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A PICONE TYPE IDENTITY FOR SECOND ORDER

HALF–LINEAR DIFFERENTIAL EQUATIONS

J. JAROŠ∗ and T. KUSANO

Abstract. In the paper a Picone-type identity for half-linear differential equations
of second order is derived and Sturmian theory for both forced and unforced half-
linear and quasilinear equations based on this identity is developed.

1. Introduction

According to the classical Sturm-Picone comparison theorem for linear second

order ordinary differential equations of the form

(1) l[x] ≡ (p(t)x′)′ + q(t)x = 0

and

(2) L[y] ≡ (P (t)y′)′ +Q(t)y = 0

where p, q, P and Q are continuous real-valued functions defined on a given inter-

val I, if there exists a nontrivial solution x of (1) with consecutive zeros a and b

and if

(3) p(t) ≥ P (t) > 0

and

(4) Q(t) ≥ q(t)

on [a, b], then every solution y of (2) except a constant multiple of x has a zero in

(a, b).
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The original proof by Picone [16] was based on using the identity

d

dt

{
x

y
(ypx′ − xPy′)

}
= (p− P )x

′2 + (Q− q)x2(5)

+ P (x′ −
x

y
y′)2 +

x

y
{yl[x]− xL[y]}

which holds for all real valued functions x and y defined on I such that x, y, px′

and Py′ are differentiable on I and y(t) 6= 0 for t ∈ I.

The identity (5) has proved to be useful tool not only in comparing equations

(1) and (2) but also in establishing Wirtinger type inequalities for solutions of

the second order linear ordinary differential equations and lower bounds for the

eigenvalues of the associated eigenvalue problems, and was generalized to higher-

order ordinary differential operators as well as the partial differential operators of

the elliptic type (see [8]).

The purpose of this paper is to generalize Picone’s identity (5) to the case of

nonlinear second order differential operators of the form

(6) lα[x] ≡ (p(t)|x′|α−1x′)′ + q(t)|x|α−1x

and

(7) Lα[y] ≡ (P (t)|y′|α−1y′)′ +Q(t)|y|α−1y

where α > 0 is a constant and p, q, P and Q are real-valued continuous functions

defined on a given non-degenerate interval I with p(t) > 0 and P (t) > 0 on I

and to apply it to the study of qualitative properties of the associated differential

equations lα[x] = 0 and Lα[y] = 0 as well as the equations with forcing terms.

The operators of the form (6) and (7) are sometimes called half-linear (or

homogeneous of degree α) because for any functions u and v in the domain of

lα and Lα, respectively, and for every c ∈ R

lα[cu] = |c|α−1clα[u]

and

Lα[cv] = |c|α−1cLα[v]

that is, if x and y are respective solutions of the corresponding equations lα[x] = 0

and Lα[y] = 0, then for any real constant c the functions cx and cy are the solutions

of the same equations, too.
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2. Picone Type Identity and Leightonian Comparison Theorems

Define ϕ(u) := |u|α−1u, α > 0, and consider second order nonlinear ordinary

differential operators of the form

lα[x] ≡ (pϕ(x′))′ + qϕ(x)

and

Lα[y] ≡ (Pϕ(y′))′ +Qϕ(y)

where p, q, P and Q are continuous functions on a given interval I and p(t) > 0

and P (t) > 0 for all t ∈ I. The domains Dl(I) and DL(I) of the operators lα and

Lα, respectively, are defined to be the sets of all continuous real-valued functions x

(resp. y) defined on I such that x and pϕ(x′) (resp. y and Pϕ(y′)) are continuously

differentiable on I.

The following lemma is of basic importance for our later considerations.

Lemma 1 (Picone type identity). If x ∈ Dl(I0) and y ∈ DL(I0) for some

non-degenerate subinterval I0 ⊂ I and y(t) 6= 0 for t ∈ I0, then

d

dt

{
x

ϕ(y)
[ϕ(y)pϕ(x′)− ϕ(x)Pϕ(y′)]

}
(8)

= (p− P )|x′|α+1 + (Q− q)|x|α+1 + P [|x′|α+1 + α|xy′/y|α+1

− (α+ 1)x′ϕ(xy′/y)] +
x

ϕ(y)
{ϕ(y)lα[x]− ϕ(x)Lα[y]} .

