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STRICT REFINEMENT FOR DIRECT SUMS AND GRAPHS

A. A. ISKANDER

Abstract. We study direct sums of structures with a one element subuniverse.
We give a characterization of direct sums reminescent to that of inner products of
groups. The strict refinement property is adapted to direct sums and to restricted
Cartesian products of graphs. If a structure has the strict refinement property (for
direct products), it has the strict refinement property for direct sums. Connected
graphs satisfy the strict refinement property for their restricted Cartesian products.

Chang, Jónsson and Tarski introduce in [6] the strict refinement property for

relational structures. Some of the ideas also appear in Fell and Tarski [9]. They

show that for algebras with the strict refinement property, such as lattices, rings

with zero annihilators and perfect groups, if an algebra A is a direct product

of directly indecomposable algebras, then not only the directly indecomposable

factors are unique up to isomorphism, but also the resulting factor congruence

set on A is unique. In [23], Sabidussi defines relations on the edges of graphs

that give a representation of certain connected graphs as Cartesian products of

finitely many Cartesian indecomposable graphs and again these Cartesian inde-

composable factors are unique up to isomorphism and the defined relation itself is

unique. Cartesian products of infinite sets of connected nontrivial graphs are not

connected. The strict refinement property is not (easily) applicable to Cartesian

decompositions of graphs. In the present paper, we study the possibility of strict

refinement for direct sums of structures and follow this study with an adaptation

of the strict refinement property to graphs.

For any set A we denote the identity or diagonal relation {(x, x) : x ∈ A} on

A by ∆(A), and sometimes simply by ∆. If α is an equivalence relation on a set

A and a ∈ A, a/α is the α-equivalence class of a; i.e., a/α = {x ∈ A : aαx}. If

α, β are equivalence relations on a set A, then α ◦ β is the relational composition

of α and β; i.e., x(α ◦ β)y iff there is z ∈ A such that xαz and zβy. A set of

congruence relations {αi : i ∈ I} on an algebra A is called a direct factor set
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(DFS) on A if
⋂
{αi : i ∈ I} = ∆ and for any ai ∈ A (i ∈ I) there is a ∈ A

such that aαiai (i ∈ I). The direct factor sets on an algebra A are the congruence

relations αi = {(x, y) ∈ A×A : xi = yi} where A is identified with
∏
{Ai : i ∈ I}

and conversely Ai can be identified with the quotient algebra A/αi. If αi (i = 1, 2)

is a direct factor set, then α1, α2 is called a direct factor pair. This is the case

iff α1 ∩ α2 = ∆ and α1 ◦ α2 = α2 ◦ α1 = A × A. A decomposition operation

on an algebra (or a structure in general) is a homomorphism f : A × A −→ A

satisfying the equations f(x, x) ≈ x and f(f(x, y), z) ≈ f(x, z) ≈ f(x, f(y, z)). If

v ∈ A, fv(x) = f(x, v) and fv(y) = f(v, y), then ker fv, ker fv is a direct factor

pair. Conversely, if A = B × C, then f((b, c), (b′, c′)) = (b, c′) is a decomposition

operation. If αi(i ∈ I) are equivalence relations on a set A, then
∨
{αi : i ∈ I} is

the smallest equivalence relation on A that contains αi (i ∈ I). We shall present

a similar concept for direct sums of algebras, or structures in general, with a one

element subuniverse.

Unless otherwise stated we shall use the terminology of McKenzie, McNulty and

Taylor [20]. For the general theory of universal algebras the reader may consult

Burris and Sankappanavar [5], Cohn [7], Grätzer [11], Maltsev [19] and McKenzie,

McNulty and Taylor [20]. For refinement properties of direct products of finite

structures the reader may consult Jónsson and Tarski [16]. For the general theory

of graphs the reader may consult Berge [1], Biggs [2], Bollobás [3], Bondy and

Murty [4] and Harary [13].

Definition 1. Let Ai (i ∈ I) be algebras of a given similarity type such that

for every i ∈ I, there is a one element subuniverse ai of Ai. The subset of all x ∈∏
{Ai : i ∈ I} such that {i ∈ I : xi 6= ai} is finite is a subalgebra of the Cartesian

product
∏
{Ai : i ∈ I}. This subalgebra will be denoted by

∑
{(Ai, ai) : i ∈ I}

and will be called the direct sum of (Ai, ai) (i ∈ I).

Definition 2. Let A be an algebra with a one element subuniverse 0. A set of

congruences {αi : i ∈ I} is called a direct sum set (DSS) modulo a congruence α

and α is the direct sum of αi (i ∈ I) and we write α =
∑
{αi : i ∈ I} if

(i) α =
⋂
{αi : i ∈ I}.

(ii) For every x ∈ A, the set {i ∈ I : (x, 0) /∈ αi} is finite.

(iii) For any family xi (i ∈ I) of elements of A such that {i ∈ I : (xi, 0) /∈ αi}
is finite, there is x ∈ A such that (x, xi) ∈ αi for every i ∈ I.

If the congruences αi (i ∈ I) form a direct sum set modulo ∆(A), then αi (i ∈ I)

will be called a direct sum set.

