CLOSED WALKS IN COSET GRAPHS AND VERTEX-TRANSITIVE NON-CAYLEY GRAPHS

R. KURCZ

Abstract

We extend the main result of R. Jajcay and J. Širáň [Australasian J. Combin. 10 (1994), 105-114] to produce new classes of vertex-transitive nonCayley graphs.

1. Introduction

The study of vertex-transitive graphs has a long and rich history in discrete mathematics. Prominent examples of vertex-transitive graphs are Cayley graphs which are important in both theory as well as aplications. Vertex-transitive graphs that are not Cayley graphs (for which we borrow te acronym VTNCG from [12]) have been an object of a systematic study since the early 80 's. The research here was much influenced by the problem of finding the so called non-Cayley numbers [3], i.e., the numbers n for which there exists a VTNCG of order n.

A number of new construction of VTNCG's appeared in the 90 's. They range from group-theoretical constructions (the basic references here are $[\mathbf{9}],[\mathbf{1 0}]$) to graph-theoretical ones (cf. [12], [6]). For the few classification results of vertextransitive graphs we refer to [8], [11].

Recently, one of the direction of the reserch has focused on certain necessary combinatorial conditions for a graph to be Cayley [1], [2]. Based on this, new constructions of VTNCG's have been found [3], [4]; they can be viewed as a combination of the graph- and group-theoretical methods mentioned above.

The purpose of this paper is to prove two extension of the main theorem of [3] and to present new classes of VTNCG's arising from our results.

2. Terminology

Graphs considered in this paper are undirected, without loops and multiple edges; they may be finite or infinite but are always locally finite (i.e., every vertex has finite valency).

[^0]Let Γ be a graph and let a, b be two adjacent vertices of Γ. An ordered pair (a, b) will be called an arc. Thus, any two adjacent vertices a, b of Γ give rise to two mutually reverse arcs, namely, (a, b) and (b, a). We can think of arcs as "edges with orientation".

Let G be a (finite or infinite) group and X a unit-free symmetric subset of G (i.e., $1 \notin X$ and $x^{-1} \in X$ whenever $x \in X$). The Cayley graph $C(G, X)$ has G as its vertex set, and $e=(a, b)$ is an arc of $C(G, X)$ if and only if there exists an element $x \in X$ such that $a x=b$. Because $x=a^{-1} b$ is uniquely determined, we have a function λ from the arc set of $C(G, X)$ onto the set X which assigns to every arc $e=(a, b)$ the element $\lambda(e)=a^{-1} b=x$ which we sometimes call a label of e. Observe that if there is an arc from a to b labelled x, then there also is an arc from b to a labelled x^{-1}.

Let G be a group, H a subgroup of G and X a symmetric unit-free subset of G. Let $H \cap X=\emptyset$. The vertex set of the coset graph $\operatorname{Cos}(G, H, X)$ is the set of all left cosets of H in G. In the coset graph, $(a H, b H)$ is an arc if and only if there exists an element $x \in X$ such that $a H x \cap b H \neq \emptyset$ (or, equivalently, $a^{-1} b \in H x H=$ $\left.\left\{h x h^{\prime} ; h, h^{\prime} \in H\right\}\right)$. It is easy to check that this definition is correct; i.e, it does not depend on the choice of cosets representatives and it produces graphs without loops and parallel edges. Observe that if $H=\{1\}$ then the coset graph reduces to a Cayley graph.

For an arc $e=(a H, b H)$ of the coset graph $\operatorname{Cos}(G, H, X)$ let X_{e} denote the set of all $x \in X$ such that $a^{-1} b \in H x H$. If D is the arc set of the graph $\operatorname{Cos}(G, H, X)$, the labelling λ is now any mapping $D \longrightarrow X$ such that for each arc $e \lambda(e) \in X_{e}$.

