structure

M∼∞ := 〈M∞;GM∞ ∪ {∗} ∪ {∞},HM∞ , RM∞ ∪ {M}, τ〉,

provided no nullaries appear in GM . We will later provide examples where, in the
presence of nullaries, the unary relation M may be avoided.

Proposition 2.4. Suppose GM contains no nullaries. Then

GM∞ ∪ {∗} ∪ {∞} ∪HM∞ ∪RM∞

does not yield a duality on the algebra M∗ ∈ A = ISPM∗
∞.

Proof. We will show that the constant map ∞̂ : D(M∗) → {∞}, although in
ED(M∗), cannot be an evaluation at any a ∈M .

Let x ∈ D(M∗) = A(M∗,M∗
∞) and note that for all a, b ∈M , we have x(a) =

x(a ∗ b) = x(a) ∗ x(b). This shows that if x(b) = ∞ for some b ∈ M , then
x(a) =∞ for all a ∈M , hence D(M∗) consists precisely of the endomorphisms of
M∗ together with the constant map M∗ → {∞}.
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Clearly, ∞̂ ∈ ED(M∗), but any endomorphism of M∗ evaluated at any a ∈M
will differ from ∞. �

According to Lemma 2.2, we may replace M∗
∞ with M∞ in Theorem 2.3, pro-

vided M has a left-zero term. As an example of when this is not the case,
let 2 be the two-element meet-semilattice 〈{0, 1}; ·〉. Then the structure 2∼ =
〈{0, 1}; ·, 0, 1; τ〉 dualises 2 and indeed satisfies (IC) (see [2]). Observe that 2 can-
not have a left-zero term, since the identity u ≈ v is satisfied in a semilattice if
and only if the terms u and v contain precisely the same variables. Hence, when
applying Theorem 2.3, we obtain a duality for the algebra 2∗∞ = 〈{0, 1,∞}; ·, ∗〉.
Since ∗ is a homomorphism (2∗∞)2 → 2∗∞, we have the medial law

(x · y) ∗ (w · z) ≈ (x ∗ w) · (y ∗ z)

true in 2∗∞. Using this together with the idempotence of the operations · and ∗,
we obtain the distributive laws

x ∗ (y · z) ≈ (x ∗ y) · (x ∗ z)
(x · y) ∗ z ≈ (x · z) ∗ (y · z),

hence 2∗∞ is a semiring. Such semirings were considered in [16] and [15]
Note that there is a duality for the three-element chain 2∞ arising from Propo-

sition 2.1 given by the structure 2∼∞ = 〈{0, 1,∞}; End (2∞)∪{·}; τ〉 (see also [6]).

3. P lonka Sums and Regularisations

In this section, we consider a fixed plural type F . That is, F has an operation
symbol of arity at least 2 and no nullaries.

An algebra M of type F is called regular if it satisfies only regular identities
(that is, identities in which the same variables appear on both sides), and irregu-
lar otherwise. For a variety V of F -algebras, the regularisation V of V is defined
to be the variety of algebras satisfying all regular identities that are satisfied in V.
An alternative description of V may be given as follows.

Given a semilattice S = 〈S; ·〉, define the F -algebra SF := 〈S;FSF 〉 having
fundamental operations given by fSF (x1, . . . , xn) = x1 · · ·xn for all x1, . . . , xn ∈ S
and each n-ary f ∈ F . Denote by SLF the class consisting of the SF where S
ranges over all semilattices. Evidently, SLF is precisely the variety of F -algebras
satisfying all regular identities of type F . Indeed, as before, any SF ∈ SLF

satisfies an identity u ≈ v of type F if and only if the term functions uSF and vSF

are the same product of variables in S, that is, if and only if u ≈ v is a regular
identity. We now have

V = HSP(V ∪ SLF ).
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Also, note that SLF is term equivalent to the variety of semilattices since in any
SF we may recover the original · operation in S by: x · y = fSF (x, y, . . . , y) where
f ∈ F is any operation symbol of arity greater than 1. Accordingly, we call SLF

the variety of semilattices of type F .
Recall that a semilattice S = 〈S; ·〉 may be regarded as a (small) category (S)

with object set S and homsets given by

(S)(s, t) =
{ {s→ t} if s ≤ t,
∅ otherwise,

for all s, t ∈ S (where s ≤ t ⇐⇒ s · t = s). Note that (S) has products of any
two of its objects, the product of s and t in (S) being s · t.

Definition 3. Let S = 〈S; ·〉 be a semilattice and let V be a variety of algebras
of type F . Let Q be a contravariant functor from (S) to V. We write As := Q(s)
for each s ∈ S, and ϕt,s : = Q(s → t) for each s ≤ t in S, the fibre map
from At to As. Then the P lonka sum of Q is the F -algebra A with universe
A =

⋃̇
{As | s ∈ S} and fundamental operations given, for each n-ary f ∈ F , by

fA(x1, . . . , xn) = fAs(ϕs1,s(x1), . . . , ϕsn,s(xn))

for all x1, . . . , xn ∈ A, where xi ∈ Asi and s = s1 · · · sn. We will sometimes say A
is the P lonka sum of the system of fibres (As | s ∈ S) with fibre maps (ϕt,s | s ≤ t)
over the semilattice replica S.