If I is a finite set, then αi (i ∈ I) is a DSS iff it is a DFS. If α1, α2 is a direct

factor pair modulo α, we write α = α1 ⊕ α2.

The notation α =
∑
{αi : i ∈ I} is used here similar to the parallel notation for

the case when the congruences {αi : i ∈ I} is a direct factor set modulo α (as for

instance in [20]).



REFINEMENT FOR SUMS AND GRAPHS 93

Let A be an algebra and let αi (i ∈ I) be congruences on A and α =
⋂
{αi :

i ∈ I}. The epimorphism x −→ x/αi of A onto A/αi will be denoted by pi. The

resulting homomorphism of A into
∏
{A/αi : i ∈ I} will be denoted by p; i.e.,

p(x) = (pi(x) : i ∈ I).

Theorem 1. Suppose A is an algebra with a one element subuniverse 0 and αi
(i ∈ I) are congruences on A. Then p(A) is a direct sum of {(pi(A), pi(0)) : i ∈ I}
iff αi (i ∈ I) is a direct sum set modulo α = ker(p).

Proof. Let αi (i ∈ I) be a DSS modulo α =
⋂
{αi : i ∈ I} = ker(p). Let

a ∈
∑
{pi(A) : i ∈ I}. Then F = {i ∈ I : ai 6= pi(0)} is finite. Let xi = 0 if i ∈ I\F

and xi/αi = ai if i ∈ F . Thus xi (i ∈ I) satisfies F = {i ∈ I : (xi, 0) /∈ αi} is finite.

There is x ∈ A such that (x, xi) ∈ αi for every i ∈ I. Thus pi(x) = pi(xi) = ai
if i ∈ F and pi(x) = pi(0) if i ∈ I\F . Thus p(x) = a. Let y ∈ A. Then

{i ∈ I : (y, 0) /∈ αi} is finite. Hence {i ∈ I : pi(y) 6= pi(0)} is finite and so

p(y) ∈
∑
{(pi(A), pi(0)) : i ∈ I}.

Conversely, let p(A) =
∑
{(pi(A), pi(0)) : i ∈ I}. If x ∈ A, then p(x) ∈ p(A)

and the set {i ∈ I : pi(x) 6= pi(0)} is finite. Hence {i ∈ I : (x, 0) /∈ αi} is finite.

Let xi (i ∈ I) be elements of A satisfying {i ∈ I : (xi, 0) /∈ αi} is finite. Then

{i : pi(xi) 6= pi(0)} is finite. Hence there is a ∈
∑
{(pi(A), pi(0)) : i ∈ I} such that

ai = pi(xi), i ∈ I. So, there is x ∈ A such that p(x) = a; i.e., pi(x) = ai = pi(xi),

i ∈ I. Thus (x, xi) ∈ αi, i ∈ I. Also ker(p) =
⋂
{αi : i ∈ I}. This shows that αi

(i ∈ I) is a DSS modulo ker(p). �
Definition 3. Suppose A is an algebra and ϕi (i ∈ I) are congruences on A.

The family ϕi (i ∈ I) is called a dual direct sum set (DDSS) modulo a congruence

α if

(i) ϕi ◦ ϕj = ϕj ◦ ϕi, for all i, j ∈ I,

(ii) ϕi ∩ (
∨
{ϕj : j ∈ I\{i}}) = α for all i ∈ I,

(iii)
∨
{ϕi : i ∈ I} = A×A.

The motivation behind this definition will be clear from the following theorem:

Theorem 2. Let A be an algebra with a one element subuniverse 0. Then

(i) If αi ( i ∈ I) is a direct sum set modulo α and ϕi =
⋂
{αj : j ∈ I\{i}} for

all i ∈ I, then ϕi (i ∈ I) is a dual direct sum set modulo α. Furthermore,

αi =
∨
{ϕj : j ∈ I\{i}} for all i ∈ I and ϕi, αi is a direct factor pair

modulo α.

(ii) If ϕi ( i ∈ I) is a dual direct sum set modulo α and αi =
∨
{ϕj : j ∈ I\{i}}

for all i ∈ I, then αi (i ∈ I) is a direct sum set modulo α. Furthermore,

ϕi =
⋂
{αj : j ∈ I\{i}} for all i ∈ I and ϕi, αi is a direct factor pair

modulo α.

Proof. Let αi (i ∈ I) be a DSS modulo α and let ϕi =
⋂
{αj : j ∈ I\{i}},

i ∈ I. We need to show that ϕi (i ∈ I) is a DDSS modulo α. Denote by Ai
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the quotient algebra A/αi and identify A/α with
∑
{(Ai, 0/αi) : i ∈ I}. Then

αi = {(x, y) : pi(x) = pi(y)} and ϕi = {(x, y) : pj(x) = pj(y), j ∈ I\{i}}. Thus

(x, y) ∈ ϕi ◦ ϕj iff there is z ∈ A such that (x, z) ∈ ϕi and (z, y) ∈ ϕj . Thus

ϕi ◦ ϕj = {(x, y) : pr(x) = pr(y), r ∈ I\{i, j}} = ϕj ◦ ϕi. Let (x, y) ∈ A × A.