A walk of length k in a graph is a an alternating sequence $W=v_{0}, e_{0}, v_{1}, e_{1}$, $\ldots, v_{k-1}, e_{k-1}, v_{k}$ where v_{i} are vertices and e_{i} is an arc from v_{i} to v_{i+1}. We say that the walk is closed if $v_{0}=v_{k}$; in this case we say that the walk is based at v_{0}. If $\Gamma=C(G, X)$ then we will describe the walks starting at the vertex 1 using arcs only. For example, the walk $v_{0}, e_{0}, v_{1}, e_{1}, \ldots, e_{k-1}, v_{k}$ such that $v_{0}=1, \lambda\left(e_{0}\right)=x_{0}, v_{1}=x_{0}, \lambda\left(e_{1}\right)=x_{1}, \ldots, \lambda\left(e_{k-1}\right)=x_{k-1}, v_{k}=x_{0} x_{1} \ldots x_{k-1}$, will be written as $\left(x_{0}, x_{1}, \ldots, x_{k-1}\right)$. In the case when $\Gamma=\operatorname{Cos}(G, H, X)$ with labelling λ, the walk $a_{1} H, e_{1}, a_{2} H, e_{2}, a_{3} H, e_{3}, \ldots, e_{k}, a_{k} H$ will just be denoted by $\left(a_{1} H, x_{1}, a_{2} H, x_{2}, a_{3} H, x_{3}, \ldots, x_{k}, a_{k} H\right)$ where $x_{i}=\lambda\left(e_{i}\right)$. Again, note that this type of encoding walks depends on the choice of the labels λ.

Let $\operatorname{Aut}(\Gamma)$ be the group of all automorphisms of the graph Γ. We say that Γ is vertex transitive if for arbitrary two vertices a and b there exists an automorphism $\pi \in A u t(\Gamma)$ such that $\pi(a)=b$.

It is well known (see, e.g., $[\mathbf{3}]$) that a graph Γ is vertex-transitive if and only if it is isomorphic to some coset graph $\operatorname{Cos}(G, H, X)$.

A necessary condition for a graph to be isomorphic to a Cayley graph $C(G, X)$ was proved in [1].

Lemma 1. Let $\Gamma=C(G, X)$ be a locally finite Cayley graph and p be a prime. Then the number of closed walks of length p, based at any fixed vertex of Γ, is congruent $(\bmod p)$ to the number of elements in X for which $x^{p}=1$.

3. Walks in Coset Graphs

In this section we shall investigate the structure of closed walks in coset graphs. Throughout we will suppose that G is a group, H is a finite subgroup of G and X is a unit-free symmetric subset of G, (i.e., $1 \notin X$ and $x^{-1} \in X$ for each $x \in X$). We begin with a few elementary facts (see also [5], $[\mathbf{3}]$).

Lemma 2. Let $\Gamma=\operatorname{Cos}(G, H, X)$ be a coset graph such that $X H X \cap H=\{1\}$. Then
(1) For each $x \in X$, the number of left cosets in $H x H$ is equal to $|H|$.
(2) Let $h, g \in H$ and $x \in X$; then $h \neq g$ if and only if $h x H \neq g x H$.
(3) Every arc of Γ has a uniquely determined label $x \in X$ i.e., $\left|X_{e}\right|=1$ for each arc e.
(4) The valency of Γ is equal to $|X||H|$.

Proof. (1) The number of left cosets in $H x H$ is equal to $\left[H: H \cap x H x^{-1}\right]=$ $[H:\{1\}]=|H|$.
(2) The sufficiency is obvious. For the necessity, let $h, g \in H, h \neq g$. If $h x H=g x H$ then $x^{-1} g^{-1} h x \in H$. But we also have $x^{-1} g^{-1} h x \in X H X$, which implies $x^{-1} g^{-1} h x=1$, and so $h=g$, a contradiction.
(3) Suppose that there exists an arc from $a H$ to $b H$ with two labels $x, y \in X$, $x \neq y$. Then $H a^{-1} b H=H x H$ and $H a^{-1} b H=H y H$, and so $H x H=H y H$. It follows that there exist elements $h_{1}, h_{2}, k_{1}, k_{2} \in H$ such that $h_{1} x h_{2}=k_{1} y k_{2}$, or equivalently $x h_{2} k_{2}^{-1} y^{-1}=h_{1}^{-1} k_{1} \in H$. But since $x h_{2} k_{2}^{-1} y^{-1} \in X H X$, we have $x h_{2} k_{2}^{-1} y^{-1}=1$. Rearranging terms we obtain $y^{-1} x=k_{2} h_{2}^{-1} \in H \cap X H X$, which implies $1=y^{-1} x$, and $x=y$, a contradiction.
(4) It is sufficient to prove that the valency of the vertex H is equal to $|X||H|$, because Γ is regular. The vertex H is adjacent to all vertices determined by left cosets from $H x H$ for all $x \in X$. It follows that the valency of H is $\sum_{x \in X}[H$: $\left.H \cap x H x^{-1}\right]=\sum_{x \in X}[H: 1]=|X||H|$.