For example, the algebra A∞ in Definition 2.1 is the P lonka sum of the func-
tor Q from the category corresponding to the two-element meet-semilattice 2 :=
〈{0, 1}; ·〉, where Q(1) = A and Q(0) is the trivial F -algebra 〈{∞};F 〉. The only
non-identity fibre map Q(0 → 1) : A → {∞} is constant. Note that 1∞, where 1
is the trivial F -algebra 〈{1};F 〉, is isomorphic to 2F .

An algebra M is called strongly irregular if it has a left-zero term ∗ (cf.
Lemma 2.2). For example, any algebra with an underlying lattice structure is
strongly irregular (we may take the term x ∗ y to be x ∨ (x ∧ y)). Similarly, an
algebra with an underlying group structure is strongly irregular (we may take the
term x ∗ y to be xy−1y). More generally, any non-trivial algebra in a congruence-
modular variety is strongly irregular since amongst the terms of such an algebra
is a 4-ary Day term d (which is not a projection) satisfying d(x, y, y, x) ≈ x, and
we may take x ∗ y to be d(x, y, y, x).

A variety V of algebras will be called strongly irregular if there is a binary
term ∗ which is a left-zero term on every algebra in V. It turns out that a strongly
irregular variety V has a basis for its identities consisting of some regular identities
together with the single identity x ∗ y ≈ x (see [17] or [11]). The regularisation of
V then has a very concrete description:
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Theorem 3.1. ([9], [10], [11], [17], [12]) Let V be a strongly irregular variety
of F -algebras defined by a set Σ of regular identities and a single identity of the
form x ∗ y ≈ x. Then the following classes coincide:

(1) The regularisation V of V;
(2) The class of P lonka sums of algebras in V;
(3) The variety of F -algebras defined by the identities Σ and the following

identities (for each n-ary f ∈ F ):

x ∗ x ≈ x,
(x ∗ y) ∗ z ≈ x ∗ (y ∗ z),
x ∗ y ∗ z ≈ x ∗ z ∗ y,

f(x1, . . . , xn) ∗ y ≈ f(x1 ∗ y, . . . , xn ∗ y),

y ∗ f(x1, . . . , xn) ≈ y ∗ x1 ∗ · · · ∗ xn.

Observe that the first three identities of (3) above tell us that for an algebra A
in V, the term reduct 〈A; ∗〉 is an idempotent left normal semigroup.

In the presence of strong irregularity, there is also a characterisation of the
subdirectly irreducibles in V:

Theorem 3.2. ([8]) Let V be a strongly irregular variety. The subdirectly
irreducible members of V are the algebras A and A∞, where A ranges over all
subdirectly irreducible members of V, and the algebra 1∞, where 1 is a trivial
algebra in V.

From the point of view of natural duality theory, this gives a corollary indi-
cating that a 2-sorted duality may be necessary if we are seeking to lift a given
natural duality for a strongly irregular variety V to a duality covering the whole
regularisation V. We need not have V = ISPM∞ even when V = M for some M.
A detailed treatment of multi-sorted dualities may be found in Chapter 7 of [2].

Corollary 3.3. Let V be a strongly irregular variety with V = ISPM for some
algebra M. Then V = ISP(M∞,1∞), and further, V = ISPM∞ if and only if M
has a one element subalgebra.

Let A ∈ V where V is strongly irregular and satisfies the identity x ∗ y ≈ x.
Suppose (according to Theorem 3.1) that A is a P lonka sum of fibres (As | s ∈ S)
over its semilattice replica S with fibre maps (ϕs,t | s ≥ t). We define the canonical
homomorphism µA : A → SF by µA(As) = s. The kernel Φ of µA (whose
congruence classes are exactly the fibres of A) may in fact be recovered via

(x, y) ∈ Φ ⇐⇒ x ∗ y = x and y ∗ x = y.
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Note that the quotient algebra A/Φ is isomorphic to SF . For convenience, we
will often identify µA with the semigroup homomorphism from 〈A; ∗〉 to S = 〈S; ·〉
having the same definition.

Observe that for s ≥ t in S, for any a ∈ As and b ∈ At we have a ∗A b =
ϕs,t(a) ∗At ϕt,t(b) = ϕs,t(a) ∗At b = ϕs,t(a). Hence we may recover the fibre map
ϕs,t by

ϕs,t(a) = a ∗ b where b ∈ At is arbitrary

for all a ∈ As.
From the operation ∗, we may define a partial order on A by setting

x ≤∗ y :⇐⇒ x = y ∗ x.

Under this ordering, each fibre of A is an anti-chain. Further, for all x, y, w, z ∈ A,
if x ≤∗ y then x ∗ w ≤∗ y ∗ w and z ∗ x ≤∗ z ∗ y, that is, 〈A; ∗〉 forms a partially
ordered semigroup under ≤∗. Since µA : 〈A; ∗〉 → S is a homomorphism, it
follows immediately that µA is order preserving, that is, x ≤∗ y in A implies
µA(x) ≤ µA(y) in S.

