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ON FINITE PRINCIPAL IDEAL RINGS

J. CAZARAN and A. V. KELAREV

Abstract. We find new conditions sufficient for a tensor product R ⊗ S and a
quotient ring Q/I to be a finite commutative principal ideal ring, where Q is a
polynomial ring and I is an ideal of Q generated by univariate polynomials.

1. Main Results

Finite commutative rings are interesting objects of ring theory and have many

applications in combinatorics. For these applications it is often important to know

when a ring is a principal ideal ring. Let us give only one example. Many classical

error-correcting codes are ideals in finite commutative rings. The existence of single

generators in ideals is important for computer storage as well as for encoding and

decoding algorithms (see [9]).

If we want to use certain ring constructions in combinatorial applications of

finite rings, then a natural question arises of when a ring construction is a principal

ideal ring. This question has been considered in the literature for several ring

constructions. For example, a complete description of commutative semigroup

rings which are PIR’s was obtained in [5]. All graded commutative principal ideal

rings were described in [4].

This paper is devoted to two ring constructions which are important, general

and lead to interesting results.

All rings considered are commutative and have identity elements. We write ⊗
for ⊗Z.

For any ring R and prime p, the p-component of R is defined by

Rp = {r ∈ R | pkr = 0 for some positive integer k}.

Let R be an arbitrary ring, p a prime, and let f ∈ R[x]. Denote by f the image

of f in R[x]/pR[x]. We say that f is squarefree (irreducible) modulo p if f

is squarefree (respectively, irreducible). A Galois ring GR(pm, r) is a ring of the

form (Z/pmZ)[x]/(f(x)), where p is a prime, m an integer, and f(x) ∈ Z/pmZ[x]

is a monic polynomial of degree r which is irreducible modulo p.
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Theorem 1. A tensor product R⊗S of two finite commutative PIRs is a PIR

if and only if, for each prime p, at least one of the rings Rp and Sp is a direct

product of Galois rings.

Let R be a finite ring, Q = R[x1, . . . , xn] a polynomial ring. Our second main

theorem describes all rings of the form

R[x1, . . . , xn]/(f1(x1), . . . , fn(xn))

which are finite principal ideal rings. This gives a generalization of the main

result of [7]. Theorem 1 is used in the proof of Theorem 2. Ideals of the form

(f1(x1), . . . , fn(xn)) are called elementary ideals (see [8, Definition 1.14]). A

few definitions are needed before we can state these results.

If F is a field, and f = gm1
1 · · · gmkk , where f ∈ F [x] and g1, . . . , gk are irreducible

polynomials over F , then by SP (f) we denote the squarefree part g1 · · · gk of f .

We assume that SP (0) = 0.

Let R = GR(pm, r) = (Z/pmZ)[y]/(g(y)) 6= 0 be a Galois ring, which is not a

field. Thenm > 1, because (Z/pZ)[y]/(g(y)) is a field, given that g(y) is irreducible

modulo p. We say that a polynomial f(x) ∈ R[x] is basic if all nonzero coefficients

of f(x) belong to the subset

B = {ayb | where 0 < a < p and 0 ≤ b < r}

of the Galois ring R, where r is the degree of g(y). Clearly, for every f ∈ R[x],

there exist unique basic polynomials

f ′, f ′′ ∈ B[x] ⊆ R[x] such that f − f ′ − pf ′′ ∈ p2R[x].

For any f ∈ R[x], there exists a unique basic polynomial SP (f) ∈ R[x] such that

SP (f) = SP (f). Therefore there exists a unique basic polynomial UP (f) ∈ R[x]

such that f = SP (f)UP (f) or, equivalently, f ′ − SP (f) UP (f) ∈ pR[x]. Since f ′

is basic, (f ′)′′ = 0 for any f , and so (f ′ − SP (f) UP (f))′′ = −(SP (f) UP (f))′′.

We introduce the following notation

f̂ = f ′′ + (f ′ − SP (f) UP (f))′′ = f ′′ − (SP (f) UP (f))′′.