We note that if H is an invariant subgroup of G such that $H \neq\{1\}$ then $X H X \cap H \neq\{1\}$. Indeed, suppose that $X H X \cap H=\{1\}$ and consider $h \in H, 1 \neq$ h. Then it follows from Lemma 2, part (3) that $x H \neq h x H$. But H is invariant, and so there exists $l \in H$ such that $h x=x l$, which implies $h x H=x l H=x H$, a contradiction.

Sometimes we will use the notation $\left(a_{i} H, x_{i}\right)_{p}$ for the walk $\left(a_{0} H, x_{0}, a_{1} H, x_{1}, \ldots\right.$, $\left.a_{p-1} H, x_{p-1}, a_{0} H\right)$. If $a_{0}=1$ then we say that this walk is H-based.

Let \mathcal{S} be the set of all sequences of the form $\left(a_{0} H, x_{0}, a_{1} H, x_{1}, a_{2} H, \ldots, a_{p-1} H\right.$, $\left.x_{p-1}\right)$ such that $a_{0}=1$ and $a_{i}^{-1} a_{i+1} \in H x_{i} H$ for each $i(\bmod p)$. Let $\theta: \mathcal{S} \longrightarrow \mathcal{S}$ be a mapping which sends the sequence $\left(a_{i} H, x_{i}\right)_{p}$ to $\left(b_{i} H, y_{i}\right)_{p}$ where $b_{i}=a_{1}^{-1} a_{i+1}$ and $y_{i}=x_{i+1}$, for all $i(\bmod p)$. It is easy to check that $b_{0}=1$ and $b_{i}^{-1} b_{i+1} \in$ $H y_{i} H$, so θ is a well defined permutation on the set \mathcal{S}. Also it is clear that each sequence from \mathcal{S} induces a closed H-based walk in the coset graph. An easy check show that θ^{2} sends the sequence $\left(a_{i} H, x_{i}\right)_{p}$ to $\left(b_{i} H, y_{i}\right)_{p}$ where $b_{i}=a_{2}^{-1} a_{i+2} H$ and $y_{i}=x_{i+2}$. If we continue we obtain that θ^{j} sends the sequence $\left(a_{i} H, x_{i}\right)_{p}$ to $\left(b_{i} H, y_{i}\right)_{p}$ where $b_{i}=a_{j}^{-1} a_{j+i} H$ and $y_{i}=x_{i+j}$. Also it is clear that θ^{p} is the identity mapping on \mathcal{S}.

Let $\alpha=\left(a_{0} H, x_{0}, a_{1} H, x_{1}, a_{2} H, \ldots, a_{p-1} H, x_{p-1}, a_{0} H\right)$ be a walk such that $a_{k}=1$ for some $k \in\{0, \ldots, p-1\}$. Then the coresponding H-based walk $\left(a_{k} H, x_{k}, \ldots, a_{p-1} H, x_{p-1}, a_{0} H, x_{0}, \ldots, a_{k-1} H, x_{k-1}\right)$ will be denoted $[\alpha]$.

The basic observation is now the following: If p is prime, then the orbits of θ in \mathcal{S} have length either 1 or p.

Lemma 3. Let $\Gamma=\operatorname{Cos}(G, H, X)$ be a coset graph such that $X H X \cap H=\{1\}$ and let p be a prime number. Let $\alpha=\left(a_{i} H, x_{i}\right)_{p}$ and $\beta=\left(b_{i} H, y_{i}\right)_{p}$ be two sequences from \mathcal{S} such that $\beta=\theta^{j}(\alpha)$ for some $j, 1 \leq j \leq p-1$ (i.e., $b_{i}=a_{j}^{-1} a_{i+j}$ and $y_{i}=x_{i+j}$. All indices are to be read $\left.\bmod p\right)$. Then the walks α and β are identical H-based closed walks in Γ if and only if there exist $z \in X$ and $c \in G$ such that $x_{i}=z$ and $a_{i} H=c^{i} H$ for each $i(\bmod p)$.

