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AN OMEGA THEOREM ON

DIFFERENCES OF TWO SQUARES, II

M. KÜHLEITNER

Abstract. Let ρ(n) denote the number of pairs (u, v) ∈ N×Z with u2 − v2 = n.
Due to a formula of Sierpinski, ρ(n) is closely related to the classical divisor func-
tion d(n). We establish a lower bound for the remainder term in the asymptotic
expansion for the Dirichlet summatory function of ρ(n).

1. Introduction

As in part I of this paper [8], let ρ(n) denote the number of pairs (u, v) ∈ N×Z
with u2 − v2 = n. For the more general case where the square is replaced by a

“k”-th power k ≥ 2 see Krätzel [6], [7] and the recent paper of Nowak [9]. Due

to an elementary formula of Sierpinski, our function ρ(n) is closely related to the

classical divisor function d(n) by

(1) ρ(n) = d(n)− 2 d
(n

2

)
+ 2 d

(n
4

)
,

where d(·) = 0 for non-integers, due to Sierpinski.

For a large real variable x, we consider the remainder term θ(x) in the asymp-

totic formula

T (x) =
∑
n≤x

ρ(n) =
x

2
log x+ (2γ − 1)

x

2
+ θ(x),

where γ denotes throughout this paper the Euler-Mascheroni constant.

Upper bounds for θ(x) can be readily established as a trivial generalization of

the corresponding results for the Dirichlet divisor problem. It is known that

D(x) = x log x+ (2γ − 1)x+ ∆(x)

with

∆(x)� x23/73(logx)461/146.
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(See Huxley [5] for this upper bound and the textbook of Krätzel [6] for an en-

lightening survey of the theory of Dirichlet’s divisor problem and the definition of

the O- and the Ω- symbols.)

Concerning lower estimates, the author proved in [8], on the basis of [1] and

Hafner’s method [3], that

θ(x) = Ω+

(
(x log x)1/4(log log x)(3+2 log 2)/4 exp (−A

√
log log log x )

)
.

The aim of the present article is an Ω−- result for θ(x), corresponding to that

of Corrádi and Kátai [1] for the divisor problem.

Theorem.

T (x) =
x

2
log x+ (2γ − 1)

x

2
+ θ(x),

with

θ(x) = Ω−

(
x1/4 exp

(
c(log log x)1/4(log log log x)−3/4

))
,

where c is a positive absolute constant.

2. Notations and Lemmas

For large real x we define Px as the set of all primes less than or equal to x,

and Qx the set of all square-free integers composed only of primes from Px. We

write |Px| for the cardinality of Px and M = 2|Px| for the cardinality of Qx. We

then have

|Px| �
x

log x
and M � exp

(
c1

x

log x

)
,

for some positive constant c1. The largest integer in Qx is bounded by e2x, since

for q ∈ Qx, we have

log q ≤
∑
p≤x

log p ≤ 2x.

Let Sx be the set of numbers defined by

Sx =
{
µ =

∑
q∈Qx

rq
√
q where rq ∈ {0,±1} and at least two rq 6= 0

}
.

Finally let

η(x) = inf
{∣∣√n+ 2µ

∣∣ with n ∈ No and µ ∈ Sx
}
,

and

q(x) = − log (η(x)).

By a slight modification of the method used for the corresponding result in

Gangadharan [2], one readily shows the following lemma.
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Lemma 1. For x→∞ we have

x� q(x)� exp
(
c2

x

log x

)
,

for some positive constant c2.

Lemma 2. There exists a positive constant c3 such that

∑
q∈Qx

d(q)

q3/4
� exp

(
c3
x1/4

log x

)
.

Proof. By the definition of Qx, we have

∑
q∈Qx

d(q)

q3/4
=
∏
p≤x

(1 + 2 p−3/4) = exp
(∑
p≤x

log (1 + 2 p−3/4)
)

≥ exp
(∑
p≤x

p−3/4 +O(1)
)
� exp

(
c3
x1/4

log x

)
. �

As in Gangadharan [2] define for real z,

V (z) = 2(cos(
z

2
))2 = 1 +

eiz + e−iz

2
,

and

Tx(u) =
∏
q∈Qx

V
(
u
√
q −

5π

4

)
.

Lemma 3. We have

(1) 0 ≤ Tx(u) ≤ 2M , for all u,

(2) T ′x(u)�M 2M ex, for all u,

(3) Tx(u) = T0 + T1,x + T2,x + T3,x where,

T0 = 1,

T1,x =
e5πi/4

2

∑
q∈Qx

e−iu
√
q

T3,x =
∑
µ∈Sx

hµe
iuµ,

T2,x is the complex conjugate of T1,x and |hµ| ≤ 1/4.

