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CLOSED WALKS IN COSET GRAPHS AND

VERTEX–TRANSITIVE NON–CAYLEY GRAPHS

R. KURCZ

Abstract. We extend the main result of R. Jajcay and J. Širáň [Australasian
J. Combin. 10 (1994), 105–114] to produce new classes of vertex-transitive non-
Cayley graphs.

1. Introduction

The study of vertex-transitive graphs has a long and rich history in discrete

mathematics. Prominent examples of vertex-transitive graphs are Cayley graphs

which are important in both theory as well as aplications. Vertex-transitive graphs

that are not Cayley graphs (for which we borrow te acronym VTNCG from [12])

have been an object of a systematic study since the early 80’s. The research

here was much influenced by the problem of finding the so called non-Cayley

numbers [3], i.e., the numbers n for which there exists a VTNCG of order n.

A number of new construction of VTNCG’s appeared in the 90’s. They range

from group-theoretical constructions (the basic references here are [9], [10]) to

graph-theoretical ones (cf. [12], [6]). For the few classification results of vertex-

transitive graphs we refer to [8], [11].

Recently, one of the direction of the reserch has focused on certain necessary

combinatorial conditions for a graph to be Cayley [1], [2]. Based on this, new

constructions of VTNCG’s have been found [3], [4]; they can be viewed as a

combination of the graph- and group-theoretical methods mentioned above.

The purpose of this paper is to prove two extension of the main theorem of [3]

and to present new classes of VTNCG’s arising from our results.

2. Terminology

Graphs considered in this paper are undirected, without loops and multiple

edges; they may be finite or infinite but are always locally finite (i.e., every vertex

has finite valency).
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Let Γ be a graph and let a, b be two adjacent vertices of Γ. An ordered pair

(a, b) will be called an arc. Thus, any two adjacent vertices a, b of Γ give rise to

two mutually reverse arcs, namely, (a, b) and (b, a). We can think of arcs as “edges

with orientation”.

Let G be a (finite or infinite) group and X a unit-free symmetric subset of G

(i.e., 1 /∈ X and x−1 ∈ X whenever x ∈ X). The Cayley graph C(G,X) has

G as its vertex set, and e = (a, b) is an arc of C(G,X) if and only if there exists

an element x ∈ X such that ax = b. Because x = a−1b is uniquely determined,

we have a function λ from the arc set of C(G,X) onto the set X which assigns to

every arc e = (a, b) the element λ(e) = a−1b = x which we sometimes call a label

of e. Observe that if there is an arc from a to b labelled x, then there also is an

arc from b to a labelled x−1.

Let G be a group, H a subgroup of G and X a symmetric unit-free subset of G.

Let H ∩X = ∅. The vertex set of the coset graph Cos (G,H,X) is the set of all

left cosets of H in G. In the coset graph, (aH, bH) is an arc if and only if there

exists an element x ∈ X such that aHx∩bH 6= ∅ (or, equivalently, a−1b ∈ HxH =

{hxh′ ; h, h′ ∈ H}). It is easy to check that this definition is correct; i.e, it does

not depend on the choice of cosets representatives and it produces graphs without

loops and parallel edges. Observe that if H = {1} then the coset graph reduces to

a Cayley graph.

For an arc e = (aH, bH) of the coset graph Cos(G,H,X) let Xe denote the set

of all x ∈ X such that a−1b ∈ HxH. If D is the arc set of the graph Cos (G,H,X),

the labelling λ is now any mapping D −→ X such that for each arc e λ(e) ∈ Xe.

A walk of length k in a graph is a an alternating sequence W = v0, e0, v1, e1,

. . . , vk−1, ek−1, vk where vi are vertices and ei is an arc from vi to vi+1. We

say that the walk is closed if v0 = vk; in this case we say that the walk is

based at v0. If Γ = C(G,X) then we will describe the walks starting at the

vertex 1 using arcs only. For example, the walk v0, e0, v1, e1, . . . , ek−1, vk such that

v0 = 1, λ(e0) = x0, v1 = x0, λ(e1) = x1, . . . , λ(ek−1) = xk−1, vk = x0x1 . . . xk−1,

will be written as (x0, x1, . . . , xk−1). In the case when Γ = Cos (G,H,X) with

labelling λ, the walk a1H, e1, a2H, e2, a3H, e3, . . . , ek, akH will just be denoted by

(a1H,x1, a2H,x2, a3H,x3, . . . , xk, akH) where xi = λ(ei). Again, note that this

type of encoding walks depends on the choice of the labels λ.