Proof. First we prove the sufficiency. If $x_{i}=z$ and $a_{i} H=c^{i} H$ for each i $(\bmod p)$ then $\alpha=\left(c^{i} H, x\right)_{p}$ and $\beta=\left(c^{i} H, x\right)_{p}$ because $b_{i} H=a_{j}^{-1} a_{i+j} H=$ $c^{-j} c^{i+j} H=c^{i} H$ and $y_{i}=x_{i+j}=x$.

Necessity. If α and β are identical then $x_{0}=y_{0}=x_{j+0}, x_{1}=y_{1}=x_{j+1}, \ldots$, $x_{p-j}=y_{p-j}=x_{0}, x_{p-j+1}=y_{p-j+1}=x_{1}, \ldots, x_{p-1}=y_{p-1}=x_{j-1}$. Therefore $x_{0}=x_{1}=\ldots=x_{p-1}=y_{0}=y_{1}=\ldots=y_{p-1}=: x$, because p is prime .

The following relations hold:

$$
\begin{gathered}
a_{0} H=b_{0} H=a_{j}^{-1} a_{j+0} H \\
a_{1} H=b_{1} H=a_{j}^{-1} a_{j+1} H \\
\cdots \\
a_{p-1} H=b_{p-1}=a_{i}^{-1} a_{j+p-1} H
\end{gathered}
$$

Because $a_{j} H=a_{j}^{-1} a_{2 j} H$, we have $a_{j}^{2} H=a_{2 j} H$. Substituting this into the equality $a_{2 j} H=a_{i}^{-1} a_{3 j} H$ we obtain $a_{j}^{2} H=a_{2 j} H=a_{j}^{-1} a_{3 j} H$ and so $a_{j}^{3} H=a_{3 j} H$. Continuing this way we subsequently obtain:

$$
\begin{aligned}
a_{j} H & =a_{j} H \\
a_{2 j} H & =a_{j}^{2} H
\end{aligned}
$$

$$
\begin{aligned}
a_{(p-1) j} H & =a_{j}^{p-1} H \\
a_{0} H & =a_{j}^{p} H \quad\left(a_{0}=1\right)
\end{aligned}
$$

Because p is prime we have $\{0, j, 2 j, \ldots,(p-1) j\}=\{0,1,2, \ldots, p-1\}$ and so $a_{1} H=a_{l j} H=a_{j}^{l} H$ for some l. Then our walks α, β are of the form $\left(H, x, a_{j}^{l} H, x, a_{j}^{2 l} H, \ldots, a_{j}^{(p-1) l} H, x, H\right)$. Finelly setting $a_{i}^{l}=a$ then our walks can be written as $\left(H, x, a H, x, a^{2} H, \ldots, a^{p-1} H, x, H\right)$. The fact that $a^{p} H=H$ follows easily.

Now we introduce a set M which plays a substantial role in our next theorem. Let $V=\left\{a \in G: a \in H x H\right.$ for some $\left.x \in X, a^{p} \in H\right\}$. Let \sim be an equivalence relation on V such that $a \sim b \Longleftrightarrow a H=b H$ and $a^{2} H=b^{2} H$. Finally, let $M=V / \sim$.

Theorem 4. Let $\Gamma=\operatorname{Cos}(G, H, X)$ be a coset graph where H is a finite subgroup of G and X is a finite symmetric unit-free subset of G such that $X H X \cap H$ $=1$. Let p be a prime number.

Then the number of closed walks of length p, based at any fixed vertex of Γ, is congruent $(\bmod p)$ to the number of elements in M.

Moreover, $|M|=\sum_{x \in X}\left|\left\{v \in H:(x v)^{p} \in H\right\}\right||H|$.
Proof. It is sufficient to consider walks based at the vertex H, because Γ is vertex transitive. We prove the claim in the following three steps:
(a) The number of closed walks of the form $\left(a_{i} H, x_{i}\right)_{p}$ where $x_{i} \neq x_{j}$ for some pair $i, j \in\{0,1, \ldots, p-1\}$, is divisible by p.
(b) The number of closed walks of the form $\left(a^{i} H, x\right)_{p}$ such that $a^{p} H=H$ is congruent $(\bmod p)$ to the number of elements in M.
(c) The number of closed walks of the form $\left(a_{i} H, x\right)_{p}$ which are not from part (b) is divisible by p.