Proof. The proof of Lemma 3 is straightforward by the definition of V (z) and

Tx(u).
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3. Proof of the Theorem

We start with the well known Voronoi identity for

∆1(x)
def
=

∫ x

0

∆(t) dt =
x

4
+

x3/4

2
√

2π2

∞∑
n=1

d(n)

n5/4
sin
(
4π
√
nx−

π

4

)
+O(1).

Inserting this in

θ(x) = ∆(x) − 2 ∆
(x

2

)
+ 2 ∆

(x
4

)
,

and substituting T = 4π
√
x, we get

E1(T )
def
=

∫ T

0

E(t) t dt

= T 3/2
∞∑
n=1

d(n)

n5/4

(
sin (T

√
n− π/4)− 25/4 sin (T

√
n/2− π/4)

+ 23/2 sin (T
√
n/4− π/4)

)
,

with

E(t) = 2π
√

2π
(
θ(t2/16π2)− 1/4

)
.

Define

P (x) = exp
(
a

x

log x

)
such that

q(x) ≤ P (x) and M2 ≤ P (x),

and let

σx = exp (−2P (x)).

Next define for fixed x,

γx = sup
u>0

−2π
√

2π θ(u2/16π2)

u1/2+1/P (x)
.

We may assume that γx <∞, otherwise more than Theorem 1 would be true.

Thus

(2) γxu
1/2+1/P (x) +A+E(u) ≥ 0,

for all u, where A = 2π
√

2π/4.

Let

Jx = σ5/2
x

∫ ∞
0

(
γxu

1/2+1/P (x) +A+E(u)
)
u exp (−σxu)Tx(u) du.

The next lemma provides an asymptotic expansion for Jx.
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Lemma 4. For x→∞,

Jx = e2 Γ
(5

2

)
γx −

1

4
Γ
(5

2

) ∑
q∈Qx

d(q)

q3/4
+ o(γx) + o(1).

Proof. Do deal with the first two terms of Jx, we observe that, for r = 1 or

r = 3
2 + 1

P (x) ,∫ ∞
0

ur exp (−σxu)Tx(u) du = Γ(1 + r)σ−(1+r)
x

+
∑

i=1,2,3

∫ ∞
0

ur exp (−σxu)Ti,x(u) du

where 1 ≤ r ≤ 3
2 + 1

P (x) .

The part of T1,x contributes exactly,

e5πi/4

2
Γ(1 + r)

∑
q∈Qx

1

(σx + i
√
q)

1+r �
∑
q∈Qx

q−(1+r)/2

�
∑
q∈Qx

1�M �
√
P (x) = o(σ−5/2

x ).

The contribution of T2,x = T1,x is obviously no more than this. Finally T3,x

contributes∑
µ∈Sx

hµ

(σx + iµ)
1+r � 3Mη(x)−(1+r)

� exp (M ln 3 + (1 + r)(− log η(x))� exp (3P (x)) = o(σ−5/2
x ).

Next we deal with the contribution of E(u) to Jx. Our first step is to integrate

by parts to introduce E1(u) in the integral. Thus,

I
def
=

∫ ∞
0

E(u)u exp (−σxu)Tx(u) du = −

∫ ∞
0

E1(u)
d

du

(
exp (−σxu)Tx(u)

)
du,

since E1(u)� u3/2 for large u and E1(0) = 0. Inserting the series representation

for E1(u) and integrating term by term, noting that the series converges absolutely

for every u and uniformly on compact sets, we get

I = −
∞∑
n=1

d(n)

n5/4
Im (e−πi/4In) +O

(∫ ∞
0

∣∣∣∣ ddu(exp (−σxu)Tx(u)
)∣∣∣∣ du)

+O
(∫ ∞

0

u1/2 exp (−σxu)|Tx(u)| du
)
,
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since

u3/2 d

du

(
exp (−σxu)Tx(u)

)
=

d

du

(
u3/2 exp (−σxu)Tx(u)

)
−

3

2
u1/2 exp (−σxu)Tx(u),

and

In
def
=

∫ ∞
0

(eiu
√
n − 25/4 eiu

√
n/2 + 23/2 eiu

√
n/4)

d

du

(
u3/2 exp (−σxu)Tx(u)

)
du.

Estimating the contributions of the error terms, we see that∫ ∞
0

∣∣∣∣ ddu(exp (−σxu)Tx(u)
)∣∣∣∣ du ≤ ∫ ∞

0

|Tx(u)′ − σx Tx(u)| exp (−σxu)du

≤ 4Mσ−1
x + 2M

� exp
(
c
√
P (x)

)(
1 + exp (2P (x))

)
= o(σ−5/2

x ),

and ∫ ∞
0

u1/2 exp (−σxu) |Tx(u)| du� 2M
∫ ∞

0

u1/2 exp (−σxu)du

� 2Mσ−3/2
x � exp

(
c
√
P (x) + 3P (x)

)
= o(σ−5/2

x ).