The identity (8) may be verified by a straightforward differentiation and the

verification is left to the reader.

The following simple lemma will be also used in proving our main resuls.

Lemma 2. If X,Y ∈ R and α > 0, then

(9) Xϕ(X) + αY ϕ(Y )− (α+ 1)Xϕ(Y ) ≥ 0

where equality holds if and only if X = Y .

Proof. If XY ≤ 0, then (9) is obvious. If XY ≥ 0, then the inequality (9) is

essentialy the well known inequality from [4] applied to |X| and |Y |.
For our first result based on the identity (8) let

U =
{
η ∈ C1[a, b] : η(a) = η(b) = 0

}
and define the functional Jα : U → R by

Jα[η] =

∫ b

a

[
P (t)|η′(t)|α+1 −Q(t)|η(t)|α+1

]
dt. �
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Theorem 1 (Wirtinger type inequality). If there exists a solution y of

Lα[y] = 0 such that y(t) 6= 0 on (a, b), then for all η ∈ U

(10) Jα[η] ≥ 0

where equality holds if and only if η is a constant multiple of y.

Proof. From Picones’s identity (8) applied to the case p(t) ≡ P (t), q(t) ≡ Q(t)

and x(t) = η(t) we obtain

d

dt

[
ηPϕ(η′)− ηϕ(η)P

ϕ(y′)

ϕ(y)

]
= P

[
|η′|α+1 + α|ηy′/y|α+1 − (α+ 1)η′ϕ(ηy′/y)

]
+ ηLα[η]−

ηϕ(η)

ϕ(y)
Lα[y].

Now, using the fact that y is a solution of Lα[y] = 0 and cancelling η(Pϕ(η′))′ we

get

P |η′|α+1 −Q|η|α+1 =
d

dt

[
ηϕ(η)

Pϕ(y′)

ϕ(y)

]
(11)

+ P
[
|η′|α+1 + α|ηy′/y|α+1 − (α+ 1)η′ϕ(ηy′/y)

]
.

If both y(a) 6= 0 and y(b) 6= 0, then integrating (11) from a to b and using Lemma 2

we obtain ∫ b

a

[
P (t)|η′(t)|α+1 −Q(t)|η(t)|α+1

]
dt ≥ 0

which is the desired inequality (10).

If y(a) = 0, then due to the fact that zeros of nontrivial solutions of second-

order half-linear equations are simple (see, for example, [14, Lemma 2.3]) y′(a)

must be a nonzero finite value. Since, obviously, limt→a+ P (t)η(t)ϕ(y′(t)) = 0 and

also

lim
t→a+

ϕ(η(t)/y(t)) = ϕ( lim
t→a+

η′(t)/y′(t)) <∞

by l’Hospital rule, we have

lim
t→a+

P (t)η(t)
ϕ(y′(t))ϕ(η(t))

ϕ(y(t))
= 0.

Similarly

lim
t→b−

P (t)η(t)
ϕ(y′(t))ϕ(η(t))

ϕ(y(t))
= 0,

if y(b) = 0.

Thus, integrating (11) over the interval [a+ ε, b− ε], letting ε→ 0+ and using

Lemma 2, we again obtain (10).
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Obviously, equality in (10) holds if and only if

|η′|α+1 + α|ηy′/y|α+1 − (α + 1)η′ϕ(ηy′/y) ≡ 0

which according to Lemma 2 is possible only if η′ ≡ ηy′/y, or equivalently, if η is

a constant multiple of y. �

From Theorem 1 we immediately have the following Corollary which is a

straightforward extension of variational Lemma 1.3 from [17] valid for linear sec-

ond order equations to the case of half-linear equations.