Let $H=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$.
Proof of (a). In this case we deal with a subset $\mathcal{S}^{\prime} \subset \mathcal{S}$ formed by sequences $\left(a_{i} H, x_{i}\right)_{p}$ where $x_{j} \neq x_{k}$ for some $j \neq k$. On this subset each orbit of θ has length p and the orbits are disjoint.

Proof of (b). Let $\mathcal{S}^{\prime \prime}$ be the set of all elements α of \mathcal{S} for which $\alpha \theta^{j}=\alpha$ for some $1 \leq j \leq p-1$. Lemma 3 implies that $\mathcal{S}^{\prime \prime}=\mathcal{S} \cap\left\{\left(a^{i} H, x\right)_{p}: x \in X, a \in G\right\}$.

Choose any walk $W=\left(a^{i} H, x\right)_{p}$. Then $a=h x l, a^{2}=h x l h x l, a^{3}=h x l h x l h x l$, $\ldots, a^{p-1}=(h x l)^{p-1}$. Let us denote $l h=: v$. Then W has the form $(H, x, h x H, x$, $\left.h x v x H, x, h x v x v x H, \ldots, h(x v)^{p-1} H, x, H\right)$.

Each element of the set $V=\left\{a \in G: \exists_{x \in X}, a \in H x H, a^{p} \in H\right\}$ determines a walk of the form $\left(a^{i} H, x\right)_{p}$. It may happen that different elements from V define
the same walk; our aim is to identify all such occasions. Let

$$
\begin{aligned}
Q & =\left(a^{i} H, x\right)_{p}
\end{aligned}=\left(H, x, h x H, x, h x v x H, x, h x v x v x H, \ldots, h(x v)^{p-1} H, x, H\right), ~\left(b^{i} H, x\right)_{p}=\left(H, y, l y H, y, l y u y H, y, l y u y u y H, \ldots, l(y u)^{p-1} H, y, H\right)
$$

We claim that the walks Q and Q^{\prime} are identical if and only if $a H=b H$ and $a^{2} H=b^{2} H$.

The necessity is evident, and we prove the sufficiency. If $a H=b H$ then $h x H=$ $l y H$ and so $y^{-1} l^{-1} h x \in H$. But $y^{-1} l^{-1} h x \in X H X$ which implies $y^{-1} l^{-1} h x=1$, and therefore $x y^{-1}=h^{-1} l \in H$. Since $x y^{-1} \in X H X$ we have $1=x y^{-1}=h^{-1} l$ then $x=y$ and $h=l$. Because $a^{2} H=b^{2} H$, we obtain $h x v x H=l y u y H=h x u x H$ and so $x^{-1} u^{-1} v x \in H$. But $x^{-1} u^{-1} v x \in X H X$ thus $v x=u x$ and $u=v$. Then for all i we have $a^{i} H=b^{i} H$.

The equivalence relation \sim on V defined by $a \sim b \Longleftrightarrow a H=b H$ and $a^{2} H=$ $b^{2} H$ has the following property: if $a \sim b$ then the walks $\left(a^{i} H, x\right)_{p},\left(b^{i} H, x\right)_{p}$ are identical. Then the number of walks in part (b) is equal to the cardinality of the set V / \sim.

Now we prove that $|M|=\sum_{x \in X}\left|v \in H:(x v)^{p} \in H \| H\right|$. Let us consider the walks with all arcs labeled x. Let $(H, x, h x H, x, h x v x H, x, h x v x v x H, \ldots$, $\left.h(x v)^{p-1} H, x, H\right)$, and $\left(H, x, l x H, x, l x u x H, x, l x u x u x H, \ldots, l(x u)^{p-1} H, x, H\right)$ be two such walks. If $u \neq v$ then these walks are different. Indeed, if they are the same then $h x H=l x H$ which implies $l=h$ and $x^{-1} l^{-1} h x=1$. We also suppose that $h x v x H=l x u x H$, thus $x^{-1} u^{-1} x^{-1} l^{-1} h x v x=x^{-1} u^{-1} v x$. But $x^{-1} u^{-1} v x \in X H X$ and so we have $x^{-1} u^{-1} v x=1$ and $u=v$.