Suppose A,B ∈ V with semilattice replicas S and T respectively and let u : A→
B be a map. We may attempt to “define” Γu : S → T , the replica map of u, by

Γu(s) = µB(u(x)) where x ∈ µ−1
A (s)

for all s ∈ S, although, as it stands, Γu need not be well defined.
The following lemma characterises homomorphisms in V. They are, in a sense,

“P lonka sums” of V-homomorphisms over a replica map.

Lemma 3.4. Let A,B ∈ V (where V is strongly irregular and satisfies x ∗
y ≈ x). Suppose A has semilattice replica S, fibres (As | s ∈ S) and fibre maps
(ϕs,t | s ≥ t). Suppose B has semilattice replica T, fibres (Bv | v ∈ T ) and fibre
maps (φv,w | v ≥ w).

Let u : A→ B be a map such that for each s ∈ S, the restriction

u�As : As → B

is a homomorphism. Then the following are equivalent:

(1) u is a homomorphism A→ B;
(2) The replica map Γ of u is a well-defined semilattice homomorphism S→ T

and u preserves the order ≤∗;
(3) u preserves ∗;
(4) Γ is a well-defined semilattice homomorphism S → T and for each s ≥ t

in S, we have
u(ϕs,t(a)) = φΓ(s),Γ(t)(u(a))

for all a ∈ As.
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Proof. (1) =⇒ (2): This is a routine check after noting that a homomorphism
must preserve the term function ∗. (Hence we also have (3) =⇒ (2)).

(2) ⇐⇒ (3): Let u : A→ B be an order-preserving map such that the replica
map Γ is a well-defined semilattice homomorphism. We obtain

Γ(µA(x)) = µB(u(x))

for all x ∈ A, since certainly x ∈ µ−1
A (µA(x)). Let x, y ∈ A. Using the above

together with the fact that µA and µB are semigroup homomorphisms, we have

µB(u(x ∗ y)) = µB(u(x) ∗ u(y)),

showing that u(x ∗ y) and u(x) ∗ u(y) are in the same fibre of B.
Note that x ∗ y ≤∗ x hence u(x ∗ y) ≤∗ u(x) since u is order preserving. Then

u(x ∗ y) ∗ u(x) ∗ u(y) ≤∗ u(x) ∗ u(y), from which, by definition we obtain

u(x ∗ y) ∗ [u(x) ∗ u(y)] = [u(x) ∗ u(y)] ∗ u(x ∗ y).

Hence u(x ∗ y) = u(x) ∗ u(y), since u(x ∗ y) and u(x) ∗ u(y) lie in the same fibre,
showing (3). (Note that the proof of (2) ⇐⇒ (3) is independent of our assumption
that the restriction of u to each fibre be a homomorphism.)

(3) =⇒ (4): Again, preservation of ∗ ensures that the replica map Γ is a
well-defined semilattice homomorphism. Let s ≥ t in S and a ∈ As. Let b ∈ At be
arbitrary. Then u(a) ∈ BΓ(s) and u(b) ∈ BΓ(t) with Γ(s) ≥ Γ(t) in T. Therefore

u(ϕs,t(a)) = u(a ∗ b) = u(a) ∗ u(b) = φΓ(s),Γ(t)(u(a)).

(4) =⇒ (1): We must show that for each n-ary f ∈ F and each a1, . . . , an ∈ A,
we have

u(fA(a1, . . . , an)) = fB(u(a1), . . . , u(an)).

By using the P lonka sum description of the fundamental operations of A and B
given in Definition 3.1 and the assumption that the replica map Γ is a well-defined
semilattice homomorphism, this condition becomes

u(fAs(ϕs1,s(a1), . . . , ϕsn,s(an)) =

fBΓ(s)(φΓ(s1),Γ(s)(u(a1)), . . . , φΓ(sn),Γ(s)(u(an)))

where ai ∈ Asi and s = s1 · · · sn in S. This is easily verified since, by assumption,
we have u�As : As → BΓ(s) a homomorphism and u(ϕsi,s(ai)) = φΓ(si),Γ(s)(u(ai))
for each i. �

Starting from a dualisable, strongly irregular algebra M, we may use the general
theory of P lonka sums to produce a version of Theorem 2.3 that preserves the type
of M∞ while weakening the assumptions on the duality for M. Since M is strongly
irregular, by Lemma 2.2, M∞ is term equivalent to the algebra M∗

∞ of the previous
section. Letting V := HSPM, we have M∞ ∈ V. Algebras in ISPM∞ (which is
then a subclass of V) are P lonka sums of V-algebras by Theorem 3.1. The following
lemma tightens this description and allows us to bypass (IC).
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Lemma 3.5. Algebras in ISPM∞ are P lonka sums of ISPM-algebras.

