AN OMEGA THEOREM ON DIFFERENCES OF TWO SQUARES, II

M. KÜHLEITNER

Abstract

Let $\rho(n)$ denote the number of pairs $(u, v) \in \mathbb{N} \times \mathbb{Z}$ with $u^{2}-v^{2}=n$. Due to a formula of Sierpinski, $\rho(n)$ is closely related to the classical divisor function $d(n)$. We establish a lower bound for the remainder term in the asymptotic expansion for the Dirichlet summatory function of $\rho(n)$.

1. Introduction

As in part I of this paper [8], let $\rho(n)$ denote the number of pairs $(u, v) \in \mathbb{N} \times \mathbb{Z}$ with $u^{2}-v^{2}=n$. For the more general case where the square is replaced by a " k "-th power $k \geq 2$ see Krätzel $[\mathbf{6}],[\mathbf{7}]$ and the recent paper of Nowak [9]. Due to an elementary formula of Sierpinski, our function $\rho(n)$ is closely related to the classical divisor function $d(n)$ by

$$
\begin{equation*}
\rho(n)=d(n)-2 d\left(\frac{n}{2}\right)+2 d\left(\frac{n}{4}\right) \tag{1}
\end{equation*}
$$

where $d(\cdot)=0$ for non-integers, due to Sierpinski.
For a large real variable x, we consider the remainder term $\theta(x)$ in the asymptotic formula

$$
T(x)=\sum_{n \leq x} \rho(n)=\frac{x}{2} \log x+(2 \gamma-1) \frac{x}{2}+\theta(x)
$$

where γ denotes throughout this paper the Euler-Mascheroni constant.
Upper bounds for $\theta(x)$ can be readily established as a trivial generalization of the corresponding results for the Dirichlet divisor problem. It is known that

$$
D(x)=x \log x+(2 \gamma-1) x+\Delta(x)
$$

with

$$
\Delta(x) \ll x^{23 / 73}(\log x)^{461 / 146}
$$

[^0](See Huxley [5] for this upper bound and the textbook of Krätzel [6] for an enlightening survey of the theory of Dirichlet's divisor problem and the definition of the O - and the Ω - symbols.)

Concerning lower estimates, the author proved in [8], on the basis of [1] and Hafner's method [3], that

$$
\theta(x)=\Omega_{+}\left((x \log x)^{1 / 4}(\log \log x)^{(3+2 \log 2) / 4} \exp (-A \sqrt{\log \log \log x})\right)
$$

The aim of the present article is an Ω_{-}result for $\theta(x)$, corresponding to that of Corrádi and Kátai $[\mathbf{1}]$ for the divisor problem.

Theorem.

$$
T(x)=\frac{x}{2} \log x+(2 \gamma-1) \frac{x}{2}+\theta(x)
$$

with

$$
\theta(x)=\Omega_{-}\left(x^{1 / 4} \exp \left(c(\log \log x)^{1 / 4}(\log \log \log x)^{-3 / 4}\right)\right)
$$

where c is a positive absolute constant.

2. Notations and Lemmas

For large real x we define P_{x} as the set of all primes less than or equal to x, and Q_{x} the set of all square-free integers composed only of primes from P_{x}. We write $\left|P_{x}\right|$ for the cardinality of P_{x} and $M=2^{\left|P_{x}\right|}$ for the cardinality of Q_{x}. We then have

$$
\left|P_{x}\right| \asymp \frac{x}{\log x} \quad \text { and } \quad M \ll \exp \left(c_{1} \frac{x}{\log x}\right)
$$

for some positive constant c_{1}. The largest integer in Q_{x} is bounded by $e^{2 x}$, since for $q \in Q_{x}$, we have

$$
\log q \leq \sum_{p \leq x} \log p \leq 2 x
$$

Let S_{x} be the set of numbers defined by

$$
S_{x}=\left\{\mu=\sum_{q \in Q_{x}} r_{q} \sqrt{q} \text { where } r_{q} \in\{0, \pm 1\} \text { and at least two } r_{q} \neq 0\right\}
$$

Finally let

$$
\eta(x)=\inf \left\{|\sqrt{n}+2 \mu| \text { with } n \in \mathbb{N}_{o} \text { and } \mu \in S_{x}\right\}
$$

and

$$
q(x)=-\log (\eta(x))
$$

By a slight modification of the method used for the corresponding result in Gangadharan [2], one readily shows the following lemma.