Corollary 1. If there exists an η ∈ U such that

(12) Jα[η] ≤ 0

then every solution y of Lα[y] = 0 has a zero in (a, b) except possibly when y = cη

for some nonzero constant c.

Now, along with the equation

(A) Lα[y] = 0

consider also the equation

(B) lα[x] = 0

and define

Vα[η] =

∫ b

a

[
(p(t)− P (t))|η′(t)|α+1 + (Q(t)− q(t))|η(t)|α+1

]
dt, η ∈ U.

The following comparison theorem is the main result in this section.

Theorem 2 (Leighton-type comparison theorem). If there exists an

x ∈ U such that lα[x] = 0 and

(13) Vα[x] ≥ 0

then every solution y of (A) has a zero in (a, b) except possibly it is a constant

multiple of x.

Proof. Assume for the sake of contradiction that Eq. (A) has a solution which

is nonzero on (a, b). Then from the Picone’s identity (8) it follows that

d

dt

{
x

ϕ(y)
[ϕ(y)pϕ(x′)− ϕ(x)Pϕ(y′)]

}
= (p− P )|x′|α+1 + (Q− q)|x|α+1(14)

+ P [|x′|α+1 + α|xy′/y|α+1 − (α+ 1)x′ϕ(xy′/y)]

where we have used that x and y are solutions of (B) and (A), respectively.
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As in the proof of Theorem 1 we can show that the function

(x/ϕ(y))[ϕ(y)pϕ(x′)−ϕ(x)Pϕ(y′)] tends to zero as t→ a+ or t→ b−, regardless

y(a) = 0 or y(a) 6= 0 (y(b) = 0 or y(b) 6= 0). Thus, integrating (14) from a+ ε to

b− ε, letting ε→ 0+ and using Lemma 2 we obtain

Vα ≤ 0

which contradicts (13) except possibly Vα[x] = 0 that corresponds to the case

where p ≡ P , q ≡ Q and x′ ≡ xy′/y, i.e. x is a constant multiple of y. �

Corollary 2 (Sturm-Picone comparison theorem). If

(15) p(t) ≥ P (t) > 0

and

(16) Q(t) ≥ q(t)

on a given interval I and there exists an x ∈ U such that lα[x] = 0, then any

solution of Eq. (A) either has a zero in (a, b) or it is a constant multiple of x.

Remark 1. If, in addition to (15) and (16) in Corollary 2, we suppose that on

any non-degenerate subinterval I0 of I neither (15) nor (16) becomes an identity,

then the later possibility is excluded and any solution y of (A) must vanish in

(a, b).

Example 1. Along with the half-linear equation

(17) (|x′|α−1x′)′ + α|x|α−1x = 0, α > 0,

which is a natural extension of the linear harmonic oscillator equation consider

the generalized Airy’s equation

(18) (|y′|α−1y′)′ + βtγ |y|α−1y = 0, t ≥ 0,

where α, β and γ are positive constants.

The first equation has the generalized sine function S(t) as an oscillatory solu-

tion satisfying the initial conditions S(0) = 0 and S′(0) = 1. The function S(t)

has the properties

|S(t)|α+1 + |S′(t)|α+1 = 1 and S(t+ πα) = −S(t)

for all t ∈ R where

πα =
2π
α+1

sin π
α+1
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(see [1]). As easily seen, for any k ∈ N the function xk(t) = S(kt) is a solution of

the equation

(|x′|α−1x′)′ + αkα+1|x|α−1x = 0

which has an infinite sequence of zero points nπα
k

, n = 1, 2, . . . .

Since for any k ∈ N there exists a Tk such that βtγ > αkα+1 for t ≥ Tk, an

application of Corollary 2 yields that any nontrivial real solution y of the equation

(18) has a zero in the interval
(
nπα
k , (n+1)πα

k

)
if n ∈ N is so large that nπα

k > Tk.

Consequently, all nontrivial solution of the Airy’s equation (18) are oscillatory

and the distance tn+1− tn between consecutive zeros of any solution tends to 0 as

n→∞.