Let Aut (Γ) be the group of all automorphisms of the graph Γ. We say that Γ

is vertex transitive if for arbitrary two vertices a and b there exists an automor-

phism π ∈ Aut(Γ) such that π(a) = b.

It is well known (see, e.g., [3]) that a graph Γ is vertex-transitive if and

only if it is isomorphic to some coset graph Cos (G,H,X).

A necessary condition for a graph to be isomorphic to a Cayley graph C(G,X)

was proved in [1].
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Lemma 1. Let Γ = C(G,X) be a locally finite Cayley graph and p be a prime.

Then the number of closed walks of length p, based at any fixed vertex of Γ, is

congruent (mod p) to the number of elements in X for which xp = 1.

3. Walks in Coset Graphs

In this section we shall investigate the structure of closed walks in coset graphs.

Throughout we will suppose that G is a group, H is a finite subgroup of G and X

is a unit-free symmetric subset of G, (i.e., 1 /∈ X and x−1 ∈ X for each x ∈ X).

We begin with a few elementary facts (see also [5], [3]).

Lemma 2. Let Γ = Cos (G,H,X) be a coset graph such that XHX∩H = {1}.
Then

(1) For each x ∈ X, the number of left cosets in HxH is equal to |H|.
(2) Let h, g ∈ H and x ∈ X; then h 6= g if and only if hxH 6= gxH.

(3) Every arc of Γ has a uniquely determined label x ∈ X i.e., |Xe| = 1 for

each arc e.

(4) The valency of Γ is equal to |X||H|.

Proof. (1) The number of left cosets in HxH is equal to [H : H ∩ xHx−1] =

[H : {1}] = |H|.
(2) The sufficiency is obvious. For the necessity, let h, g ∈ H, h 6= g. If

hxH = gxH then x−1g−1hx ∈ H. But we also have x−1g−1hx ∈ XHX, which

implies x−1g−1hx = 1, and so h = g, a contradiction.

(3) Suppose that there exists an arc from aH to bH with two labels x, y ∈ X,

x 6= y. Then Ha−1bH = HxH and Ha−1bH = HyH, and so HxH = HyH. It

follows that there exist elements h1, h2, k1, k2 ∈ H such that h1xh2 = k1yk2, or

equivalently xh2k
−1
2 y−1 = h−1

1 k1 ∈ H. But since xh2k
−1
2 y−1 ∈ XHX, we have

xh2k
−1
2 y−1 = 1. Rearranging terms we obtain y−1x = k2h

−1
2 ∈ H ∩XHX, which

implies 1 = y−1x, and x = y, a contradiction.

(4) It is sufficient to prove that the valency of the vertex H is equal to |X||H|,
because Γ is regular. The vertex H is adjacent to all vertices determined by left

cosets from HxH for all x ∈ X. It follows that the valency of H is
∑
x∈X [H :

H ∩ xHx−1] =
∑
x∈X [H : 1] = |X||H|. �

We note that if H is an invariant subgroup of G such that H 6= {1} then

XHX∩H 6= {1}. Indeed, suppose that XHX∩H = {1} and consider h ∈ H, 1 6=
h. Then it follows from Lemma 2, part (3) that xH 6= hxH. But H is invariant,

and so there exists l ∈ H such that hx = xl, which implies hxH = xlH = xH, a

contradiction.