Then F = {i ∈ I : (x, y) /∈ αi} is finite. Thus pj(x) = pj(y) for all j /∈ F . Hence

(x, y) ∈
∨
{ϕj : j ∈ F} ⊆

∨
{ϕj : j ∈ I}. If (x, y) ∈

∨
{ϕj : j ∈ I, j 6= i}, there is

a finite set G ⊆ I\{i} such that (x, y) ∈
∨
{ϕj : j ∈ G}. Then pr(x) = pr(y) for

all r ∈ I\G. Thus pi(x) = pi(y); i.e., (x, y) ∈ αi and
∨
{ϕj : j ∈ I\{i}} ⊆ αi ⊆∨

{ϕj : j ∈ I\{i}}. If (x, y) ∈ ϕi ∩
∨
{ϕj : j ∈ I\{i}}, then (x, y) ∈ ϕi =

⋂
{αj :

j ∈ I\{i}} and (x, y) ∈ αi; i.e., (x, y) ∈
⋂
{αj : j ∈ I} = α. Since ϕi, αi permute,

ϕi ∩ αi = α and ϕi ∨ αi = A×A, (A/ϕi)× (A/αi) ∼= A/α.

We need to establish the statement (ii). For any X ⊆ I, let X̃ =
∨
{ϕj : j ∈ X}.

As ϕi ∩ (
∨
{ϕj : j ∈ I\{i}}) = α, α ⊆ X̃ for every non-void X ⊆ I. Then

Claim 1. For any subsets S, T of I, S̃ ◦ T̃ = T̃ ◦ S̃.

Indeed, since the relations ϕi (i ∈ I) are mutually permutable, ϕi◦ϕj = ϕi∨ϕj .
The assertion follows easily.

Claim 2. If S, T ⊆ I and S ∩ T = ∅, then S̃ ∩ T̃ = α.

Let (x, y) ∈ S̃ ∩ T̃ . Then there are finite subsets F ⊆ S and G ⊆ T such that

(x, y) ∈ F̃ ∩ G̃. We show that F̃ ∩ G̃ = α by induction on |F | ≥ 1. It is true

for |F | = 1. Let |F | > 1 and ` ∈ F , ` /∈ V and F = V ∪ {`}. By induction,

Ṽ ∩ G̃ = α. Let a(F̃ ∩ G̃)b. As Ṽ , ϕ` are permutable, there is c ∈ A such that

aṼ cϕ`b and aG̃b. Then c(ϕ` ◦ G̃)a; i.e., a(ϕ` ∨ G̃)c and aṼ c. As V and G ∪ {`}
are disjoint, Ṽ ∩ (ϕ` ∨ G̃) = α by induction. So aαc. Thus aG̃b and aϕ`b. Hence

aαb as ϕ` ∩ G̃ = α.

Claim 3. If S, T ⊆ I, then S̃ ∩ T̃ = ˜(S ∩ T ).

We need to show only the case S ∩ T 6= ∅, S * T and T " S. Let λ = ˜(S ∩ T ),

µ = (̃S\T ) and ν = (̃T\S). Then λ∩µ = λ∩ν = µ∩ν = α and S̃ = λ∨µ, T̃ = λ∨ν.

Let a(S̃ ∩ T̃ )b. As λ, µ, ν are permutable, there are c, d ∈ A such that aλcµb and

aλdνb. Hence cλd. Also, c(µ ∨ ν)d since cµb and dνb. But (µ ∨ ν) ∩ λ = α. Thus

cαd. But then c(µ∩ ν)b. Hence cαb and so, aλb. Thus S̃ ∩ T̃ ⊆ λ = ˜(S ∩ T ). The

reverse inclusion is obvious.

From Claims 1, 2, 3, αi =
∨
{ϕj : j ∈ I\{i}} (i ∈ I) are mutually permutable.

Let (x, y) ∈
⋂
{αj : j ∈ I\{i}}. Then (x, y) ∈ αj for every j ∈ I\{i}. Thus there

are finite subsets Fj ⊆ I\{j} such that (x, y) ∈ F̃j . Fix r ∈ I\{i}. For every

s ∈ Fr, s 6= i, s /∈ Fs. Thus Fr ∩ (
⋂
{Fs : s ∈ Fr, s 6= i}) ⊆ {i}. Thus (x, y) ∈ ϕi;

i.e.
⋂
{αj : j ∈ I, j 6= i} ⊆ ϕi. As ϕi ⊆ αj for every j 6= i. the reverse inclusion

also holds. Thus for every i ∈ I, ϕi =
⋂
{αj : j ∈ I\{i}}. We need to show that⋂

{αi : i ∈ I} = α.
⋂
{αi : i ∈ I} = αi ∩ (

⋂
{αj : j ∈ I\{i}}) = αi ∩ ϕi = α.
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As ϕi, αi are permutable and ϕi ∨ αi = A × A, ϕi, αi are a direct factor pair

modulo α. Let x ∈ A. We need to show that {i ∈ I : (x, 0) /∈ αi} is finite. Since