Proof. Let A ∈ ISPM∞. Then, as remarked above, A is a P lonka sum of V-
algebras where V = HSPM. Let As be a non-trivial fibre of A and let a 6= b in
As. By the Separation Theorem, there is a homomorphism u : A→M∞ such that
u(a) 6= u(b). Since u preserves ∗ (which is a term function), by Lemma 3.4 the
replica map Γu is well defined and therefore u(As) is a subset of a single fibre of
M∞. But then u(As) ⊆M (since the only other fibre, {∞}, is trivial and we have
u(a) 6= u(b)). The restriction of u to As is then a homomorphism As →M that
separates a and b and hence (again by the Separation Theorem) As ∈ ISPM. �

Using Definition 2.3 we obtain a set of algebraic (partial) operations and re-
lations GM∞ ∪ HM∞ ∪ RM∞ on M∞ from any set GM ∪ HM ∪ RM of algebraic
(partial) operations and relations on M.

Theorem 3.6. Let M be a strongly irregular finite algebra dualised by the
structure M∼ = 〈M ;GM ,HM , RM ; τ〉 of finite type. Then

M∼∞ := 〈M∞;GM∞ ∪ {∗} ∪ {∞},HM∞ , RM ∪ {M}; τ〉

dualises M∞.

Proof. Let A be a finite algebra in ISPM∞ and let λ : D(A) → M∼∞ be a
morphism. We aim to extend λ to an A-ary term function M∞

A → M∞, the
result will then follow by the First Duality Theorem and the Duality Compactness
Theorem.

In the first case, suppose that λ is the constant map onto {∞}. Since λ preserves
the unary relation M , we must have for each x ∈ D(A), an a ∈ A such that x(a) =
∞. Then, letting A = {a1, . . . , am}, we see that the term function (v1∗· · ·∗vm)M∞

extends λ since, for all x ∈ D(A), we have (v1∗· · ·∗vm)M∞(x) = x(a1)∗· · ·∗x(am) =
∞ = λ(x).

Alternatively, suppose the set of homomorphisms

N := {x ∈ D(A) |λ(x) 6=∞}

is non-empty. We enumerate N = {x1, . . . , xl} and define

xN := x1 ∗ · · · ∗ xl,

that is, xN (a) = x1(a) ∗ · · · ∗ xl(a) for all a ∈ A. Then xN ∈ D(A) and, indeed,
xN ∈ N , for otherwise

λ(xN ) =∞ =⇒ λ(x1) ∗ · · · ∗ λ(xl) =∞ ⇐⇒ λ(xi) =∞ for some i,

a contradiction.
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Let
Z := {a ∈ A |x(a) 6=∞ for all x ∈ N}.

We claim that Z is non-empty. Certainly xN 6=∞ (for otherwise λ(xN ) = λ(∞) =
∞ since λ preserves the constant ∞), that is, xN (a) 6= ∞ for some a ∈ A. Now,
suppose that there exists an x ∈ N such that x(a) = ∞. Then xN (a) = x1(a) ∗
· · · ∗ x(a) ∗ · · · ∗ xl(a) = ∞, a contradiction. Therefore a ∈ Z and we have in
fact shown that Z ⊇ {a ∈ A |xN (a) 6= ∞}. Conversely, if a ∈ Z then xN (a) =
x1(a) ∗ · · · ∗ xl(a) = x1(a) (since all of x1(a), . . . , xl(a) are in M), hence

Z = {a ∈ A |xN (a) 6=∞}.

Observe that x ∈ N =⇒ xN ∗ x = xN . Conversely, let x ∈ D(A) with
xN ∗ x = xN and suppose that λ(x) = ∞. Then λ(xN ) = λ(xN ∗ x) = λ(xN ) ∗
λ(x) = λ(xN ) ∗∞ =∞, a contradiction. Therefore

x ∈ N ⇐⇒ xN ∗ x = xN .

But, xN ∗ x = xN if and only if, for each a ∈ A, if xN (a) 6= ∞ then x(a) 6= ∞.
That is,

N = {x ∈ D(A) |x(a) 6=∞ for all a ∈ Z},

from which we obtain

λ(x) =∞ ⇐⇒ there exists a ∈ Z such that x(a) =∞.

Suppose now that A is a P lonka sum with semilattice replica S, fibres (As | s ∈
S) and fibre maps (ϕs,t | s ≥ t). According to Lemma 3.5, each As is in ISPM.

Since xN : A→M∞ is a homomorphism and therefore preserves ∗, the replica
map ΓxN : S → 2 is a well-defined semilattice homomorphism by Lemma 3.4.
(Recall that 2 denotes the two element meet semilattice on {0, 1}, the semilattice
replica of M∞). We then have, for each s ∈ S,

ΓxN (s) =
{

1 if s ≥ σ,

0 if s 6≥ σ,

for some σ ∈ S. Hence, for each a ∈ A with a ∈ As we obtain{
xN (a) 6=∞ if s ≥ σ
xN (a) =∞ if s 6≥ σ,

showing that

Z =
⋃̇
{As | s ≥ σ}.



310 B. A. DAVEY and B. J. KNOX

Consider the least fibre Aσ of Z and let πAσ : M∞
A → M∞

Aσ be restriction
to Aσ. For each x ∈ N , the map πAσ (x) is a homomorphism Aσ → M, that is,
πAσ (N) is a subset of the first dual of Aσ with respect to A := ISPM, in symbols,

πAσ (N) ⊆ DM(Aσ) := A(Aσ,M).