Example 2. Consider a pair of half-linear equations

(19)
(
|x′|α−1x′

)′
+ αµα+1|x|α−1x = 0

and

(20)
(
P (t)|y′|α−1y′

)′
+Q(t)|y|α−1y = 0

where α > 0, µ = nπα/(b− a) for some given natural number n and P and Q are

continuous functions defined on the interval [a, b] with P (t) > 0 on [a, b].

The equation (19) has the function x(t) = S(µ(t − a)) where S(t) is the gen-

eralized sine function defined in Example 1, as a solution having exactly (n + 1)

zeros

t0 = a, tk =
b− a

n− k + 1
+ a, k = 1, . . . , n,

in the interval [a, b]. Denote P ∗ = max{P (t) : t ∈ [a, b]}. Then the equation

(21)
(
P ∗|x′|α−1x′

)′
+ αP ∗µα+1|x|α−1x = 0

has the same function x(t) = S(µ(t− a)) as a solution and since obviously

P (t) ≤ P ∗

from Corollary 2 it follows that any solution y of Eq. (20) has at least n zeros in

the interval (a, b) if

(22) Q(t) > αP ∗µα+1.

The next comparison result is an alternative to Theorem 2.
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Theorem 3. Let P/p ∈ C1(a, b). Then if there exists an x ∈ U such that

lα[x] = 0 and

(23)

∫ b

a

[
(Q−

P

p
q)|x|α+1 + p

(
P

p

)′
xϕ(x′)

]
dt > 0

every solution y of Eq. (A) has a zero in (a, b).

Proof. Putting p ≡ P on the left-hand side of (8) and rewriting (B) as

(24)
( p
P
P |x′|α−1x′

)′
+ q|x|α−1x = 0

or, equivalently,

(25) (Pϕ(x′))′ − p

(
P

p

)′
ϕ(x′) +

P

p
qϕ(x) = 0,

the identity (8) becomes

d

dt

{
x

ϕ(y)
[ϕ(y)Pϕ(x′)− ϕ(x)Pϕ(y′)]

}
=

(
Q−

P

p
q

)
|x|α+1(26)

+ p

(
P

p

)′
xϕ(x′) + P

[
|x′|α+1 + α|xy′/y|α+1 − (α+ 1)x′ϕ(xy′/y)

]
.

Again, as in the proof of Theorem 1, we can show that the function on the left-

hand side inside {} tends to zero as t → a+ or t → b−, so that after integrating

(26) from a + ε to b − ε, letting ε → 0+ and using Lemma 2 we are led to the

contradiction with (23). �

Similarly, assuming that q 6= 0, Q 6= 0 and Q/q ∈ C′(a, b) we can rewrite

(pϕ(x′))′ as

q

Q

(
pQ

q
ϕ(x′)

)′
+

(
q

Q

)′
pQ

q
ϕ(x′)

so that (B) becomes(
pQ

q
ϕ(x′)

)′
+
Q

q

(
q

Q

)′
Q

q
pϕ(x′) +Qϕ(x) = 0

or, equivalently,

(27)

(
pQ

q
ϕ(x′)

)′
−

(
Q

p

)′
pϕ(x′) +Qϕ(x) = 0

so that the coefficients in front of ϕ(x) and ϕ(y) in (27) and (A), respectively, are

the same.
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From (8) with p ≡ pQ/q we then have

d

dt

{
x

ϕ(y)
[ϕ(y)

pQ

q
ϕ(x′)− ϕ(x)Pϕ(y′)]

}
=

(
pQ

q
− P

)
|x′|α+1(28)

+ p

(
Q

q

)′
xϕ(x′) + P

[
|x′|α+1 + α|xy′/y|α+1 − (α+ 1)x′ϕ(xy′/y)

]
and integrating it from a+ ε to b− ε, letting ε→ 0+ and using Lemma 2 we have

proven the following dual comparison result to Theorem 3.