A × A =
∨
{ϕi : i ∈ I}, there is a finite set F ⊆ I such that (x, 0) ∈ F̃ ⊆ αi for

every i ∈ I\F . Thus {i ∈ I : (x, 0) /∈ αi} ⊆ F . Finally, suppose xi ∈ A (i ∈ I)

satisfy {i ∈ I : (xi, 0) /∈ αi} = G is finite. We need to find x ∈ A such that

(x, xi) ∈ αi for every i ∈ I. This is possible by induction on |G|. If |G| = 0, then

x = 0 will do. Let |G| > 0 and G = H ∪ {`}, ` /∈ H. Then |H| < |G|. Put yi = xi
if i 6= ` and y` = 0. Then {i ∈ I : (yi, 0) /∈ αi} = H. By induction there is y ∈ A
such that (y, yi) ∈ αi for every i ∈ I. Now (y, x`) ∈ A × A = ϕ` ∨ α` = ϕ` ◦ α`.
Thus there is x ∈ A such that (y, x) ∈ ϕ` and (x, x`) ∈ α`. Hence (y, x) ∈ αi for

all i ∈ I\{`}. Hence xαiyαixi for all i ∈ I, i 6= ` and (x, xi) ∈ αi for all i ∈ I. �

Remark 1. The characterization of dual direct sums in the case when I is

finite also works for algebras without one element subuniverses and is similar to

the case of internal direct sums in groups. In fact condition (ii) of Definition 3 can

be replaced by the following condition:

(ii′) ϕi ∩
∨
{ϕj : 1 ≤ j < i} = α for 1 < i ≤ n.

We shall show that condition (ii′) implies condition (ii) of Definition 3 in the

presence of conditions (i) and (iii) of Definition 3 in the case I = {1, 2, . . . , n}.
Assume that conditions (i), (iii) of Definition 3 and condition (ii)′ hold. We first

show by induction on n− k that (
∨
{ϕj : 1 ≤ j ≤ k}) ∩ (

∨
{ϕj : k < j ≤ n}) = α,

for all 1 ≤ k < n. Since this is true for k = n− 1, assume it is true for all k > m

where m < n. Let λ =
∨
{ϕj : 1 ≤ j ≤ m} and µ =

∨
{ϕj : m + 1 < j ≤ n}. We

need to show that λ∩(ϕm+1∨µ) = α. Let a, b ∈ A and a(λ∩(ϕm+1∨µ))b. As the

ϕm+1, µ are permutable, there is c ∈ A such that aϕm+1cµb. Thus c(ϕm+1 ∨ λ)b.

As µ∩ (ϕm+1 ∨λ) = α, cαb. Hence a(ϕm+1 ∩λ)b and by condition (ii′) aαb. Since

conditions (ii) and (ii′) are identical for i = n, we shall prove that (ii′) implies (ii)

by induction on n − i. Let condition (ii) be true for all i > m for some m < n.

Let γ =
∨
{ϕj : 1 ≤ j < m} and δ =

∨
{ϕj : m < j ≤ n}. We need to show that

ϕm ∩ (γ ∨ δ) = α. Let a(ϕm ∩ (γ ∨ δ))b. Then there is c ∈ A such that aγcδb.

Hence c(γ ∨ ϕm)b. But (γ ∨ ϕm) ∩ δ = α, so cαb. Thus a(ϕm ∩ γ)b. Then aαb.

A DDSS is essentially an internal characterization of a direct sum.

Theorem 3. Let A be an algebra and let ϕi (i ∈ I) be a dual direct sum set

on A. Suppose 0 is a one element subuniverse. Then there is an isomorphism of

A onto
∑
{(0/ϕi, 0) : i ∈ I}.

Proof. Let ϕi (i ∈ I) be a DDSS and let 0 be a one element subuniverse. By

Theorem 2, αi =
∨
{ϕj : j ∈ I\{i}} (i ∈ I) is a DSS and for every i ∈ I, ϕi, αi

is a direct factor pair. Thus for every x ∈ A, there is xi ∈ A such that 0ϕixiαix.

As ϕi ∩ αi = ∆, xi is unique. By Theorem 1, p(x) = (x/αi : i ∈ I) gives an

isomorphism of A onto
∑
{A/αi : i ∈ I}. Also A ∼= A/αi × A/ϕi. The mapping



96 A. A. ISKANDER

x/αi −→ xi is an isomorphism of A/αi onto the subalgebra 0/ϕi, i ∈ I. Thus

x −→ (xi : i ∈ I) is an isomorphism of A onto
∑
{(0/ϕi, 0) : i ∈ I}. �

The following lemmas prepare for characterizations of the strict refinement

property for direct sums:

Lemma 1. Let A be an algebra with a one element subuniverse 0. Suppose αi
(i ∈ I) is a direct sum set modulo α and βi (i ∈ I) are congruences on A such that

for every i ∈ I, αi ⊆ βi and β =
⋂
{βi : i ∈ I}. Then βi (i ∈ I) is a direct sum

set modulo β.