If the ideals of a ring form a chain, then it is called a chain ring (see

[6, p. 184]). By Lemma , every finite local principal ideal ring and every field

is a chain ring. A finite direct product is a PIR if and only if all its components

are PIRs (see [12, Theorem 33]). Since every finite PIR is a direct product of

chain rings (see [10, §6]), the general problem of describing all polynomial rings

Q = R[x1, . . . , xn]/(f1(x1), . . . , fn(xn))

which are finite PIRs reduces to the case where R is a chain ring. It follows from

[10, Theorem 13.2(c)], that Q is finite if and only if all the fi(xi) are regular and

then we can assume that all the fi(xi) are monic by [10, Theorem 13.6]. The

following theorem gives new conditions sufficient for Q to be a PIR.
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Theorem 2. Let R be a finite commutative chain ring, and let f1, . . . , fn be

univariate monic polynomials over R. Then

Q = R[x1, . . . , xn]/(f1(x1), . . . , fn(xn))

is a principal ideal ring and all rings R[xi]/(fi(xi)) are PIRs, if one of the following

conditions is satisfied:

(i) R is a field and the number of polynomials fi which are not squarefree

does not exceed one;

(ii) R is a Galois ring of characteristic pm, for a prime p, the number of

polynomials f1, . . . , fn which are not squarefree modulo p does not exceed

one, and if f = fi is not squarefree modulo p, then f̂ is coprime with

UP (f);

(iii) R is a chain ring, which is not a Galois ring, R has characteristic pm, for

a prime p, n = 1 and f1 is squarefree modulo p.

2. Proofs

The radical of a finite ring R is the largest nilpotent ideal N (R).

Lemma 3. A finite ring is a PIR if and only if its radical is a principal ideal.

Proof. The ‘only if’ part is trivial. If R is finite, then it is an Artinian ring.

Therefore it is a direct product of local rings ([1, Proposition 8.7]). If the rad-

ical of a local Artinian ring is a principal ideal, then all ideals are principal by

[1, Proposition 8.8]. �
Lemma 4. Let F be a finite field, P = F [x1, . . . , xn], and let I be the ideal

generated by f1(x1), . . . , fn(xn). Then the radical of P/I is equal to the ideal

generated by the squarefree parts of all polynomials f1, . . . , fn.

Proof. Since every finite field is perfect, and any set of univariate polynomials

in pairwise distinct variables forms a Gröbner basis of the ideal it generates, this

lemma is a special case of more general results of [2, §8.2]. �
The ring GR(pn, r) is well defined independently of the monic polynomial of

degree r (see [10, §16]). Notice that GR(pm, 1) ∼= Z/pmZ and GR(p, r) ∼= GF (pr),

the finite field of order pr. For any f, g ∈ GR(pn, r)[x], it is clear that f = g if

and only if f ′ = g′. The following lemma shows that a tensor product of Galois

rings is a PIR.

Lemma 5. ([10, Theorem 16.8]) Let p be a prime, k1, k2, r1, r2 positive inte-

gers, and let k = min{k1, k2}, d = gcd(r1, r2), m = lcm (r1, r2). Then

GR(pk1 , r1)⊗GR(pk2 , r2) ∼=
d∏
1

GR(pk,m).
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In particular,

GF (pr1)⊗GF (pr2) ∼=
d∏
1

GF (pm).

Lemma 6. ([10, Theorem 17.5]) Let R be a finite commutative ring which is

not a field. Then the following conditions are equivalent:

(i) R is a chain ring;

(ii) R is a local principal ideal ring;

(iii) there exist a prime p and integers m, r, n, s, t such that

R ∼= GR(pm, r)[x]/(g(x), pm−1xt),

where n is the index of nilpotency of the radical of R, t = n−(m−1)s > 0,

g(x) = xs + ph(x), deg(h) < s, and the constant term of h(x) is a unit in

GR(pm, r).

Also, the characteristic of R is pm and its residue field is R/N (R) ∼= GF (pr).