We integrate In by parts once more and expand Tx(u) as in (3) of Lemma 3, to

get

In = −i
∑

k=0,... ,3

∫ ∞
0

(
√
neiu

√
n − 25/4

√
n

2
eiu
√
n/2 + 23/2

√
n

4
eiu
√
n/4

)
× u3/2 exp (−σxu)Ti,x(u) du

= I0(n) + I1(n) + I2(n) + I3(n),

for short. We shall show that the main term of In comes from I1(n). In fact, the

contribution of I0(n) is

�
√
n |σx − i

√
n|−5/2 � n−3/4,

that of I2(n) is

�
√
n
∑
q∈Qx

|σx − i(
√
n+
√
q)|−5/2 �Mn−3/4.
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The contribution of I3(n) is bounded by

I3(n)�
√
n
∑
µ∈Sx

|σx − i(
√
n− µ)|−5/2

�


√
n 3M(η(x))−5/2, if n ≤ 2 max{|µ| : µ ∈ Sx}

n−3/4 3M , else.

This max{|µ| : µ ∈ Sx} is bounded by Mecx for some positive constant c. Hence

the total contribution to I is bounded by

�
∑

n≤2Mecx

d(n)

n5/4

√
n 3M exp

(
−5 log

η(x)

2

)
+O

(
3Mσ−5/4

x

∑
n>2Mecx

d(n)

n2

)
� 3Mσ−5/4

x

∑
n≤2Mecx

n−3/4+ε +O(3Mσ−5/4
x )

� 3Mσ−5/4
x (Mecx)1/4+ε

= o(σ−5/2
x ).

Therefore,

I = −
1

2

∞∑
n=1

d(n)

n5/4
Im
(
i
∑
q∈Qx

∫ ∞
0

(√
n eiu(

√
n−
√
q) − 25/4

√
n

2
eiu(
√
n/2−

√
q)

+ 23/2

√
n

4
eiu(
√
n/4−

√
q)
)
u3/2 exp (−σxu)du

)
+ o(σ−5/2

x )

= −
1

2

∑
q∈Qx

(d(q)

q5/4
− 25/4 d(2q)

(2q)5/4
+ 23/2 d(4q)

(4q)5/4

)∫ ∞
0

√
q u3/2 exp (−σxu)du

+O
( ∞∑
n=1

d(n)

n5/4

∑
q∈Qx
n 6=q

∣∣∣∣∫ ∞
0

√
n eiu(

√
n−
√
q) u3/2 exp (−σxu)

∣∣∣∣ du).
For this last error term we get a bound exactly as above for I3(n) with M

replacing the factor 3M , since

√
n−
√
q � (

√
n+
√
q)−1 � e−x � exp (−P (x)),

for n ≤ 2 max{q : q ∈ Qx} � 2e2x and n 6= q.

We get,

I = −
1

2
Γ
(5

2

)
σ−5/2
x

(∑
q∈Qx

(d(q)− d(2q) +
1

2
d(4q)

)
q−3/4 + o(σ−5/2

x )

= −
1

4
Γ
(5

2

)
σ−5/2
x

∑
q∈Qx

d(q)q−3/4 + o(σ−5/2
x ),
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since

d(q)− d(2q) +
1

2
d(4q) =

1

2
d(q).

This completes the proof of Lemma 4. �
Since σx > 0 and Jx > 0 by (2), we have

exp
(
c
x1/4

log x

)
�
∑
q∈Qx

d(q)q−3/4 � γx,

by Lemma 2 and the last assertion by Lemma 4.

Thus by the definition of γx there is a sequence ux which tends to infinity with x,

such that

−θ(u2
x)� u1/2

x exp
( log ux
P (x)

+ c
x1/4

log x

)
,

since θ(u) is bounded for bounded u, which follows for small u from

θ(u) = −
u

2
log u− (2γ − 1)

u

2
,

and is obvious for the other values of u.

Consider first the values of ux for which

(3)
log ux
P (x)

≤ c
x1/4

log x
.

Taking logarithms on both sides, we have

log log ux �
x

log x
.

Since y1/4(log y)−3/4 is an increasing function of y for sufficiently large y, we

have from (3)

(log log ux)1/4

(log log log ux)3/4
�

x1/4

log x
,

from which the desired estimate follows.

Consider now those values of x for which

(4) c
x1/4

log x
≤

log ux
P (x)

.

We may assume that

(log log ux)1/4

(log log log ux)3/4
�

log ux
P (x)

,

otherwise the estimate holds obviously. Taking logarithms on both sides gives

log log ux �
x

log x
,

from which the estimate follows as above. This proves the theorem. �
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1. Corrádi I. K. and Kátai F., Egy megjegyzés K. S. Gangadharan, “Two classical lattice point
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