Notice that $\left(H, x, h x H, x, h x v x H, x, h x v x v x H, \ldots, h(x v)^{p-1} H, x, H\right)$ is a walk from part (b) if and only if $(x v)^{p} \in H$. The elements $x \in X$ and $v \in G$ determine the following n different walks

$$
\begin{aligned}
& \left(H, x, h_{1} x H, x, h_{1} x v x H, x, h_{1} x v x v x H, \ldots, h_{1}(x v)^{p-1} H, x, H\right) \\
& \left(H, x, h_{2} x H, x, h_{2} x v x H, x, h_{2} x v x v x H, \ldots, h_{2}(x v)^{p-1} H, x, H\right) \\
& \quad \ldots \\
& \left(H, x, h_{n} x H, x, h_{n} x v x H, x, h_{n} x v x v x H, \ldots, h_{n}(x v)^{p-1} H, x, H\right) .
\end{aligned}
$$

The number of walks with all arcs labeled x is equal to $\left|v \in H:(x v)^{p} \in H \| H\right|$. But if two walks $\left(H, x, h x H, x, h x v x H, x, h x v x v x H, \ldots, h(x v)^{p-1} H, x, H\right)$ and $\left(H, y, h y H, y, h y u y H, y, h y u y u y H, \ldots, h(y u)^{p-1} H, y, H\right)$ have different first arcs $(x \neq y)$ then they are distinct. It follows that the number of walks in part (b) is $\sum_{x \in X}\left|\left\{v \in H:(x v)^{p} \in H\right\}\right||H|$.

Proof of (c). Let $\mathcal{S}^{\prime \prime \prime}$ be the set of all elements α of \mathcal{S} for which there exists $x \in X$ and $a_{i} \in G i=1, \ldots, p-1$ such that $\alpha=\left(a_{i} H, x\right)_{p}$ and $\alpha \theta^{j} \neq \alpha$ for some $1 \leq j \leq p-1$. Every orbit of θ on $\mathcal{S}^{\prime \prime \prime}$ has p elements and the orbits are disjoint. Thus $\left|\mathcal{S}^{\prime \prime \prime}\right|$ is divisible by p.

4. Vertex-transitive Non-Cayley Graphs

In this section we prove two generalizations of the following principal result of $[\mathbf{3}]$.

Theorem 5. ([3]) Let G be a group, let H be a finite subgroup of G, and let X be a finite symmetric unit-free subset of G such that $X H X \cap H=\{1\}$. Further, suppose that there are at least $|X|+1$ distinct ordered pairs $(x, h) \in X \times H$ such that $(x h)^{p}=1$ for some fixed prime $p>|X||H|^{2}$. Then the coset graph $\Gamma=\operatorname{Cos}(G, H, X)$ is a vertex-transitive non-Cayley graph.
In the first generalization of Theorem 5 we relax the condition $(x h)^{p}=1$.
Theorem 6. Let G be a group, let H be a finite subgroup of G, and let X be a finite symmetric unit-free subset of G such that $X H X \cap H=\{1\}$. Further, suppose that there are at least $|X|+1$ distinct ordered pairs $(x, h) \in X \times H$ such that $(x h)^{p} \in H$ for some fixed prime $p>|X||H|^{2}$. Then the coset graph $\Gamma=\operatorname{Cos}(G, H, X)$ is a vertex-transitive non-Cayley graph.