Theorem 4. Let q 6= 0, Q 6= 0 and Q/q ∈ C1[a, b]. If there exists an x ∈ U
such that lα[x] = 0 and

(29)

∫ b

a

[(
pQ

q
− P

)
|x′|α+1 + p

(
Q

q

)′
xϕ(x′)

]
dt > 0,

then every solution y of (A) has a zero in (a, b).

3. Forced Oscillations

In this section we consider along with the half-linear equation (B) the forced

second order differential equation

(30) (P (t)ϕ(y′))′ + f(t, y) = h(t)

where P, h : [t0,∞)→ R and f : [t0,∞)×R→ R are continuous and P (t) > 0 for

t ≥ t0.

By a solution of (30) we mean a function y : [t0,∞)→ R which is continuously

differentiable together with P (t)ϕ(y′) and satisfies (30) on [t0,∞). A non-trivial

solution of (30) is called oscillatory if there exists a sequence of zeros clustering

at t =∞; otherwise a solution is called nonoscillatory.

In the sequel, by consecutive sign change points of a function h ∈
C([t0,∞), R) we will understand points t1, t2 ∈ [t0,∞) such that t1 < t2 and

there exists an ε > 0 such that h(t) ≥ 0 (resp. h(t) ≤ 0) on [t1, t2] and h(t) < 0

(resp. h(t) > 0) on (t1 − ε, t1) ∪ (t2, t2 + ε).

In the case α = 1, it has been shown by several authors including [9] that all

nontrivial solutions of the equation

(31) (P (t)y′)′ + f(t, y) = h(t), t ≥ t0,

where P : [t0,∞)→ (0,∞), h : [t0,∞)→ R and f : [t0,∞)×R→ R are continuous

and such that ∫ ∞
t0

[P (t)]−1 dt =∞,
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yf(t, y) > 0 for y 6= 0 and f is non-decreasing in the second variable, are oscillatory

if and only if the corresponding unforced equation is oscillatory and there exists a

continuous oscillatory function ρ : [t0,∞)→ R such that

(32) (P (t)ρ′(t))′ = h(t)

and

(33) lim
t→∞

ρ(t) = 0.

The idea of employing the function ρ satisfying (32) and (33) cannot be used

for Eq. (30) because the second-order differential operator Lα[u] = (P (t)ϕ(u′))′

does not have, in general, the additivity property so that we cannot consider a

function z(t) defined by z(t) = y(t)− ρ(t) as a solution of the perturbed equation

without forcing term. The technique used in proving our comparison theorem

that enables us to deduce the oscillatory character of the forced equation (30)

from oscillation of solutions of the unforced half-linear second order equation (1)

is based on a Picone-type identity developed in Section 1. Roughly speaking, the

result says that the oscillatory nature of the second order half-linear equation is

maintained when an oscillatory forcing term is added to the equation provided

that the distance between consecutive sign change points of the forcing function is

greater that the distance between consecutive zeros of any solution of the equation

without forcing term. As a consequence, the generalized harmonic oscillator

(34) (ϕ(y′))′ + αϕ(y) = 0

remains to be oscillatory equation if the external force h with a distance between

consecutive sign change points greater than

2π
α+1

sin π
α+1

is added to the right-hand side.

Theorem 5. Assume that

p(t) ≥ P (t) for t ≥ t0,(34)

u[f(t, u)− q(t)ϕ(u)] ≥ 0 for u 6= 0 and t ≥ t0(35)

and either (34) or (35) does not become an identity on any open interval where

h(t) ≡ 0. Moreover, suppose that Eq. (1) is oscillatory and the distance between

consecutive zeros of any solution of (1) is less than the distance between consecutive
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sign change points of the forcing function h(t). Then every nontrivial solution of

Eq. (30) is oscillatory.