The polynomial g(x) which occurs in Lemma 6 is called an Eisenstein polyno-

mial.

Lemma 7. Let R = GR(pm, r)[x]/(g(x), pm−1xt) be a chain ring, and let

s ≥ 2. Then the radical of R is generated by x.

Proof. Clearly, p is a nilpotent element of R. Therefore (x) is a nilpotent ideal,

because g(x) = xs + ph(x). Hence (x) ⊆ N (R). Given that g(x) = xs + ph(x) and

the constant term of h(x) is a unit in GR(pm, r), it follows that p ∈ (x). Since

R/(x) ∼= GF (pr) is a semisimple ring, we get (x) = N (R). �

Lemma 8. ([10, Exercise 16.9]) A chain ring of characteristic pm is a Galois

ring if and only if its radical is generated by p. A PIR of characteristic pm is a

direct product of Galois rings if and only if its radical is generated by p.

Lemma 9. If R is a Galois ring, and S is a chain ring, then R⊗S is a PIR.

Proof. Let char (R) = pm, char (S) = qn, for primes p, q and positive integers

m,n. If p 6= q, then R ⊗ S = 0 is a PIR.

Suppose that p = q. Let g be the generator of the radical of S. Denote by (g) the

ideal generated by g in R⊗S. Clearly, (g) is nilpotent, and so (g) ⊆ N (R⊗S). It is

noted in the proof of Lemma 7 that p ∈ gS, and so p ∈ (g). Since S/gS ∼= GF (pu)

and R/pR ∼= GF (pv), for some u, v, we get (R ⊗ S)/(g) ∼= GF (pu) ⊗ GF (pv) ∼=∏d
1 GF (pw) where w = lcm {u, v} and d = gcd{u, v}, by Lemma 5. Therefore

(g) = N (R ⊗ S). By Lemma 3, R⊗ S is a PIR. �
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Lemma 10. Let R and S be chain rings which are not Galois rings, and let

char (R) = pm, char (S) = pn, for a prime p and positive integers m,n. Then

R ⊗ S is not a PIR.

Proof. Suppose to the contrary that P = R ⊗ S is a PIR. Then P/pP is a

PIR, too. By Lemma 6 R ∼= GR(pu, q)[x]/(xs + ph(x), pu−1xt). Since GR(pu, q)/

pGR(pu, q) ∼= GF (pq), we get R/pR ∼= GF (pq)[x]/(xs). If s = 1, then R =

GR(pu, q) is a Galois ring. Therefore s ≥ 2. Similarly, S/pS ∼= GF (pr)[x]/(xt),

for some t ≥ 2. It follows that H = GF (pq)[x]/(x2) ⊗ GF (pr)[y]/(y2) is a

homomorphic image of P/pP , and so H is a PIR. Further, H = (GF (pq) ⊗
GF (pr))[x, y]/(x2, y2). By Lemma 5 GF (pq)⊗GF (pr) is a direct product of finite

fields. Denote by F one of these fields. Then F [x, y]/(x2, y2) is a homomorphic

image of H, and so it is a PIR. However, if we set I = (x, y), then I is a maximal

ideal, and I2 ⊂ (x2, xy) ⊂ I. This is impossible by [6, Proposition 38.4(b)]. This

contradiction completes the proof. �

Proof of Theorem 1. The ‘if’ part. Take any prime p. Suppose that Rp is a

direct product of Galois rings, and Sp is a PIR. Hence Sp is a direct product of

chain rings. Since tensor product distributes over direct products, Lemma 9 shows

that Rp ⊗ Sp is a PIR. Hence R ⊗ S is a PIR, because it is a direct product of a

finite number of rings Rp ⊗ Sp, for some p.

The ‘only if’ part. Given that R and S are PIRs, obviously Rp and Sp are

PIRs, for every p. Consider the decompositions of Rp and Sp into direct products

of chain rings. If both of these decompositions contain chain rings which are not

Galois rings, then we get a contradiction to Lemma 10. Thus at least one of the

rings Rp and Sp must be a product of Galois rings. �

Lemma 11. Let R be a Galois ring of characteristic pm, f(x) a monic polyno-

mial over R, and let Q = R[x]/(f(x)). Then Q is a direct product of Galois rings

if and only if f(x) is squarefree modulo p.