Proof. Let M be the set from Theorem 4; we have $|M|=\sum_{x \in X} \mid\{h \in H$: $\left.(x h)^{p} \in H\right\}\left||H|=\left|\left\{(x, h): x \in X, h \in H,(x h)^{p} \in H\right\}\right|\right| H \mid$. From our assumptuions it follows that $(|X|+1)|H| \leq|M| \leq|X||H|^{2}<p$. Theorem 4 implies that the number of closed walks in $\Gamma=\operatorname{Cos}(G, H, X)$ is congruent $(\bmod p)$ to the number $|M|$, where $|M|$ is at least $(|X|+1)|H|(p>(|X|+1)|H|)$. The valency of Γ is $|X||H|$. If Γ is a Cayley graph $\Gamma=C(K, L)$ then edges in this Cayley graph are labeled by $|X||H|$ distinct labels. Then $\left|\left\{k \in K: k^{p}=1\right\}\right| \leq|X||H|$. But by Lemma 1, the number of closed walks in $\Gamma=C(K, L)$ is congruent $(\bmod p)$ to the number $\left|\left\{k \in K: k^{p}=1\right\}\right|$ where $\left|\left\{k \in K: k^{p}=1\right\}\right| \leq|X||H|$, a contradiction.

In the second generalization of Theorem 5 we will not require the existence of $|X|+1$ ordered pairs but just $|X|$, assuming that $|X||H|$ is odd.

Theorem 7. Let G be a group, let H be a finite subgroup of G, and let X be a finite symmetric unit-free subset of G such that $X H X \cap H=\{1\}$. Let $|H||X|$ be an odd number. Further, suppose that there are at least $|X|$ distinct ordered pairs $(x, h) \in X \times H$ such that $(x h)^{p} \in H$ for some fixed prime $p>|X||H|^{2}$. Then the coset graph $\Gamma=\operatorname{Cos}(G, H, X)$ is a vertex-transitive non-Cayley graph.

Proof. The proof is similar to the preceding one. The number of closed walks in $\Gamma=\operatorname{Cos}(G, H, X)$ is congruent $(\bmod p)$ to a number i, where i is at least $|X||H|$.

If Γ is a Cayley graph $\Gamma=C(K, L)$ then edges in this Cayley graph are labeled by $|X||H|$ distinct labels. Because $|L|=|X||H|$ is an odd number and L is a symmetric unit-free subset then there exists an edge labelled with $l \in L$ such that $l^{-1}=l$. But $l^{p}=l \neq 1$. Then the number of closed walks in $\Gamma=$ $C(K, L)$ is congruent $(\bmod p)$ to a number z where $z \leq(|X|-1)|H|<|X||H|$, a contradiction.

5. Examples

Our first two examples are generalizations of Example 1 in $[\mathbf{3}]$.
Example 1. Let $G=\left\langle x, y \mid x^{2}=y^{r}=1,(x y)^{p}=y^{k}\right\rangle$. Assume that G contains no relation of type $x y^{i} x=y^{j}$. Let $r \geq 3$ and let $p>r^{2}$ be a prime. Then the graph $\operatorname{Cos}(G,\langle y\rangle,\{X\})$ satisfies the conditions of Theorem 6. Indeed, if $H=\langle y\rangle$ and $X=\{x\}$ then $H X H$ generates $G, X H X \cap H=\{1\}$. We also have that $(x y)^{p} \in H$ and $\left(x y^{-1}\right)^{p} \in H$. Then the graph $\operatorname{Cos}(G,\langle y\rangle,\{x\})$ is a vertex transitive nonCayley graph.

Example 2. Let $G=\left\langle x, y \mid x^{3}=y^{r}=1,(x y)^{p}=y^{k}\right\rangle$. Assume that G contains no relation of type $x y^{i} x=y^{j}$ and $x y^{i} x^{-1}=y^{j}$. Let $r \geq 3$ be an odd number and let $p>r^{2}$ be a prime. Theorem 7 implies that $\operatorname{Cos}\left(G,\langle y\rangle,\left\{x, x^{-1}\right\}\right)$ is a vertex transitive non-Cayley graph.

Comparing with [3], our Examples 1 and 2 are more general because in [3] it was required that $(x y)^{p}=1$. Allowing $(x y)^{p}=y^{k}, k>0$ we obtain new and interesting classes of VTNCG's. The fact that they are indeed non-Cayley does not follow from the main theorem of [3] (which shows that our generalized theorems can be useful).

Our last example introduces a new construction of VTNCG's which can be obtained by the methods of [3]; howewer, we think it may be worth presenting.