Proof. Assume for the sake of contradiction that Eq. (30) has a nonoscillatory

solution y(t) defined on some interval [Ty,∞), Ty ≥ t0. Without loss of generality

we may assume that y(t) is positive for t ≥ Ty. Now, let t2 > t1 ≥ Ty be

consecutive sign change points of the forcing function h(t) such that h(t) ≤ 0

on [t1, t2]. According to the fundamental existence-uniqueness theorem for second

order half-linear equations (see [1]), there exists a solution x(t) of Eq. (1) satisfying

x(t1) = 0 and x′(t1) > 0. Since according to the assumptions of Theorem 5, all

solutions of Eq. (1) are oscillatory and the distance between consecutive zeros of

any of these solutions is less than the distance between t1 and t2, there exists a

t3 such that t1 < t3 ≤ t2 and x(t3) = 0. Integrating over [t1, t3], using the Picone

identity

d

dt

{
x

yα
[yαpϕ(x′)− ϕ(x)Pϕ(y′)]

}
= (p− P )|x′|α+1(36)

+
|x|α+1

yα
[f(t, y(t))− q(t)yα] + P [|x′|α+1 + α|xy′/y|α+1

− (α+ 1)x′ϕ(xy′/y)]−
|x|α+1

yα
h(t)

and taking Lemma 2 with X = x′(t) and Y = x(t)y′(t)/y(t) into account, we

obtain a contradiction. �

Remark. In the above Theorem 5 we needed to know the distance between

consecutive zeros of any solution of Eq. (1) explicitly. However, for the half-linear

equations which possess only solutions that are quickly oscillatory in the sense that

the distance |tn+1−tn| between consecutive zero points tn and tn+1 of any solution

tends to zero as n → ∞, we only need to assume that the forcing term h(t) is a

moderately oscillating function, i.e. the distance between any two consecutive sign

change points of h is greater than some positive constant c. Then, as an immediate

consequence of Theorem 5, we have the following

Corollary 3. If (34) and (35) hold, the forcing h(t) is moderately oscillating

function and every solution of Eq. (1) is quickly oscillatory, then the equation (30)

is oscillatory, too.

Example 3. Consider the equation

(37) (|y′|α−1y′)′ + α|y|α−1y = h(t)

where α > 0. The unforced equation

(38) (|x′|α−1x′)′ + α|x|α−1x = 0
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is the generalized harmonic oscillator considered in Example 1 with the generalized

sine function S(t) as a solution satisfying the initial conditions x(0) = 0 and

x′(0) = 1.

It is easy to see that as a solution x of (38) in the proof of Theorem 5 satisfying

x(t1) = 0 and x′(t1) > 0 we can take

x(t) = kS(t− t1)

where k is arbitrary positive constant. So that it is sufficient to assume that the

distance between any two consecutive sign change points of h is greater than πα
and we have the conclusion of Theorem 5, i.e. all nontrivial solutions of Eq. (37)

are oscillatory.

As examples of such functions h we give

sinβt (0 < β < π/πα), sin(ln t), S(γt) (0 < γ < 1), S(ln t).

In our second result in this section we will prove that all solutions of the forced

equation (30) are oscillatory regardless of oscillation or nonoscillation of the cor-

responding unforced equation if the forcing term h oscillates and its amplitude is

sufficiently large in the sense specified below. The result will be formulated and

proved for slightly more general forced equations than (1), namely, for equations

of the form

(39) (P (t)ψ(y′(t)))′ + f(t, y(t)) = h(t), t ≥ t0,

where ψ is not neccessarily the nonlinearity of Emden-Fowler type considered

above. We assume that:

(a) P : [t0,∞)→ (0,∞) is continuous;

(b) ψ : R → R is continuous, strictly increasing and such that sgn ψ(u) =

sgn u and ψ(R) = R;

(c) f : [t0,∞) × R → R is continuous and such that sgn f(t, v) = sgn v for

each fixed t ≥ t0;

(d) h : [t0,∞)→ R is oscillatory.

Theorem 6. Suppose that

(40) lim inf
t→∞

{
k +

∫ t

T

ψ−1
[ 1

P (s)

(
l +

∫ s

T

h(σ)dσ
)]
ds

}
< 0

and

(41) lim sup
t→∞

{
−k +

∫ t

T

ψ−1
[ 1

P (s)

(
l+

∫ s

T

h(σ)dσ
)]
ds

}
> 0
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for all sufficiently large T ≥ t0 and all constants k and l with k > 0, where ψ−1

denotes the inverse function of ψ. Then all nontrivial solutions of Eq. (39) are

oscillatory.