Lemma 1. For $x \rightarrow \infty$ we have

$$
x \ll q(x) \ll \exp \left(c_{2} \frac{x}{\log x}\right)
$$

for some positive constant c_{2}.
Lemma 2. There exists a positive constant c_{3} such that

$$
\sum_{q \in Q_{x}} \frac{d(q)}{q^{3 / 4}} \gg \exp \left(c_{3} \frac{x^{1 / 4}}{\log x}\right)
$$

Proof. By the definition of Q_{x}, we have

$$
\begin{aligned}
\sum_{q \in Q_{x}} \frac{d(q)}{q^{3 / 4}} & =\prod_{p \leq x}\left(1+2 p^{-3 / 4}\right)=\exp \left(\sum_{p \leq x} \log \left(1+2 p^{-3 / 4}\right)\right) \\
& \geq \exp \left(\sum_{p \leq x} p^{-3 / 4}+O(1)\right) \gg \exp \left(c_{3} \frac{x^{1 / 4}}{\log x}\right)
\end{aligned}
$$

As in Gangadharan [2] define for real z,

$$
V(z)=2\left(\cos \left(\frac{z}{2}\right)\right)^{2}=1+\frac{e^{\mathrm{i} z}+e^{-\mathrm{i} z}}{2}
$$

and

$$
T_{x}(u)=\prod_{q \in Q_{x}} V\left(u \sqrt{q}-\frac{5 \pi}{4}\right)
$$

Lemma 3. We have
(1) $0 \leq T_{x}(u) \leq 2^{M}$, for all u,
(2) $T_{x}^{\prime}(u) \ll M 2^{M} e^{x}$, for all u,
(3) $T_{x}(u)=T_{0}+T_{1, x}+T_{2, x}+T_{3, x}$ where,

$$
\begin{aligned}
T_{0} & =1 \\
T_{1, x} & =\frac{e^{5 \pi \mathrm{i} / 4}}{2} \sum_{q \in Q_{x}} e^{-\mathrm{i} u \sqrt{q}} \\
T_{3, x} & =\sum_{\mu \in S_{x}} h_{\mu} e^{\mathrm{i} u \mu}
\end{aligned}
$$

$T_{2, x}$ is the complex conjugate of $T_{1, x}$ and $\left|h_{\mu}\right| \leq 1 / 4$.
Proof. The proof of Lemma 3 is straightforward by the definition of $V(z)$ and $T_{x}(u)$.

3. Proof of the Theorem

We start with the well known Voronoi identity for

$$
\Delta_{1}(x) \stackrel{\text { def }}{=} \int_{0}^{x} \Delta(t) d t=\frac{x}{4}+\frac{x^{3 / 4}}{2 \sqrt{2} \pi^{2}} \sum_{n=1}^{\infty} \frac{d(n)}{n^{5 / 4}} \sin \left(4 \pi \sqrt{n x}-\frac{\pi}{4}\right)+O(1)
$$

Inserting this in

$$
\theta(x)=\Delta(x)-2 \Delta\left(\frac{x}{2}\right)+2 \Delta\left(\frac{x}{4}\right)
$$

and substituting $T=4 \pi \sqrt{x}$, we get

$$
\begin{aligned}
E_{1}(T) \stackrel{\text { def }}{=} & \int_{0}^{T} E(t) t d t \\
= & T^{3 / 2} \sum_{n=1}^{\infty} \frac{d(n)}{n^{5 / 4}}\left(\sin (T \sqrt{n}-\pi / 4)-2^{5 / 4} \sin (T \sqrt{n / 2}-\pi / 4)\right. \\
& \left.+2^{3 / 2} \sin (T \sqrt{n / 4}-\pi / 4)\right)
\end{aligned}
$$

with

$$
E(t)=2 \pi \sqrt{2 \pi}\left(\theta\left(t^{2} / 16 \pi^{2}\right)-1 / 4\right)
$$