Proof. Lemma 4 shows that f(x) is squarefree modulo p if and only if Q/pQ is

semisimple, i.e., N (Q) = pQ. By Lemma 8 this is equivalent to Q being a direct

product of Galois rings. �

Lemma 12. Let R = GR(pm, r) be a Galois ring, where m > 1, let f(x)

be a monic polynomial over R which is not squarefree modulo p, and let Q =

R[x]/(f(x)). Then Q is a PIR if UP (f) is coprime with f̂ .

Proof. Given that f is not squarefree, we get UP (f) 6= 0 and SP (f) 6= 0.

Suppose that f̂ is coprime with UP (f). Denote by h a basic polynomial in R[x]

such that h is the product of all irreducible divisors of f which do not divide f̂ .

Let g = SP (f) + ph ∈ R[x]. We claim that the radical N (Q) is equal to the ideal

I generated in Q by g.
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It follows from Lemma 4 that N (Q) = (SP (f), p). Hence g ∈ N (Q), so I ⊆
N (Q). Therefore it remains to show that p, SP (f) ∈ I.

First, we prove that pm−1 ∈ I. It suffices to show that pm−1 ∈ (g, f) in

R[x], because I ⊆ Q = R[x]/(f). The choice of h implies that f̂ − hUP (f)

is not divisible by any irreducible factor of f which does not divide f̂ . If an

irreducible factor of f divides f̂ , then it does not divide h, and so it does not

divide hUP (f), because UP (f) is coprime with f̂ . Thus f̂ − hUP (f) and SP (f)

are coprime. Hence there exist basic polynomials v, w ∈ R[x] such that 1 =

v(f̂ − hUP (f)) + w SP (f). There exists a unique basic polynomial f∗ ∈ R[x]

satisfying f∗ = f̂ . Since pm is the characteristic of R, pmu = 0 for all u ∈ R[x].

Therefore A = B is equivalent to pm−1A = pm−1B for all A,B ∈ R[x]. We can

lift the equation 1 = v(f̂ − hUP (f)) + w SP (f) from R[x]/pR[x] ∼= GF (pr)[x] to

R[x] and multiply by pm−1 to get the following.

pm−1 = pm−1[v(f∗ − hUP (f)) + w SP (f)]

= pm−1[v{f ′′ + (f ′ −UP (f) SP (f))′′ − hUP (f)}+ w SP (f)]

= pm−2[v{pf ′′ + (f ′ −UP (f) SP (f))− phUP (f)}+ pw SP (f)]

= pm−2[v(f ′ + pf ′′)− vUP (f)(SP (f) + ph) + pw SP (f)]

= pm−2[vf − (vUP (f)− pw)g] ∈ R[x].

We have used the fact that f ′ − UP (f) SP (f) = p[(f ′ − UP (f) SP (f))′′] + p2u

for some u ∈ R[x], because (f ′ −UP (f) SP (f))′ = 0. Thus pm−1 ∈ (g, f) ⊂ R[x],

and so pm−1 ∈ I.

Since pm−1 belongs to both I and N (Q), we can factor out the ideal gen-

erated by pm−1 in Q and consider the ideal I/pm−1I in Q/pm−1Q. Also clearly

R/pm−1R ∼= GR(pm−1, r). We identify f, g ∈ R[x] with their images in

(R/pm−1R)[x]. We can now lift the equation 1 = v(f̂ − hUP (f)) + w SP (f)

from (R/pR)[x] to (R/pm−1R)[x] and multiply by pm−2 and repeat the argu-

ment from the preceding paragraph taking into account that pm−1u = 0 for all

u ∈ (R/pm−1R)[x]. Then we deduce pm−2 ∈ (g, f) ⊂ (R/pm−1R)[x]. Identifying

pm−2 ∈ R[x] with its image pm−2 ∈ (R/pm−1R)[x], we get pm−2 ∈ I/pm−1I.