Proof. Let xi ∈ A (i ∈ I) and let {i ∈ I : (xi, 0) /∈ βi} = F be finite. Let

yi = xi if i ∈ F and yi = 0 if i ∈ I\F . Then {i ∈ I : (yi, 0) /∈ αi} = F is finite

and so there is x ∈ A such that (x, yi) ∈ αi ⊆ βi for every i ∈ I. As yi = 0 if

i ∈ I\F and (xi, 0) ∈ βi if i ∈ I\F , (x, xi) ∈ βi for every i ∈ I. If x ∈ A, then

{i ∈ I : (x, 0) /∈ βi} ⊆ {i ∈ I : (x, 0) /∈ αi} is finite. Thus the family βi (i ∈ I) is a

DSS modulo β. �

Lemma 2. Let A be an algebra with a one element subuniverse 0. Let αi
(i ∈ I) be a direct sum set modulo α and let α =

⋂
{βi : i ∈ I} where βi (i ∈ I)

are congruences on A such that αi ⊆ βi for every i ∈ I. Then αi = βi for every

i ∈ I.

Proof. Let k ∈ I. Put γi = αi if i ∈ I\{k} and γk = βk. By Lemma 1, γi ( i ∈ I)

is a DSS modulo
⋂
{γi : i ∈ I} ⊆

⋂
{βi : i ∈ I} = α. Now ϕk, αk and ϕk, γk are

direct factor pairs modulo α, where ϕk =
⋂
{αi : i ∈ I\{k}} =

⋂
{γi : i ∈ I\{k}}.

Let aγkb. Then there is c ∈ A such that aϕkcαkb. Thus cγkb and aγkb. Hence

aγkc. As ϕk ∩ γk = α, aαc and so, aαkb. Thus αk = γk = βk. �

Lemma 3. Let A be an algebra with a one element subuniverse 0 and let αi
(i ∈ I) and βj (j ∈ J) be direct sum sets modulo α. Then the following conditions

are equivalent:

(i) There are congruences γij ((i, j) ∈ I × J) such that αi =
⋂
{γij : j ∈ J}

and βj =
⋂
{γij : i ∈ I} for every i ∈ I and j ∈ J .

(ii) αi ∨ βj ((i, j) ∈ I × J) is a direct sum set modulo α and αi =
⋂
{αi ∨ βj :

j ∈ J} and βj =
⋂
{αi ∨ βj : i ∈ I} for every i ∈ I and j ∈ J .

(iii) αi ∨ βj ((i, j) ∈ I × J) is a direct sum set modulo α.

Proof. It is clear that (ii) ⇒ (i), (iii). We need to show that (iii) ⇒ (ii) and

(i) ⇒ (iii). As αi ⊆ αi ∨ βj for all j ∈ J , αi ⊆
⋂
{αi ∨ βj : j ∈ J} = γi. By

Lemma 1, γi (i ∈ I) is a DSS modulo
⋂
{γi : i ∈ I} =

⋂
{αi ∨ βj : (i, j) ∈

I × J} = α. By Lemma 2, αi = γi =
⋂
{αi ∨ βj : j ∈ J}, i ∈ I. The equalities

βj =
⋂
{αi ∨ βj : i ∈ I} (j ∈ J) are similar. It remains to show that (i) ⇒ (iii).

For every (i, j) ∈ I × J , αi ∨ βj ⊆ γij .
⋂
{αi ∨ βj : j ∈ J} ⊆

⋂
{γij : j ∈ J} = αi.

Hence
⋂
{αi ∨ βj : (i, j) ∈ I × J} =

⋂
{αi : i ∈ I} = α. Let x ∈ A. As αi
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(i ∈ I) and βj (j ∈ J) are DSSs modulo α, the sets F = {i ∈ I : (x, 0) /∈ αi} and

G = {j ∈ J : (x, 0) /∈ βj} are finite. Hence {(i, j) ∈ I×J : (x, 0) /∈ αi∨βj} ⊆ F×G
is finite. Suppose xij ∈ A ((i, j) ∈ I×J) satisfy {(i, j) : (xij , 0) /∈ αi∨βj} is finite.

Fix k ∈ I. Then {j ∈ J : (xkj , 0) /∈ αk ∨ βj} is finite. As αk ∨ βj (j ∈ J) is a DSS

modulo αk, by Lemma 1, there is xk ∈ A such that (xk, xkj) ∈ αk∨βj for all j ∈ J .

Let G = {k ∈ I : (xk, 0) /∈ αk}. As αk =
⋂
{αk∨βj : j ∈ J}, for every k ∈ G, there

is j(k) ∈ J such that (xk, 0) /∈ αk ∨βj(k). But (xk, xkj) ∈ αk ∨βj for all k ∈ I and

j ∈ J . Hence (xkj(k) , 0) /∈ αk ∨βj(k) for every k ∈ G. Thus G is finite and there is

x ∈ A such that (x, xk) ∈ αk for all k ∈ I. Hence (x, xkj) ∈ αk∨(αk∨βj) = αk∨βj
for all k ∈ I and j ∈ J . This shows that the family αi ∨ βj ((i, j) ∈ I × J) is a

DSS modulo α. �
Lemma 4. Let A be an algebra and let ϕi (i ∈ I) and ψj (j ∈ J) be dual direct

sum sets on A. If ϕi ∩ ψj ((i, j) ∈ I × J) is a dual direct sum set, then for every

i ∈ I, ϕi =
∨
{ϕi ∩ ψj : j ∈ J} and for every j ∈ J , ψj =

∨
{ϕi ∩ ψj : i ∈ I}.