Define

$$
P(x)=\exp \left(a \frac{x}{\log x}\right)
$$

such that

$$
q(x) \leq P(x) \quad \text { and } \quad M^{2} \leq P(x)
$$

and let

$$
\sigma_{x}=\exp (-2 P(x))
$$

Next define for fixed x,

$$
\gamma_{x}=\sup _{u>0} \frac{-2 \pi \sqrt{2 \pi} \theta\left(u^{2} / 16 \pi^{2}\right)}{u^{1 / 2+1 / P(x)}}
$$

We may assume that $\gamma_{x}<\infty$, otherwise more than Theorem 1 would be true. Thus

$$
\begin{equation*}
\gamma_{x} u^{1 / 2+1 / P(x)}+A+E(u) \geq 0 \tag{2}
\end{equation*}
$$

for all u, where $A=2 \pi \sqrt{2 \pi} / 4$.
Let

$$
J_{x}=\sigma_{x}^{5 / 2} \int_{0}^{\infty}\left(\gamma_{x} u^{1 / 2+1 / P(x)}+A+E(u)\right) u \exp \left(-\sigma_{x} u\right) T_{x}(u) d u
$$

The next lemma provides an asymptotic expansion for J_{x}.

Lemma 4. For $x \rightarrow \infty$,

$$
J_{x}=e^{2} \Gamma\left(\frac{5}{2}\right) \gamma_{x}-\frac{1}{4} \Gamma\left(\frac{5}{2}\right) \sum_{q \in Q_{x}} \frac{d(q)}{q^{3 / 4}}+o\left(\gamma_{x}\right)+o(1)
$$

Proof. Do deal with the first two terms of J_{x}, we observe that, for $r=1$ or $r=\frac{3}{2}+\frac{1}{P(x)}$,

$$
\begin{aligned}
\int_{0}^{\infty} u^{r} \exp \left(-\sigma_{x} u\right) T_{x}(u) d u= & \Gamma(1+r) \sigma_{x}^{-(1+r)} \\
& +\sum_{i=1,2,3} \int_{0}^{\infty} u^{r} \exp \left(-\sigma_{x} u\right) T_{i, x}(u) d u
\end{aligned}
$$

where $1 \leq r \leq \frac{3}{2}+\frac{1}{P(x)}$.
The part of $T_{1, x}$ contributes exactly,

$$
\begin{aligned}
\frac{\mathrm{e}^{5 \pi i / 4}}{2} \Gamma(1+r) \sum_{q \in Q_{x}} \frac{1}{\left(\sigma_{x}+i \sqrt{q}\right)^{1+r}} & \ll \sum_{q \in Q_{x}} q^{-(1+r) / 2} \\
& \ll \sum_{q \in Q_{x}} 1 \ll M \ll \sqrt{P(x)}=o\left(\sigma_{x}^{-5 / 2}\right)
\end{aligned}
$$

The contribution of $T_{2, x}=\overline{T_{1, x}}$ is obviously no more than this. Finally $T_{3, x}$ contributes

$$
\begin{aligned}
& \sum_{\mu \in S_{x}} \frac{h_{\mu}}{\left(\sigma_{x}+i \mu\right)^{1+r}} \ll 3^{M} \eta(x)^{-(1+r)} \\
& \quad \ll \exp \left(M \ln 3+(1+r)(-\log \eta(x)) \ll \exp (3 P(x))=o\left(\sigma_{x}^{-5 / 2}\right)\right.
\end{aligned}
$$

Next we deal with the contribution of $E(u)$ to J_{x}. Our first step is to integrate by parts to introduce $E_{1}(u)$ in the integral. Thus,

$$
I \stackrel{\text { def }}{=} \int_{0}^{\infty} E(u) u \exp \left(-\sigma_{x} u\right) T_{x}(u) d u=-\int_{0}^{\infty} E_{1}(u) \frac{d}{d u}\left(\exp \left(-\sigma_{x} u\right) T_{x}(u)\right) d u
$$

since $E_{1}(u) \ll u^{3 / 2}$ for large u and $E_{1}(0)=0$. Inserting the series representation for $E_{1}(u)$ and integrating term by term, noting that the series converges absolutely for every u and uniformly on compact sets, we get