Sometimes we will use the notation (aiH,xi)p for the walk (a0H,x0, a1H,x1, . . . ,

ap−1H,xp−1, a0H). If a0 = 1 then we say that this walk is H-based.
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Let S be the set of all sequences of the form (a0H,x0, a1H,x1, a2H, . . . , ap−1H,

xp−1) such that a0 = 1 and a−1
i ai+1 ∈ HxiH for each i (mod p). Let θ : S −→ S

be a mapping which sends the sequence (aiH,xi)p to (biH, yi)p where bi = a−1
1 ai+1

and yi = xi+1, for all i (mod p). It is easy to check that b0 = 1 and b−1
i bi+1 ∈

HyiH, so θ is a well defined permutation on the set S. Also it is clear that each

sequence from S induces a closed H-based walk in the coset graph. An easy check

show that θ2 sends the sequence (aiH,xi)p to (biH, yi)p where bi = a−1
2 ai+2H

and yi = xi+2. If we continue we obtain that θj sends the sequence (aiH,xi)p
to (biH, yi)p where bi = a−1

j aj+iH and yi = xi+j . Also it is clear that θp is the

identity mapping on S.

Let α = (a0H,x0, a1H,x1, a2H, . . . , ap−1H,xp−1, a0H) be a walk such that

ak = 1 for some k ∈ {0, . . . , p − 1}. Then the coresponding H-based walk

(akH,xk, . . . , ap−1H,xp−1, a0H,x0, . . . , ak−1H,xk−1) will be denoted [α].

The basic observation is now the following: If p is prime, then the orbits of θ

in S have length either 1 or p.

Lemma 3. Let Γ = Cos (G,H,X) be a coset graph such that XHX ∩H = {1}
and let p be a prime number. Let α = (aiH,xi)p and β = (biH, yi)p be two

sequences from S such that β = θj(α) for some j, 1 ≤ j ≤ p−1 (i.e., bi = a−1
j ai+j

and yi = xi+j . All indices are to be read mod p). Then the walks α and β are

identical H-based closed walks in Γ if and only if there exist z ∈ X and c ∈ G such

that xi = z and aiH = ciH for each i (mod p).

Proof. First we prove the sufficiency. If xi = z and aiH = ciH for each i

(mod p) then α = (ciH,x)p and β = (ciH,x)p because biH = a−1
j ai+jH =

c−jci+jH = ciH and yi = xi+j = x.

Necessity. If α and β are identical then x0 = y0 = xj+0, x1 = y1 = xj+1, . . . ,

xp−j = yp−j = x0, xp−j+1 = yp−j+1 = x1, . . . , xp−1 = yp−1 = xj−1. Therefore

x0 = x1 = . . . = xp−1 = y0 = y1 = . . . = yp−1 =: x, because p is prime.

The following relations hold:

a0H = b0H = a−1
j aj+0H

a1H = b1H = a−1
j aj+1H

. . .

ap−1H = bp−1 = a−1
i aj+p−1H

Because ajH = a−1
j a2jH, we have a2

jH = a2jH. Substituting this into the equal-

ity a2jH = a−1
i a3jH we obtain a2

jH = a2jH = a−1
j a3jH and so a3

jH = a3jH.

Continuing this way we subsequently obtain:

ajH = ajH

a2jH = a2
jH

. . .
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a(p−1)jH = ap−1
j H

a0H = apjH (a0 = 1)

Because p is prime we have {0, j, 2j, . . . , (p − 1)j} = {0, 1, 2, . . . , p − 1} and

so a1H = aljH = aljH for some l. Then our walks α, β are of the form

(H,x, aljH,x, a
2l
j H, . . . , a

(p−1)l
j H,x,H). Finelly setting ali = a then our walks

can be written as (H,x, aH, x, a2H, . . . , ap−1H,x,H). The fact that apH = H

follows easily. �

Now we introduce a set M which plays a substantial role in our next theorem.

Let V = {a ∈ G : a ∈ HxH for some x ∈ X, ap ∈ H}. Let ∼ be an equivalence

relation on V such that a ∼ b ⇐⇒ aH = bH and a2H = b2H. Finally, let

M = V/ ∼.

Theorem 4. Let Γ = Cos (G,H,X) be a coset graph where H is a finite sub-

group of G and X is a finite symmetric unit-free subset of G such that XHX ∩H
= 1. Let p be a prime number.