Given that pm−1 ∈ I, it follows that pm−2 ∈ I.

Repeating this reduction m− 3 times we get p ∈ I.

Next we prove that SP (f) ∈ I. Since g, p ∈ I, then SP (f) = g − ph ∈ I. Thus

I = N (Q), because N (Q) = (p, SP (f)). This means that N (Q) is a principal

ideal, and so Q is a PIR. �
Lemma 13. Let R be a chain ring which is not a Galois ring, let f(x) be a

monic polynomial over R, and let Q = R[x]/(f(x)). Then Q is a PIR if and only

if f is squarefree modulo p.

Proof. By Lemma 6 R ∼= GR(pm, r)[y]/(ys + ph(y), pm−1yt). Since R is not a

Galois ring, evidently s ≥ 2. Lemma 7 implies that p ∈ yR.
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The ‘if’ part. Suppose that f is squarefree modulo p. Then Q/yQ ∼= GF (pr)[x]/

(f) is semisimple by Lemma 4. Thus N (Q) is a principal ideal. Lemma 3 tells us

that Q is a PIR.

The ‘only if’ part. Suppose that Q is a PIR then the ring Q/pQ ∼= GF (pr)[x, y]/

(ys, f(x)) is a PIR. This ring is isomorphic to the tensor product of GF (pr)[y]/(ys)

andGF (pr)[x]/(f(x)). Both of these rings are PIRs. Lemma 11 and Lemma 8 both

imply that GF (pr)[y]/(ys) is not a direct product of Galois rings. By Lemma 8

GF (pr)[x]/(f(x)) must be a direct product of Galois rings. Lemma 11 completes

the proof. �

Proof of Theorem 2. The ring Q is isomorphic to the tensor product of the rings

R[xi]/(fi(xi)), for i = 1, . . . , n.

(i): Suppose that R is a field of characteristic p. Then all the R[xi]/(fi(xi)) are

PIRs. Theorem 1 tells us that Q is a PIR if and only if at least n− 1 of the rings

R[xi]/(fi(xi)) are direct products of Galois rings. By Lemma 11 this is equivalent

to the fact that at most one of the polynomials fi(xi) is not squarefree.

(ii): Suppose that R is a Galois ring. By Lemma 12 all R[xi]/(fi(xi)) are PIRs

if, for each polynomial fi(xi) which is not squarefree modulo p, UP (fi) is coprime

with f̂i. Further, suppose that this condition is satisfied. As in case (i), we see

that Q is a PIR if at most one of the polynomials fi(xi) is not squarefree modulo p.

(iii): Suppose that R is a chain ring which is not a Galois ring. Since the

class of finite direct products of Galois rings is closed for homomorphic images by

Lemma 8, we see that each R[xi]/(fi(xi)) is not a direct product of Galois rings.

Theorem 1 shows that n = 1. By Lemma 13 Q is a PIR if and only if f1(x1) is

squarefree modulo p. �
For finite rings, our Theorem 2 immediately gives the following Theorem 1

of [7].

Corollary 14. ([7]) Let F be a field of characteristic p > 0, a1, . . . , an non-

negative integers, b1, . . . , bn positive integers, and let

R = F [x1, . . . , xn]/(xa1
1 (1− xb11 ), . . . , xann (1− xbnn )).

then R is a principal ideal ring if and only if one of the following conditions is

satisfied:

(1) a1, . . . , an ≤ 1 and p divides at most one number among b1, . . . , bn;

(2) exactly one of a1, . . . , an, say a1, is greater than 1 and p does not divide

each of b2, . . . , bn.

Proof. Consider the polynomial f = xa(1−xb). By [2, Lemma 2.85], a polyno-

mial is squarefree if and only if it is coprime with its derivative. Since char F =

p > 0, then f is squarefree if and only if a = 1 and p does not divide b. Thus

Theorem 2 completes the proof. �
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