$$
\begin{aligned}
I= & -\sum_{n=1}^{\infty} \frac{d(n)}{n^{5 / 4}} \operatorname{Im}\left(\mathrm{e}^{-\pi i / 4} I_{n}\right)+O\left(\int_{0}^{\infty}\left|\frac{d}{d u}\left(\exp \left(-\sigma_{x} u\right) T_{x}(u)\right)\right| d u\right) \\
& +O\left(\int_{0}^{\infty} u^{1 / 2} \exp \left(-\sigma_{x} u\right)\left|T_{x}(u)\right| d u\right)
\end{aligned}
$$

since

$$
\begin{aligned}
u^{3 / 2} \frac{d}{d u}\left(\exp \left(-\sigma_{x} u\right) T_{x}(u)\right)= & \frac{d}{d u}\left(u^{3 / 2} \exp \left(-\sigma_{x} u\right) T_{x}(u)\right) \\
& -\frac{3}{2} u^{1 / 2} \exp \left(-\sigma_{x} u\right) T_{x}(u)
\end{aligned}
$$

and

$$
I_{n} \stackrel{\text { def }}{=} \int_{0}^{\infty}\left(\mathrm{e}^{i u \sqrt{n}}-2^{5 / 4} \mathrm{e}^{i u \sqrt{n / 2}}+2^{3 / 2} \mathrm{e}^{i u \sqrt{n / 4}}\right) \frac{d}{d u}\left(u^{3 / 2} \exp \left(-\sigma_{x} u\right) T_{x}(u)\right) d u .
$$

Estimating the contributions of the error terms, we see that

$$
\begin{aligned}
\int_{0}^{\infty}\left|\frac{d}{d u}\left(\exp \left(-\sigma_{x} u\right) T_{x}(u)\right)\right| d u & \leq \int_{0}^{\infty}\left|T_{x}(u)^{\prime}-\sigma_{x} T_{x}(u)\right| \exp \left(-\sigma_{x} u\right) d u \\
& \leq 4^{M} \sigma_{x}^{-1}+2^{M} \\
& \ll \exp (c \sqrt{P(x)})(1+\exp (2 P(x)))=o\left(\sigma_{x}^{-5 / 2}\right)
\end{aligned}
$$

and

$$
\begin{array}{r}
\int_{0}^{\infty} u^{1 / 2} \exp \left(-\sigma_{x} u\right)\left|T_{x}(u)\right| d u \ll 2^{M} \int_{0}^{\infty} u^{1 / 2} \exp \left(-\sigma_{x} u\right) d u \\
\ll 2^{M} \sigma_{x}^{-3 / 2} \ll \exp (c \sqrt{P(x)}+3 P(x))=o\left(\sigma_{x}^{-5 / 2}\right)
\end{array}
$$

We integrate I_{n} by parts once more and expand $T_{x}(u)$ as in (3) of Lemma 3, to get

$$
\begin{aligned}
I_{n}= & -i \sum_{k=0, \ldots, 3} \int_{0}^{\infty}\left(\sqrt{n} \mathrm{e}^{i u \sqrt{n}}-2^{5 / 4} \sqrt{\frac{n}{2}} \mathrm{e}^{i u \sqrt{n / 2}}+2^{3 / 2} \sqrt{\frac{n}{4}} \mathrm{e}^{i u \sqrt{n / 4}}\right) \\
& \times u^{3 / 2} \exp \left(-\sigma_{x} u\right) T_{i, x}(u) d u \\
= & I_{0}(n)+I_{1}(n)+I_{2}(n)+I_{3}(n)
\end{aligned}
$$

for short. We shall show that the main term of I_{n} comes from $I_{1}(n)$. In fact, the contribution of $I_{0}(n)$ is

$$
\ll \sqrt{n}\left|\sigma_{x}-i \sqrt{n}\right|^{-5 / 2} \ll n^{-3 / 4}
$$

that of $I_{2}(n)$ is

$$
\ll \sqrt{n} \sum_{q \in Q_{x}}\left|\sigma_{x}-i(\sqrt{n}+\sqrt{q})\right|^{-5 / 2} \ll M n^{-3 / 4} .
$$