Then the number of closed walks of length p, based at any fixed vertex of Γ, is

congruent (mod p) to the number of elements in M .

Moreover, |M | =
∑
x∈X |{v ∈ H : (xv)p ∈ H}||H|.

Proof. It is sufficient to consider walks based at the vertex H, because Γ is

vertex transitive. We prove the claim in the following three steps:

(a) The number of closed walks of the form (aiH,xi)p where xi 6= xj for some

pair i, j ∈ {0, 1, . . . , p− 1}, is divisible by p.

(b) The number of closed walks of the form (aiH,x)p such that apH = H is

congruent (mod p) to the number of elements in M .

(c) The number of closed walks of the form (aiH,x)p which are not from part

(b) is divisible by p.

Let H = {h1, h2, . . . , hn}.

Proof of (a). In this case we deal with a subset S′ ⊂ S formed by sequences

(aiH,xi)p where xj 6= xk for some j 6= k. On this subset each orbit of θ has length

p and the orbits are disjoint.

Proof of (b). Let S′′ be the set of all elements α of S for which αθj = α for

some 1 ≤ j ≤ p− 1. Lemma 3 implies that S′′ = S ∩ {(aiH,x)p : x ∈ X, a ∈ G}.

Choose any walk W = (aiH,x)p. Then a = hxl, a2 = hxlhxl, a3 = hxlhxlhxl,

. . . , ap−1 = (hxl)p−1. Let us denote lh =: v. Then W has the form (H,x, hxH, x,

hxvxH, x, hxvxvxH, . . . , h(xv)p−1H,x,H).

Each element of the set V = {a ∈ G : ∃x∈X , a ∈ HxH, ap ∈ H} determines a

walk of the form (aiH,x)p. It may happen that different elements from V define
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the same walk; our aim is to identify all such occasions. Let

Q = (aiH,x)p = (H,x, hxH, x, hxvxH, x, hxvxvxH, . . . , h(xv)p−1H,x,H),

Q′ = (biH,x)p = (H, y, lyH, y, lyuyH, y, lyuyuyH, . . . , l(yu)p−1H, y,H)

We claim that the walks Q and Q′ are identical if and only if aH = bH and

a2H = b2H.

The necessity is evident, and we prove the sufficiency. If aH = bH then hxH =

lyH and so y−1l−1hx ∈ H. But y−1l−1hx ∈ XHX which implies y−1l−1hx = 1,

and therefore xy−1 = h−1l ∈ H. Since xy−1 ∈ XHX we have 1 = xy−1 = h−1l

then x = y and h = l. Because a2H = b2H, we obtain hxvxH = lyuyH = hxuxH

and so x−1u−1vx ∈ H. But x−1u−1vx ∈ XHX thus vx = ux and u = v. Then

for all i we have aiH = biH.

The equivalence relation ∼ on V defined by a ∼ b ⇐⇒ aH = bH and a2H =

b2H has the following property: if a ∼ b then the walks (aiH,x)p, (biH,x)p are

identical. Then the number of walks in part (b) is equal to the cardinality of the

set V/ ∼.

Now we prove that |M | =
∑
x∈X |v ∈ H : (xv)p ∈ H||H|. Let us consider

the walks with all arcs labeled x. Let (H,x, hxH, x, hxvxH, x, hxvxvxH, . . . ,

h(xv)p−1H,x,H), and (H,x, lxH, x, lxuxH, x, lxuxuxH, . . . , l(xu)p−1H,x,H) be

two such walks. If u 6= v then these walks are different. Indeed, if they are the same

then hxH = lxH which implies l = h and x−1l−1hx = 1. We also suppose that

hxvxH = lxuxH, thus x−1u−1x−1l−1hxvx = x−1u−1vx. But x−1u−1vx ∈ XHX
and so we have x−1u−1vx = 1 and u = v.