Example 3. Let S_{p} be the symmetric group on p elements where p is a prime number. Consider a p-cycle $C=(1, \ldots, p)$ and a 3 -cycle $D=(1,1+x, 1+2 x)$ where $(p, x)=1$. Let $H:=\langle D\rangle$ and $X:=\left\{C, C^{-1}\right\}$. The cycles C and D generate the alternating group A_{n}. It can be checked that $C^{p}=i d,\left(C^{-1}\right)^{p}=i d$, $C D=(1, \ldots, p)(1,1+x, 1+2 x)=(1,2, \ldots, 1+2 x, 2+2 x, \ldots, p, 1+x, \ldots, 2 x)$ and so $(C D)^{p}=\mathrm{id}$. An easy computation shows that the following 12 permutations are not in H :

$$
\begin{aligned}
C D C^{-1}= & (1,2, \ldots, x-1,2 x, 1+x, 2+x, \ldots, 2 x-1, p, 1+2 x \\
& 2+2 x, \ldots, p-1, x) \\
C D^{-1} C^{-1}= & (1,2, \ldots, x-1, p, 1+x, 2+x, \ldots, 2 x-1, x, 1+2 x \\
& 2+2 x, \ldots, p-1,2 x) \\
C D C= & (3,4, \ldots, 1+x, 2+2 x, 3+x, 4+x, \ldots, 1+2 x, 2,3+2 x \\
& 4+2 x, \ldots, 1,2+x) \\
C D^{-1} C= & (3,4, \ldots, 1+x, 2,3+x, 4+x, \ldots, 1+2 x, 2+x, 3+2 x \\
& 4+2 x, \ldots, 1,2+2 x) \\
C^{-1} D^{-1} C= & \left(C D C^{-1}\right)^{-1} \\
C D C^{-1}= & \left(C D^{-1} C^{-1}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
C^{-1} D^{-1} C^{-1} & =(C D C)^{-1} \\
C^{-1} D C^{-1} & =\left(C D^{-1} C\right)^{-1}
\end{aligned}
$$

$C C, C C^{-1}, C^{-1} C, C^{-1} C^{-1}$. From this it follows that $X H X \cap H=$ id. Theorem 6 now implies that the graph $\operatorname{Cos}\left(A_{p},\langle D\rangle,\left\{C, C^{-1}\right\}\right)$ is a vertex transitive nonCayley graph.

References

1. Fronček D., Rosa A. and Širáň J., The existence of selfcomplementary circulant graphs, European J. Combin. 17 (1996), 625-628.
2. Gvozdjak P. and Širáň J., Arc-transitive non-Cayley graphs from regular maps, AMUC LXIII (1994), 309-313.
3. Jajcay R. and Širáň J., A construction of vertex-transitive non-Cayley graphs, Australasian J. Combin. 10 (1994), 105-114.
4. - More construction of vertex-transitive non-Cayley graphs based on counting closed walks, Australasian J. Combin. 14 (1996), 121-132.
5. Lorimer P., Vertex-transitive graphs: Symmetric graphs of prime valency, J. Graph Theory 8 (1984), 55-68.
6. Lovrečič S. M., A note on the generalized Petersen graphs that are also Cayley graphs, J. Combin. Theory B69(2) (1997), 226-229.
7. Marušič D., Cayley properties of vertex-symmetric graphs, Ars Combinatoria 16B (1983), 297-302.
8. Marušič D. and Scapellato R., Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica $14(2)$ (1994), 187-201.
9. McKay B. D. and Praeger Ch. E., Vertex-transitive graphs which are not Cayley graphs, I, J. Austral. Math. Soc. A 56 (1994), 53-63.
10._Vertex-transitive graphs which are not Cayley graphs, II, J. Graph Theory 22(4) (1996), 321-334.
10. Praeger C. E. and Xu M.-Y., Vertex primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993), 245-266.
11. Watkins M. E., Vertex-transitive graphs that are not Cayley graphs, Cycles and Rays (G.Hahn et al., eds.), Kluwer, Netherlands, 1990, pp. 243-256.
R. Kurcz, Department of Mathematics, SvF, Slovak University of Technology, 81368 Bratislava, Slovakia

[^0]: Received May 5, 1998; revised December 14, 1998.
 1980 Mathematics Subject Classification (1991 Revision). Primary 05C25.