We claim that in fact
πAσ (N) = DM(Aσ).

Let y ∈ DM(Aσ), that is, let y : Aσ → M be a homomorphism. We must show
that y is the restriction to Aσ of some homomorphism A → M∞ in N . Define
y : A→M∞ by

y(a) =
{
y(ϕs,σ(a)) if a ∈ As ⊆ Z,

∞ otherwise.

It may be verified that y satisfies condition (2) of Lemma 3.4 and is therefore a
homomorphism A → M∞. Noting that ϕσ,σ is the identity Aσ → Aσ, we have
πAσ (y) = y. If a ∈ Z, then a is in some fibre As of A with s ≥ σ and we have
y(a) = y(ϕs,σ(a)) ∈ M , that is, y(a) 6= ∞ for all a ∈ Z. Therefore y ∈ N ,
establishing the claim.

We will now show that given a homomorphism in N , its values on Z are com-
pletely determined by its values on Aσ, and this also determines its image in M∼∞
under λ. Let x, y ∈ N agree on Aσ, that is πAσ (x) = πAσ (y). We claim that x
and y then agree on Z. Let a ∈ Z, say a ∈ As where s ≥ σ. Using the P lonka
sum description of the fundamental operations (and therefore term functions) of
A, we have

a ∗A ϕs,σ(a) = ϕs,σ(a) ∗Aσ ϕs,σ(a) = ϕs,σ(a).

Hence, by definition, ϕs,σ(a) ≤∗ a in A. Since x is order-preserving by Lemma 3.4,
we then have x(ϕs,σ(a)) ≤∗ x(a) in M∞. But x(a) and x(ϕs,σ(a)) lie in the
same fibre of M∞, namely M, and ≤∗ is the antichain order on M , so we obtain
x(a) = x(ϕs,σ(a)) and similarly y(a) = y(ϕs,σ(a)). Hence for all a ∈ Z we have

x(a) = x(ϕs,σ(a)) = y(ϕs,σ(a)) = y(a),

showing that x and y agree on Z.
Since ∗ is a left-zero operation on M and xN takes the value ∞ on the comple-

ment of Z in A, we also have

x ∗ xN = y ∗ xN .

Therefore

λ(x) = λ(x) ∗ λ(xN ) = λ(x ∗ xN ) = λ(y ∗ xN ) = λ(y) ∗ λ(xN ) = λ(y).
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According to the above, we may unambiguously define the map λ′ : πAσ (N)→
M by

λ′(z) = λ(x) for any x ∈ N such that πAσ (x) = z,

for all z ∈ πAσ (N) = DM(Aσ).
We now show that λ′ is a morphism DM(Aσ)→M∼ with respect to the original

M∼ structure.
Let r ∈ R be n-ary and let z1, . . . , zn ∈ DM(Aσ) = πAσ (N) be such that

(z1, . . . , zn) ∈ rDM(Aσ). That is, (z1(a), . . . , zn(a)) ∈ rM for all a ∈ Aσ. Let
x1, . . . , xn ∈ N with πAσ (x1) = z1, . . . , πAσ (xn) = zn. By the above arguments we
have πAσ (x1 ∗ xN ) = z1, . . . , πAσ (xn ∗ xN ) = zn. Noting that each xi ∗ xN takes
the value ∞ outside of Z, we have, for all a ∈ As ⊆ A,

(x1 ∗ xN (a), . . . , xn ∗ xN (a)) = (x1(a) ∗ xN (a), . . . , xn(a) ∗ xN (a))

=
{

(x1(ϕs,σ(a)), . . . , xn(ϕs,σ(a))) if a ∈ Z,

(∞, . . . ,∞) if a 6∈ Z

=
{

(z1(a), . . . , zn(a)) if a ∈ Z,

(∞, . . . ,∞) if a 6∈ Z.

Then, using the definition of rM∞ , we have (x1 ∗ xN , . . . , xn ∗ xN ) ∈ rD(A), and
since λ preserves rM∞ , we have (λ(x1 ∗ xN ), . . . , λ(xn ∗ xN )) ∈ rM∞ . Hence

(λ′(z1), . . . , λ′(zn)) = (λ(x1 ∗ xN ), . . . , λ(xn ∗ xN )) ∈ rM∞ ,

but (λ′(z1), . . . , λ′(zn)) ∈ Mn, therefore (λ′(z1), . . . , λ′(zn)) ∈ rM , that is λ′ pre-
serves rM . Similar arguments show that λ′ preserves the (partial) operations in
GM ∪HM , hence λ′ is a morphism DM(Aσ)→M∼ .

Since M∼ yields a duality on M, by the First Duality Theorem λ′ extends to an
Aσ-ary term function MAσ →M, say tM. Consider the A-ary term

s = t ∗
∏
a∈Z

va

where va is the variable term corresponding to the ath projection term function
πa and

∏
a∈Z is the |Z|-fold ∗ product.