Notice that (H,x, hxH, x, hxvxH, x, hxvxvxH, . . . , h(xv)p−1H,x,H) is a walk

from part (b) if and only if (xv)p ∈ H. The elements x ∈ X and v ∈ G determine

the following n different walks

(H,x, h1xH, x, h1xvxH, x, h1xvxvxH, . . . , h1(xv)p−1H,x,H)

(H,x, h2xH, x, h2xvxH, x, h2xvxvxH, . . . , h2(xv)p−1H,x,H)

. . .

(H,x, hnxH, x, hnxvxH, x, hnxvxvxH, . . . , hn(xv)p−1H,x,H).

The number of walks with all arcs labeled x is equal to |v ∈ H : (xv)p ∈ H||H|.
But if two walks (H,x, hxH, x, hxvxH, x, hxvxvxH, . . . , h(xv)p−1H,x,H) and

(H, y, hyH, y, hyuyH, y, hyuyuyH, . . . , h(yu)p−1H, y,H) have different first arcs

(x 6= y) then they are distinct. It follows that the number of walks in part (b) is∑
x∈X |{v ∈ H : (xv)p ∈ H}||H|.

Proof of (c). Let S′′′ be the set of all elements α of S for which there exists

x ∈ X and ai ∈ G i = 1, . . . , p− 1 such that α = (aiH,x)p and αθj 6= α for some

1 ≤ j ≤ p− 1. Every orbit of θ on S′′′ has p elements and the orbits are disjoint.

Thus |S′′′| is divisible by p. �
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4. Vertex-transitive Non-Cayley Graphs

In this section we prove two generalizations of the following principal result

of [3].

Theorem 5. ([3]) Let G be a group, let H be a finite subgroup of G, and let X

be a finite symmetric unit-free subset of G such that XHX ∩H = {1}. Further,

suppose that there are at least |X| + 1 distinct ordered pairs (x, h) ∈ X × H

such that (xh)p = 1 for some fixed prime p > |X||H|2. Then the coset graph

Γ = Cos (G,H,X) is a vertex-transitive non-Cayley graph.

In the first generalization of Theorem 5 we relax the condition (xh)p = 1.

Theorem 6. Let G be a group, let H be a finite subgroup of G, and let X

be a finite symmetric unit-free subset of G such that XHX ∩H = {1}. Further,

suppose that there are at least |X| + 1 distinct ordered pairs (x, h) ∈ X × H

such that (xh)p ∈ H for some fixed prime p > |X||H|2. Then the coset graph

Γ = Cos (G,H,X) is a vertex-transitive non-Cayley graph.

Proof. Let M be the set from Theorem 4; we have |M | =
∑
x∈X |{h ∈ H :

(xh)p ∈ H}||H| = |{(x, h) : x ∈ X, h ∈ H, (xh)p ∈ H}||H|. From our assumptu-

ions it follows that (|X|+1)|H| ≤ |M | ≤ |X||H|2 < p. Theorem 4 implies that the

number of closed walks in Γ = Cos (G,H,X) is congruent (mod p) to the number

|M |, where |M | is at least (|X| + 1)|H| (p > (|X| + 1)|H|). The valency of Γ is

|X||H|. If Γ is a Cayley graph Γ = C(K,L) then edges in this Cayley graph

are labeled by |X||H| distinct labels. Then |{k ∈ K : kp = 1}| ≤ |X||H|. But by

Lemma 1, the number of closed walks in Γ = C(K,L) is congruent (mod p) to the

number |{k ∈ K : kp = 1}| where |{k ∈ K : kp = 1}| ≤ |X||H|, a contradiction. �

In the second generalization of Theorem 5 we will not require the existence of

|X|+ 1 ordered pairs but just |X|, assuming that |X||H| is odd.

Theorem 7. Let G be a group, let H be a finite subgroup of G, and let X be a

finite symmetric unit-free subset of G such that XHX ∩H = {1}. Let |H||X| be

an odd number. Further, suppose that there are at least |X| distinct ordered pairs

(x, h) ∈ X ×H such that (xh)p ∈ H for some fixed prime p > |X||H|2. Then the

coset graph Γ = Cos (G,H,X) is a vertex-transitive non-Cayley graph.