The contribution of $I_{3}(n)$ is bounded by

$$
\begin{aligned}
I_{3}(n) & \ll \sqrt{n} \sum_{\mu \in S_{x}}\left|\sigma_{x}-i(\sqrt{n}-\mu)\right|^{-5 / 2} \\
& \ll \begin{cases}\sqrt{n} 3^{M}(\eta(x))^{-5 / 2}, & \text { if } n \leq 2 \max \left\{|\mu|: \mu \in S_{x}\right\} \\
n^{-3 / 4} 3^{M}, & \text { else. }\end{cases}
\end{aligned}
$$

This $\max \left\{|\mu|: \mu \in S_{x}\right\}$ is bounded by $M \mathrm{e}^{c x}$ for some positive constant c. Hence the total contribution to I is bounded by

$$
\begin{aligned}
& \ll \sum_{n \leq 2 M \mathrm{e}^{c x}} \frac{d(n)}{n^{5 / 4}} \sqrt{n} 3^{M} \exp \left(-5 \log \frac{\eta(x)}{2}\right)+O\left(3^{M} \sigma_{x}^{-5 / 4} \sum_{n>2 M \mathrm{e}^{c x}} \frac{d(n)}{n^{2}}\right) \\
& \ll 3^{M} \sigma_{x}^{-5 / 4} \sum_{n \leq 2 M \mathrm{e}^{c x}} n^{-3 / 4+\epsilon}+O\left(3^{M} \sigma_{x}^{-5 / 4}\right) \\
& \ll 3^{M} \sigma_{x}^{-5 / 4}\left(M \mathrm{e}^{c x}\right)^{1 / 4+\epsilon} \\
& =o\left(\sigma_{x}^{-5 / 2}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
I=- & \frac{1}{2} \sum_{n=1}^{\infty} \frac{d(n)}{n^{5 / 4}} \operatorname{Im}\left(i \sum _ { q \in Q _ { x } } \int _ { 0 } ^ { \infty } \left(\sqrt{n} \mathrm{e}^{i u(\sqrt{n}-\sqrt{q})}-2^{5 / 4} \sqrt{\frac{n}{2}} \mathrm{e}^{i u(\sqrt{n / 2}-\sqrt{q})}\right.\right. \\
& \left.\left.+2^{3 / 2} \sqrt{\frac{n}{4}} \mathrm{e}^{i u(\sqrt{n / 4}-\sqrt{q})}\right) u^{3 / 2} \exp \left(-\sigma_{x} u\right) d u\right)+o\left(\sigma_{x}^{-5 / 2}\right) \\
=- & \frac{1}{2} \sum_{q \in Q_{x}}\left(\frac{d(q)}{q^{5 / 4}}-2^{5 / 4} \frac{d(2 q)}{(2 q)^{5 / 4}}+2^{3 / 2} \frac{d(4 q)}{(4 q)^{5 / 4}}\right) \int_{0}^{\infty} \sqrt{q} u^{3 / 2} \exp \left(-\sigma_{x} u\right) d u \\
& +O\left(\sum_{n=1}^{\infty} \frac{d(n)}{n^{5 / 4}} \sum_{\substack{q \in Q_{x} \\
n \neq q}}\left|\int_{0}^{\infty} \sqrt{n} \mathrm{e}^{i u(\sqrt{n}-\sqrt{q})} u^{3 / 2} \exp \left(-\sigma_{x} u\right)\right| d u\right)
\end{aligned}
$$

For this last error term we get a bound exactly as above for $I_{3}(n)$ with M replacing the factor 3^{M}, since

$$
\sqrt{n}-\sqrt{q} \gg(\sqrt{n}+\sqrt{q})^{-1} \gg \mathrm{e}^{-x} \gg \exp (-P(x))
$$

for $n \leq 2 \max \left\{q: q \in Q_{x}\right\} \gg 2 \mathrm{e}^{2 x}$ and $n \neq q$.
We get,

$$
\begin{aligned}
I & =-\frac{1}{2} \Gamma\left(\frac{5}{2}\right) \sigma_{x}^{-5 / 2}\left(\sum_{q \in Q_{x}}\left(d(q)-d(2 q)+\frac{1}{2} d(4 q)\right) q^{-3 / 4}+o\left(\sigma_{x}^{-5 / 2}\right)\right. \\
& =-\frac{1}{4} \Gamma\left(\frac{5}{2}\right) \sigma_{x}^{-5 / 2} \sum_{q \in Q_{x}} d(q) q^{-3 / 4}+o\left(\sigma_{x}^{-5 / 2}\right)
\end{aligned}
$$