For x ∈ D(A) with x 6∈ N , we have some a ∈ Z such that x(a) = ∞, hence
sM∞(x) = tM∞(x) ∗∞ =∞ = λ(x). Alternatively, if x ∈ N , we have

λ(x) = λ′(πAσ (x)) = tM(πAσ (x)) = tM(x)

= tM∞(x) = tM∞(x) ∗
∏
a∈Z

x(a) = sM∞(x).

Hence the A-ary term function sM∞ extends λ, completing the proof. �



312 B. A. DAVEY and B. J. KNOX

We conclude this section with several examples. Let D = 〈{0, 1};∨,∧〉 be the
two-element distributive lattice. The extended operations, ∨ and ∧, on the set
D∞ := {0, 1,∞} are just the join in the three-element chain 0 < 1 <∞ and meet
in the three-element chain∞ < 0 < 1. The variety (= quasi-variety) generated by
D∞ is precisely the variety of distributive bisemilattices (see [7]). Priestley duality
for distributive lattices states that D∼ = 〈{0, 1}; 0, 1,≤, τ〉 dualises D. Thus, by
Theorem 3.6, D∼∞ := 〈{0, 1,∞}; ∗, 0, 1,∞,≤, τ〉 dualises D∞, where ≤ is the order
on {0, 1,∞} whose only non-trivial comparability is 0 < 1. Note that here we
may avoid the unary relation D = {0, 1} since any map preserving ≤ and the
constants 0, 1 must preserve D. The dualising structure for D∞ given by Gierz and
Romanowska in [7] uses a different order, namely the order ≤∧, with ∞ < 0 < 1,
associated with the the meet operation on D∞. It could be argued that the order
≤ which arises from Theorem 3.6 is more natural than ≤∧ as it is symmetric in
its relationship to the operations ∨ and ∧ on D∞.

If S = 〈S; ·〉 is a finite semigroup which possesses a left-zero term and is dualised
by a structure of finite type, then Theorem 3.6 shows that the semigroup S∞ is also
dualised by a structure of finite type. In particular, every finite group, regarded as
a semigroup, has a left-zero term. Since finite abelian groups are dualisable (see
Davey [6]), it follows that a semigroup obtained by adding a new zero to a finite
abelian group is dualisable (see also [13] and [14]). Similarly, semigroups obtained
by adding a new zero to certain non-abelian groups, for example dihedral groups
of order 2n with n odd (see Davey and Quackenbush [4]), are dualisable.

Perhaps the simplest strongly irregular variety is the variety LZ of left-zero
semigroups (algebras with one binary operation ∗ satisfying the identity x∗y ≈ x).
This variety is term equivalent to the variety of non-empty sets and we have
LZ = ISPL where L = 〈{0, 1}; ∗〉 is the uniquely determined two-element left zero
semigroup on {0, 1}. The structure

L∼ = 〈{0, 1};∨,∧,′ , 0, 1; τ〉,

where 〈{0, 1};∨,∧,′ , 0, 1〉 is the two element Boolean algebra yields a (strong) du-
ality on LZ. Theorem 3.6 gives a duality for the left normal idempotent semigroup
L∞ via the structure

L∼∞ = 〈L∞;∨,∧,′ , ∗, 0, 1,∞; τ〉

where ∨, ∧ on L∞ are the distributive bisemilattice operations as in the first
example and ′ is given by:

′ 0 1 ∞
1 0 ∞

We may again avoid the unary relation L due to the presence of the constants
0, 1 and either of the chain orders arising from ∨ or ∧. Further, since ISPL =
LZ and L has a one element subalgebra, by Corollary 3.3 we obtain ISPL∞ =
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LZ. By Theorem 3.1, LZ is precisely the variety of left normal idempotent
semigroups. This duality is closely related to the regularised Lindenbaum-Tarski
duality discussed in [13] and [14].

4. Quasi-regularised Sets

It is natural to ask what may be said about the dualisability of other kinds of
P lonka sums with dualisable fibres. Here, we consider a two-fibred P lonka sum
where we attach the left-zero band L to the bottom of the semilattice and attach a
trivial fibre to the top and give a “bare-hands” proof that the resulting semigroup
is dualisable.

Consider L′ given by the following table:

∗ 0 1 1′

0 0 0 0
1 1 1 1
1′ 1 1 1′

L′ ∈ LZ is the P lonka sum of the functor Q from the categorical two-element meet
semilattice (2), where Q(0) = L while Q(1) is the trivial idempotent semigroup
〈{1′}; ∗〉 and the fibre map φ1,0 = Q(0 → 1) : {1′} → L distinguishes the element
1. (If φ1,0 instead distinguishes 0, the semigroup obtained is isomorphic to L′.)