Proof. The proof is similar to the preceding one. The number of closed walks in

Γ = Cos (G,H,X) is congruent (mod p) to a number i, where i is at least |X||H|.
If Γ is a Cayley graph Γ = C(K,L) then edges in this Cayley graph are

labeled by |X||H| distinct labels. Because |L| = |X||H| is an odd number and

L is a symmetric unit-free subset then there exists an edge labelled with l ∈ L

such that l−1 = l. But lp = l 6= 1. Then the number of closed walks in Γ =

C(K,L) is congruent (mod p) to a number z where z ≤ (|X| − 1)|H| < |X||H|, a

contradiction. �
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5. Examples

Our first two examples are generalizations of Example 1 in [3].

Example 1. Let G = 〈x, y|x2 = yr = 1, (xy)p = yk〉. Assume that G contains

no relation of type xyix = yj. Let r ≥ 3 and let p > r2 be a prime. Then the graph

Cos (G, 〈y〉 , {X}) satisfies the conditions of Theorem 6. Indeed, if H = 〈y〉 and

X = {x} then HXH generates G, XHX∩H = {1}. We also have that (xy)p ∈ H
and (xy−1)p ∈ H. Then the graph Cos (G, 〈y〉 , {x}) is a vertex transitive non-

Cayley graph.

Example 2. Let G =
〈
x, y|x3 = yr = 1, (xy)p = yk

〉
. Assume that G contains

no relation of type xyix = yj and xyix−1 = yj . Let r ≥ 3 be an odd number and

let p > r2 be a prime. Theorem 7 implies that Cos (G, 〈y〉 , {x, x−1}) is a vertex

transitive non-Cayley graph.

Comparing with [3], our Examples 1 and 2 are more general because in [3] it was

required that (xy)p = 1. Allowing (xy)p = yk, k > 0 we obtain new and interesting

classes of VTNCG’s. The fact that they are indeed non-Cayley does not follow

from the main theorem of [3] (which shows that our generalized theorems can be

useful).

Our last example introduces a new construction of VTNCG’s which can be

obtained by the methods of [3]; howewer, we think it may be worth presenting.

Example 3. Let Sp be the symmetric group on p elements where p is a prime

number. Consider a p-cycle C = (1, . . . , p) and a 3-cycle D = (1, 1 + x, 1 + 2x)

where (p, x) = 1. Let H := 〈D〉 and X := {C,C−1}. The cycles C and D

generate the alternating group An. It can be checked that Cp = id, (C−1)p = id,

CD = (1, . . . , p)(1, 1+x, 1+2x) = (1, 2, . . . , 1+2x, 2+2x, . . . , p, 1+x, . . . , 2x) and

so (CD)p = id. An easy computation shows that the following 12 permutations

are not in H:

CDC−1 = (1, 2, . . . , x− 1, 2x, 1 + x, 2 + x, . . . , 2x− 1, p, 1 + 2x,

2 + 2x, . . . , p− 1, x),

CD−1C−1 = (1, 2, . . . , x− 1, p, 1 + x, 2 + x, . . . , 2x− 1, x, 1 + 2x,

2 + 2x, . . . , p− 1, 2x),

CDC = (3, 4, . . . , 1 + x, 2 + 2x, 3 + x, 4 + x, . . . , 1 + 2x, 2, 3 + 2x,

4 + 2x, . . . , 1, 2 + x),

CD−1C = (3, 4, . . . , 1 + x, 2, 3 + x, 4 + x, . . . , 1 + 2x, 2 + x, 3 + 2x,

4 + 2x, . . . , 1, 2 + 2x),

C−1D−1C = (CDC−1)−1,

CDC−1 = (CD−1C−1)−1,



CLOSED WALKS IN COSET GRAPHS 135

C−1D−1C−1 = (CDC)−1,

C−1DC−1 = (CD−1C)−1,

CC,CC−1, C−1C,C−1C−1. From this it follows that XHX ∩H = id. Theorem 6

now implies that the graph Cos (Ap, 〈D〉 , {C,C−1}) is a vertex transitive non-

Cayley graph.

References
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