Proof. Let aϕkb. Since A × A =
∨
{ϕi ∩ ψj : (i, j) ∈ I × J}, there is a finite

set F ⊆ I × J such that (a, b) ∈
∨
{ϕi ∩ ψj : (i, j) ∈ F}. As ϕi ∩ ψj are mutually

permutable, there is c ∈ A such that aγc and cδb, where γ =
∨
{ϕk ∩ ψj : (k, j) ∈

F} ⊆ ϕk and δ =
∨
{ϕi ∩ ψj : (i, j) ∈ F, i 6= k}. Thus bϕkc and (b, c) ∈

∨
{ϕi : i ∈

I\{k}}. Hence b = c and ϕk ⊆
∨
{ϕk ∩ ψj : j ∈ J} ⊆ ϕk. �

The strict refinement property can be defined for direct sums. Later we shall

see that an algebra or a structure satisfies the strict refinement property for direct

sums iff it satisfies the strict refinement property (for direct products.)

Definition 4. Let A be an algebra with a one element subuniverse 0. Then

A satisfies the strict refinement property for direct sums (SRPS) if for any direct

sum sets αi (i ∈ I) and βj (j ∈ J), there is a direct sum set γij ((i, j) ∈ I × J)

such that αi =
⋂
{γij : j ∈ J} for every i ∈ I and βj =

⋂
{γij : i ∈ I} for every

j ∈ J .

For direct sums, the strict refinement property implies the refinement property.

In other words, if A is an algebra with a one element subuniverse 0 and A satisfies

the SRPS and A ∼=
∑
{Bi : i ∈ I} ∼=

∑
{Cj : j ∈ J}, then there are algebras Dij

((i, j) ∈ I × J) such that for every i ∈ I, Bi ∼=
∑
{Dij : j ∈ J} and for every

j ∈ J , Cj ∼=
∑
{Dij : i ∈ I}. Furthermore, if A has SRPS and A ∼=

∑
{Bi : i ∈

I} ∼=
∑
{Cj : j ∈ J} where all Bi, i ∈ I and Cj , j ∈ J are directly indecomposable

algebras, then there is a DDSS ϕi (i ∈ I) on A and a bijective mapping g : I −→ J

such that 0/ϕi ∼= Bi ∼= Cg(i) for every i ∈ I. Algebras with SRPS and with a

one element subuniverse that are direct sums of directly indecomposable algebras

have a unique DDSS ϕi (i ∈ I) such that the substructures 0/ϕi are directly

indecomposable.

We are now ready to show that for structures with a one element subuniverse,

the strict refinement property is equivalent to SRPS.
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Theorem 4. For an algebra A with a one element subuniverse 0, the following

conditions are equivalent:

(i) A has the strict refinement property for direct sums.

(ii) A has the strict refinement property for direct sums for finite index sets I

and J .

(iii) The set of factor congruences of A forms a Boolean lattice (i.e., it is a

sublattice of the congruence lattice of A and the distributive laws hold on

this sublattice).

(iv) If ∆ = α⊕α′ = β⊕ β′ for α,α′, β, β′ congruences on A, then (α∨β)∧α′

≤ β.

(v) fvgv = gvfv for all decomposition operations f, g, and all v ∈ A.

(vi) There is v ∈ A such that fvgv = gvfv for all decomposition operations

f , g.

(vii) A has the strict refinement property for direct sums for index sets I and

J such that |I| = |J | = 2.

(viii) For any dual direct sum sets ϕi (i ∈ I) and ψj (j ∈ J), ϕi ∩ ψj ((i, j) ∈
I × J) is a dual direct sum set, and ϕi =

∨
{ϕi ∩ ψj : j ∈ J} for every

i ∈ I, and ψj =
∨
{ϕi ∩ ψj : i ∈ I} for every j ∈ J .

(ix) For any dual direct sum sets ϕ1, ϕ2 and ψ1, ψ2, ϕ1 ∩ψ1, ϕ1 ∩ψ2, ϕ2 ∩ψ1,

ϕ2 ∩ ψ2 is a dual direct sum set.

Proof. Conditions (i), (ii), (iii), (iv), (v), (vi) are the formulation for direct

sums of the corresponding conditions for direct products in ([20, Theorem 5.17,

p. 303]). Since for any finite set I, αi (i ∈ I) is a DFS iff it is a DSS, Lemma 2 of

([20, p. 302]) holds for direct sums as its proof uses only finite direct factor sets.