Proof. Let y(t) be a positive solution of (39) defined on [t1,∞), t1 ≥ t0. From

(39) and (c) we have

(P (t)ψ(y′(t)))′ = h(t)− f(t, y(t)) ≤ h(t), t ≥ t1.

Integrating the above inequality from t1 to t, we get

(42) P (t)ψ(y′(t)) ≤ c1 +

∫ t

t1

h(s) ds,

where c1 = P (t1)ψ(y′(t1)). Dividing (42) by P (t), taking the inverse function ψ−1

of ψ on both sides of (42) and integrating the resulting inequality from t1 to t

again, we obtain

y(t) ≤ c2 +

∫ t

t1

ψ−1
[ 1

P (s)

(
c1 +

∫ s

t1

h(σ)dσ
)]
ds,

where c2 = y(t1). Taking the lower limit as t → ∞ and using (40), we get the

contradiction with the assumption that y(t) is positive eventually.

The proof in the case that y(t) is negative on [t1,∞) is similar and is omitted.�

Example 4. Consider the equation

(43) ((y′)1/3)′ + q(t)y1/3 = t sin t, t ≥ t0,

where q : [t0,∞)→ (0,∞) is a continuous function. The equation (43) is a special

case of (39) with

P (t) ≡ 1, ψ(u) = u1/3, f(t, v) = q(t)v1/3, h(t) = t sin t.

The conditions (40) and (41) written for (43) read

lim inf
t→∞

{
k +

∫ t

T

(
l +

∫ s

T

σ sinσ dσ
)3

ds

}
< 0

and

lim sup
t→∞

{
−k +

∫ t

T

(
l +

∫ s

T

σ sinσ dσ
)3

ds

}
> 0

for all constants k > 0 and l, respectively. These conditions are clearly satisfied

since

lim inf
t→∞

∫ t

T

(
l +

∫ s

T

σ sinσ dσ
)3

ds = −∞
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and

lim sup
t→∞

∫ t

T

(
l+

∫ s

T

σ sinσ dσ
)3

ds = +∞.

Therefore, by Theorem 6, all solutions of (43) are oscillatory as long as the coeffi-

cient q is continuous and positive on [t0,∞).

It is known [5], [10] that all solutions of the unforced equation

((x′)1/3)′ + q(t)x1/3 = 0

are oscillatory if

lim inf
t→∞

t1/3
∫ ∞
t

q(s) ds > 3
(1

4

)4/3

and nonoscillatory if

lim sup
t→∞

t1/3
∫ ∞
t

q(s) ds < 3
(1

4

)4/3

.

The qualitative study of half-linear differential equations of the type

(B) (p(t)|x′|α−1x′)′ + q(t)|x|α−1x = 0

was initiated by Elbert [1] and Mirzov [15] and followed by several authors in-

cluding Kusano et al. [5], [6] and Li and Yeh [14]. Their study shows a surprising

similarity between the qualitative properties of solutions of (B) and those of the

linear equation

(p(t)x′)′ + q(t)x = 0.

It is natural to expect that the qualitative behaviour of the Emden-Fowler

equation

(p(t)x′)′ + q(t)|x|β−1x = 0 (β > 0, β 6= 1)

is similar to that of its generalization

(p(t)|x′|α−1x′)′ + q(t)|x|β−1x = 0, (α > 0, β > 0, α 6= β).

For attempts confirming the truth of this expectation the reader is referred to the

papers [2], [7], [11] and [12].
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J. Jaroš, Department of Mathematical Analysis, Faculty of Mathematics and Physics, Comenius
University, 842 15 Bratislava, Slovakia

T. Kusano, Department of Applied Mathematics, Faculty of Science, Fukuoka University, Nana-
kuma, Jonan-ku, Fukuoka 814-80, Japan