The dualising structure for L′ will contain a modification of L∼ consistent with
the P lonka sum construction, just as we obtained L∼∞. However, in contrast with
L∼∞, we will need to add an essentially “new” binary relation. The modified
operations ∨′, ∧′ and ′′ on L′ obtained from ∨, ∧ and ′ on L are given by the
following tables:

∨′ 0 1 1′

0 0 1 1
1 1 1 1
1′ 1 1 1′

∧′ 0 1 1′

0 0 0 0
1 0 1 1
1′ 0 1 1′

′′ 0 1 1′

1 0 0

A routine check ensures that these operations are algebraic, as is the binary
relation

↗ := {(0, 1), (1, 1), (1, 1′)},

which, as a subalgebra of (L′)2, is isomorphic to L′. We also include the semigroup
operation ∗ and the unary relation L, hence

L′∼ := 〈L′; ∗,∨′,∧′,′′ , 0, 1, 1′;↗, L; τ〉

will be our dualising structure.
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Theorem 4.1. L′∼ dualises L′.

Proof. Since L′∼ is of finite type, it suffices to show that (IC) holds by the Duality
Compactness Theorem. To this end, let n ∈ N, let X be a (closed) substructure
of (L′∼)n, and let α : X→ L′∼ be a morphism.

Let T := {1, 1′} and note that 〈T ; ∗〉 is a meet-semilattice with 1 < 1′.
Observe that Ln, with the operations ∨′, ∧′, ′′ suitably restricted together with

the constants 0, 1, forms a Boolean algebra having X∩Ln as a subalgebra. Since α
preserves the unary relation L, the restriction of α to X ∩Ln is a Boolean algebra
homomorphism onto the two-element Boolean algebra on {0, 1}. Therefore

α�X∩Ln(x) =
{

1 if x ≥ β,
0 if x 6≥ β,

for all x ∈ X ∩ Ln and some atom β of X ∩ Ln. Here, ≤ is the usual order on
{0, 1} extended pointwise.

We may similarly characterise α restricted to the (non-empty) semilattice 〈X ∩
Tn; ∗〉 ≤ 〈Tn; ∗〉. Since it is a semilattice homomorphism onto the two element
meet semilattice 〈T ; ∗〉, we have

α�X∩Tn(x) =
{

1′ if x ≥ σ,

1 if x 6≥ σ,

for all x ∈ X ∩ Tn and some σ ∈ X ∩ Tn with σ 6= 1 (since α preserves the
nullary 1).

Our first claim is that the set of indices

{i ∈ {1, . . . , n} |βi = 1 and σi = 1′}

is non-empty. Suppose to the contrary that for all i ∈ {1, . . . , n}, whenever βi = 1,
we have σi = 1. Then σi = 1 whenever β′′i = 0, from which we obtain β′′ ↗ σ. But
then α(β)′′ ↗ α(σ) since α preserves↗ and ′′, which gives 0↗ 1′, a contradiction.

Fix a j ∈ {i ∈ {1, . . . , n} |βi = 1 and σi = 1′} and let

K := {i ∈ {1, . . . , n} |σi = 1′ and i 6= j}.

Now, let t be the term function (L′)n → L′ given by

t(x) := xj ∗ (
∏
i∈K

xi)

for all x ∈ (L′)n. We will show that t extends α.
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Clearly, t satisfies the following for all x ∈ (L′)n:

t(x) = 0 ⇐⇒ xj = 0;

t(x) = 1 ⇐⇒ xj 6= 0 and xi 6= 1′ for some i ∈ K ∪ {j};
t(x) = 1′ ⇐⇒ xi = 1′ for all i ∈ K ∪ {j}.

Let x ∈ X. We observe that 1′ ∗ x ∈ X ∩ Tn and hence

α(x) = 1′ ⇐⇒ 1′ ∗ α(x) = 1′

⇐⇒ α(1′ ∗ x) = 1′

⇐⇒ 1′ ∗ x ≥ σ
⇐⇒ (1′ ∗ x)i = 1′ for all i ∈ K ∪ {j}
⇐⇒ xi = 1′ for all i ∈ K ∪ {j}
⇐⇒ t(x) = 1′.

Since x ∗ 0 ∈ X ∩ Ln, we have

α(x) = 0 ⇐⇒ α(x) ∗ 0 = 0

⇐⇒ α(x ∗ 0) = 0

⇐⇒ x ∗ 0 6≥ β
⇐⇒ (x ∗ 0)j = 0 (see note below)

⇐⇒ xj = 0

⇐⇒ t(x) = 0.

To see that x ∗ 0 6≥ β implies (x ∗ 0)j = 0 in the above argument, suppose that
x ∗ 0 6≥ β but (x ∗ 0)j = 1. Then (x ∗ 0)i = 0 and βi = 1 for some i 6= j. But then,
since βj = 1, in X ∩Ln we have 0 < (x ∗ 0)∧ β < β, contradicting the fact that β
is an atom. �

We close by showing that ISPL′ is in fact the quasi-regularisation of the
variety LZ. The quasi-regularisation of a variety V of type F , as introduced by
Bergman and Romanowska in [1], is defined to be the quasi-variety generated by
V ∪ SLF , in symbols: Q(V ∪ SLF ). If V is strongly irregular, it is shown in [1]
that the quasi-regularisation of V is always a proper subclass of its regularisation
V. The following Theorem summarises the characterisation of Q(V ∪ SLF ) given
there.