The only place that needs a change in the proof of ([20, Theorem 5.17, p. 303])

is that, after obvious notational changes, following αi =
⋂
{αi ∨ βj : j ∈ J} and

βj =
⋂
{αi ∨ βj : i ∈ I}, by Lemma 3, the family αi ∨ βj ((i, j) ∈ I × J) forms a

DSS and αi =
∑
{αi ∨ βj : j ∈ J} and βj =

∑
{αi ∨ βj : i ∈ I}. It is clear that

condition (ii) implies condition (vii). We can show that condition (vii) implies

condition (iii) in the same way as (ii) implies (iii) in ([20, Theorem 5.17, p. 303]).

That conditions (viii) and (i) are equivalent and condition (vii) is equivalent to

condition (ix) follows from Theorem 2, Lemma 3, and Lemma 4. �

From Theorem 4, the strict refinement property for direct sums holds iff it is

true for finite index sets I and J . As for finite index sets DSS coincides with DFS,

the following is valid.

Corollary 1. Let A be an algebra with a one element subuniverse 0. Then A

has the strict refinement property iff A satisfies the strict refinement property for

direct sums.
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Let A be any algebra with a one element subuniverse 0 that has the strict

refinement property such as congruence distributive algebras, perfect or center-

less algebras in congruence permutable varieties such as rings with zero annihi-

lator, etc. If A is the direct sum of directly indecomposable algebras Ai (i ∈
I), then there is precisely one DDSS ϕi (i ∈ I) such that 0/ϕi ∼= Ai, i ∈ I.

If A ∼=
∑
{Bj : j ∈ J} where every Bj is directly indecomposable, and ψj

(j ∈ J) is the DDSS such that Bj ∼= 0/ψj, j ∈ J , then |I| = |J | and {ϕi :

i ∈ I} = {ψj : j ∈ J}. Examples: If a lattice L is a direct sum of directly

indecomposable sublattices containing an element a ∈ L, then this set of “di-

rect summands” is unique. If a ring is a direct sum of its directly indecompos-

able ideals and every such ideal is a ring with zero annihilator, then this set of

ideals is unique. A direct sum of a set of finite centerless groups is a direct sum

of directly indecomposable groups and the set of resulting normal subgroups is

unique.

Now we study the applicability of refinement properties to graphs. All the

results of this paper can be carried over to directed graphs without loops and for

which from any given vertex to another there can be no more than one directed

edge. By a graph Γ we mean a pair of not necessarily finite sets (V (Γ), E(Γ)) where

V (Γ) is the set of vertices of Γ and E(Γ) (the set of edges of Γ) is a set of unordered

pairs of distinct elements of V (Γ). Thus, in this article, graphs have neither loops

nor multiple edges. A graph may be viewed as a set with a symmetric irreflexive

binary relation. We write a ∈ V (Γ) to mean that a is a vertex of Γ and if a pair

{a, b} is an edge of Γ, we write ab ∈ E(Γ). A path in Γ connecting the vertices

a, b ∈ V (Γ) is a sequence of vertices c0, c1, . . . , cn ∈ V (Γ) such that for 1 ≤ i ≤ n,

ci−1ci ∈ E(Γ) and a = c0, b = cn. If n ≥ 3, a graph with n distinct vertices

c0, c1, . . . , cn−1 and n edges c0c1, c1c2, . . . , cn−2cn−1, cn−1c0 is called a cycle of

length n and denoted by Cn. A graph Γ is connected if for any distinct vertices

a, b ∈ V (Γ), there is a path in Γ connecting a, b. A homomorphism of a graph

Γ1 into a graph Γ2 is a mapping f from V (Γ1) into V (Γ2) such that for any

a, b ∈ V (Γ1), if f(a) 6= f(b) and ab ∈ E(Γ1), then f(a)f(b) ∈ E(Γ2). Two graphs

Γ1,Γ2 are isomorphic and we write Γ1
∼= Γ2 if there is a bijective mapping f from

V (Γ1) onto V (Γ2) such that f and f−1 are homomorphisms. For any non-void set

A of vertices of a graph Γ, by Γ[A] we denote the subgraph of Γ whose vertex

set is A and for any a, b ∈ A, ab is an edge of Γ[A] iff ab ∈ E(Γ). The Cartesian

product of graphs Γi, i ∈ I is the graph Γ such that V (Γ) is the direct product of

the V (Γi), i ∈ I (i.e., the set of all x = (. . . , xi, . . . ) where xi ∈ V (Γi), i ∈ I. For

x, y ∈ V (Γ), xy ∈ E(Γ) iff there is precisely one i ∈ I such that xiyi ∈ E(Γi) and

for every j ∈ I\{i}, xj = yj . We denote the Cartesian product of graphs Γ1, Γ2 by

Γ1⊕Γ2. This construction appeared in Harary [12], Miller [21], Sabidussi [22], [23]

and, in Shapiro [24]. The restricted Cartesian product of graphs (Γi, vi), i ∈ I,

where vi ∈ V (Γi) is given for every i ∈ I, is the graph Γ such that V (Γ) is the direct
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sum of the pointed sets (V (Γi), vi), i ∈ I (i.e., the set of all x = (. . . , xi, . . . ) where

xi ∈ V (Γi), i ∈ I such that {i ∈ I : xi 6= vi} is finite). For x, y ∈ V (Γ), xy ∈ E(Γ)

iff there is precisely one i ∈ I such that xiyi ∈ E(Γi) and for every j ∈ I\{i},
xj = yj. If Γ is the restricted Cartesian product of (Γi, vi), i ∈ I, we shall write