since

$$
d(q)-d(2 q)+\frac{1}{2} d(4 q)=\frac{1}{2} d(q)
$$

This completes the proof of Lemma 4.
Since $\sigma_{x}>0$ and $J_{x}>0$ by (2), we have

$$
\exp \left(c \frac{x^{1 / 4}}{\log x}\right) \ll \sum_{q \in Q_{x}} d(q) q^{-3 / 4} \ll \gamma_{x},
$$

by Lemma 2 and the last assertion by Lemma 4.
Thus by the definition of γ_{x} there is a sequence u_{x} which tends to infinity with x, such that

$$
-\theta\left(u_{x}^{2}\right) \gg u_{x}^{1 / 2} \exp \left(\frac{\log u_{x}}{P(x)}+c \frac{x^{1 / 4}}{\log x}\right),
$$

since $\theta(u)$ is bounded for bounded u, which follows for small u from

$$
\theta(u)=-\frac{u}{2} \log u-(2 \gamma-1) \frac{u}{2},
$$

and is obvious for the other values of u.
Consider first the values of u_{x} for which

$$
\begin{equation*}
\frac{\log u_{x}}{P(x)} \leq c \frac{x^{1 / 4}}{\log x} \tag{3}
\end{equation*}
$$

Taking logarithms on both sides, we have

$$
\log \log u_{x} \ll \frac{x}{\log x} .
$$

Since $y^{1 / 4}(\log y)^{-3 / 4}$ is an increasing function of y for sufficiently large y, we have from (3)

$$
\frac{\left(\log \log u_{x}\right)^{1 / 4}}{\left(\log \log \log u_{x}\right)^{3 / 4}} \ll \frac{x^{1 / 4}}{\log x},
$$

from which the desired estimate follows.
Consider now those values of x for which

$$
\begin{equation*}
c \frac{x^{1 / 4}}{\log x} \leq \frac{\log u_{x}}{P(x)} . \tag{4}
\end{equation*}
$$

We may assume that

$$
\frac{\left(\log \log u_{x}\right)^{1 / 4}}{\left(\log \log \log u_{x}\right)^{3 / 4}} \gg \frac{\log u_{x}}{P(x)},
$$

otherwise the estimate holds obviously. Taking logarithms on both sides gives

$$
\log \log u_{x} \ll \frac{x}{\log x},
$$

from which the estimate follows as above. This proves the theorem.

References

1. Corrádi I. K. and Kátai F., Egy megjegyzés K. S. Gangadharan, "Two classical lattice point problems" cimu dolgozatához, MTA III Ostály Kzleményei 17 (1967), 89-97.
2. Gangadharan K. S., Two classical lattice point problems, Proc. Cambridge Phil. Soc. 57 (1961), 699-721.
3. Hafner J. L., New omega theorems for two classical lattice point problems, Invent. Math. 63 (1981), 181-186.
4. , New omega theorems in a weighted divisor problem, J. Number Theory 28 (1988), 240-257.
5. Huxley M. N., Exponential sums and lattice points II, Proc. London Math. Soc. 66(3) (1993), 279-301.
6. Krätzel E., Lattice Points, Berlin, 1988.
7._, Primitive lattice points in special plane domains and a related three dimensional lattice point problem I, Forschungsergebnisse FSU Jenam, N/87/11, 1987.
7. Kühleitner M., An omega theorem on differences of two squares, Acta Math. Univ. Comenianae LXI(1) (1992), 117-123.
8. Nowak W. G., On differences of two k-th powers of integers, (to appear).
M. Kühleitner, Institut für Mathematik, Universität für Bodenkultur, Gregor Mendel Straße 33, A-1180 Wien, Austria; e-mail: kleitner@mail.boku.ac.at

[^0]: Received August 4, 1997.
 1980 Mathematics Subject Classification (1991 Revision). Primary 11N37.
 Key words and phrases. Divisor problem, Dirichlet summatory function, asymptotic expansion.