Theorem 4.2. ([1]) Let A be an algebra in the regularisation of a strongly
irregular variety V (in which the identity x ∗ y ≈ x is satisfied). Assume that A is
the P lonka sum of subalgebras (As | s ∈ S) over the semilattice S, with fibre maps
ϕs,t. The following are equivalent.
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(1) A ∈ ISP(V ∪ SLF );
(2) For every s ≥ t in S, the homomorphism ϕs,t is injective;
(3) A satisfies any of the three equivalent quasi-identities given below:

(a)


x ∗ y ≈ x
y ∗ x ≈ y

x ∗ z ≈ z ∗ x ≈ z
y ∗ z ≈ z ∗ y ≈ z

 =⇒ x ≈ y;

(b)


x ∗ y ≈ x
y ∗ x ≈ y
x ∗ z ≈ z
y ∗ z ≈ z

 =⇒ x ≈ y;

(c) x ∗ z ≈ y ∗ z =⇒ x ∗ y ≈ y ∗ x.

(4) A ∈ Q(V ∪ SLF ).

Proof. We show here that the quasi-identities in (3) are equivalent, and refer the
reader to [1] for a proof of the equivalence of (1) to (4), where the quasi-identity
(a) is denoted q∗.

Let A ∈ V have semilattice replica S, canonical homomorphism µ : A→ S and
fibre maps (ϕt,s | s ≤ t).

Let A satisfy (a). To show that A satisfies (b), it will suffice to show that if
x, z ∈ A and x ∗ z = z, then z ∗ x = z. If x ∗ z = z, then by definition we have
z ≤∗ x and consequently µ(z) ≤ µ(x) in S. But then z ∗ x = z ∗ ϕµ(x),µ(z)(x) = z.

Now, let A satisfy (b) and let x, y, z ∈ A with x ∗ z = y ∗ z = w, say. Clearly
x ∗ w = y ∗ w = w. We have (x ∗ y) ∗ (y ∗ x) = x ∗ y and (y ∗ x) ∗ (x ∗ y) = y ∗ x.
Also, (x ∗ y) ∗w = x ∗w = w and similarly (y ∗ x) ∗w = w, hence x ∗ y = y ∗ x by
(b), showing that A satisfies (c).

Let A satisfy (c) and let x, y, z ∈ A satisfy the antecedent of (a). Using (c),
from x ∗ z = y ∗ z = z we obtain x ∗ y = y ∗ x, but x ∗ y = x and y ∗ x = y shows
that x and y are in the same fibre, from which it follows that x = y. �

We will denote the quasi-regularisation of LZ by LZq. To show that LZq =
ISPL′, we will rely on Lemma 3.4, characterising the homomorphisms in LZ.
Interestingly, a LZq-semigroup will be seen to be not only a disjoint union of
left-zero semigroups, but simultaneously a disjoint union of semilattices!

Theorem 4.3. LZq = ISPL′.

Proof. We need only show LZq ⊆ ISPL′, the reverse inclusion being given by
Theorem 4.2. Let A ∈ LZq have semilattice replica S and canonical homomor-
phism µ : A → S. Let a, b ∈ A with a 6= b. We must find a homomorphism
A→ L′ that separates a and b. Firstly, observe that the semilattice replica of L′

is the two element meet semilattice on {0, 1}, and we have 1 <∗ 1′.
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case 1: a and b lie in different fibres.
Without loss of generality, assume µ(a) 6≥ µ(b). Define the map α : A→ L′ by

α(x) =
{

1′ if µ(x) ≥ µ(b),

1 otherwise

for all x ∈ A. Then α separates a and b.
It is clear that Γ: S → {0, 1} is well defined, and indeed, is the characteristic

function of the upset of µ(b), and hence a semilattice homomorphism.
Let x ≤∗ y in A. Then µ(x) ≤ µ(y) and consequently α(x) ≤∗ α(y). Hence by

Lemma 3.4, α is a homomorphism.
case 2: a and b lie in the same fibre.

Consider the relation

Θ := {(x, y) ∈ A2 |x ∗ y = y ∗ x}

which we claim is an equivalence on A. Clearly Θ is reflexive and symmetric, to
see that it is transitive let x, y, z ∈ A such that x ∗ y = y ∗ x and y ∗ z = z ∗ y. We
have

x ∗ (x ∗ y ∗ z) = x ∗ y ∗ z
= y ∗ x ∗ z
= y ∗ z ∗ x
= z ∗ y ∗ x
= z ∗ z ∗ y ∗ x
= z ∗ (x ∗ y ∗ z)

hence x ∗ z = z ∗ x by the quasi-identity (c) of Theorem 4.2.
Let α : A → L′ be the map sending the Θ-class of b to 1 and everything else

to 0. Then Γ is the constant map S 7→ {0}, hence a semilattice homomorphism.
Also, if x ≤∗ y in A, then x ∗ y = y ∗ x ∗ y = y ∗ x, showing α(x) = α(y) and hence
α is order preserving. Therefore α is a homomorphism by Lemma 3.4. Further, α
separates a and b, for otherwise, if α(a) = α(b) = 1, we have a ∗ b = b ∗ a, from
which we obtain the contradiction a = b. �
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