Γ =
∑
{(Γi, vi) : i ∈ I}. A graph Γ is called Cartesian indecomposable if

it is non-trivial, i.e., contains more than one vertex, and Γ is not isomorphic to

a Cartesian product of any two non-trivial graphs. The general theory of strict

refinement of relational structures introduced in Chang, Jónsson, and Tarski [6],

is applicable to the direct product of graphs; i.e., the direct product Γ1⊗Γ2 where

V (Γ1⊗Γ2) = V (Γ1)×V (Γ2) and (u1, u2)(v1, v2) ∈ E(Γ1⊗Γ2) iff uivi ∈ E(Γi) for

i = 1, 2. A graph Γ satisfies the refinement property for restricted Cartesian

products if whenever Γ ∼=
∑
{(Γi, vi) : i ∈ I} ∼=

∑
{(Ξj , uj) : j ∈ J}, there are

graphs Ψij, and wij ∈ V (Ψij), i ∈ I, j ∈ J such that Γi ∼=
∑
{(Ψij, wij) : j ∈ J}

and Ξj ∼=
∑
{(Ψij, wij) : i ∈ I} for every i ∈ I, j ∈ J . Some of the graphs

Ψij may be composed of one vertex only. A similar definition can be given for

the refinement property relative to direct product decompositions. If G is any

finite bipartite graph and 2C3 is the disjoint union of two cycles of length 3,

then G ⊗ C6
∼= G ⊗ 2C3. (cf. Lovász [17], [18] and McKenzie, McNulty and

Tayler [20, p. 331].) The cycle C4 is directly indecomposable, i.e., not isomorphic

to the direct product of any two nontrivial graphs. The same is true of 2C3,

but C6
∼= K2 ⊗ C3 where K2 is a graph with two vertices and one edge. Since

C4 is bipartite, C4 ⊗ K2 ⊗ C3
∼= C4 ⊗ 2C3 and so the direct product does not

satisfy the refinement property even for finite graphs. A directly indecomposable

graph may not be Cartesian indecomposable and vice-versa. K2 ⊗K2
∼= 2K2 and

K2⊕K2
∼= C4. C6 is Cartesian indecomposable. However, the restricted Cartesian

product of a set of connected graphs is connected and every connected graph is,

up to an isomorphism, uniquely the restricted Cartesian product of Cartesian

indecomposable graphs. (cf. Sabidussi [23], Imrich [14])

Sabidussi gives in [23], an internal characterization of Cartesian decomposition

of connected graphs by means of an equivalence relation on the set of edges. A

similar method was given by Vizing [25]. Similar equivalence relations on the edges

of a graph are used in Feder [8], Graham and Winkler [10] and Imrich and Zerovnik

[15] to give efficient algorithms for the Cartesian decompositions of finite connected

graphs. Imrich shows that every connected graph is, up to isomorphism, uniquely

the restricted Cartesian product of Cartesian indecomposable graphs ([14, Szatz 4

and Szatz 5]). We shall give another characterization using equivalence relations

on the set of vertices in a fashion reminiscent of the inner product of groups. We

shall adapt the definition of the strict refinement property so that we can apply it

to the restricted Cartesian product of graphs.

The following definition and lemma provide a connection between dual direct

sum sets and restricted Cartesian decompositions of graphs:
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Definition 5. Let ϕ, ψ be equivalence relations on the set of vertices of a

graph Γ. The relation ϕ satisfies the edge condition relative to the relation ψ if

for any a, b, c of V (Γ) such that aϕb, aψc and ab ∈ E(Γ), there is d ∈ V (Γ) such

that cϕd, bψd and cd ∈ E(Γ). A family of equivalence relations ϕi (i ∈ I) on V (Γ)

satisfies the edge condition if ϕi satisfies the edge condition relative to ϕj for any

ordered pair (i, j) ∈ I × I, i 6= j.

Lemma 5. Let ϕ,ψi (i ∈ I) be equivalence relations on the set of vertices of a

graph Γ and ψ =
∨
{ψi : i ∈ I}. If for every i ∈ I, ϕ satisfies the edge condition

relative to ψi, then ϕ satisfies the edge condition relative to ψ.

Proof. This is routine from the definition. �

Definition 6. Let Γ be a graph and let ϕi (i ∈ I) be equivalence relations on

V (Γ). The family ϕi (i ∈ I) is called a graph dual direct sum set (GDDSS) if

(i) The family ϕi (i ∈ I) is a dual direct sum set on V (Γ).

(ii) The family ϕi (i ∈ I) satisfies the edge condition.

(iii) If ab ∈ E(Γ), then aϕib for some i ∈ I.

Now we give an internal characterization for Cartesian decompositions of

graphs.

Theorem 5. Let Γ, Γi (i ∈ I) be graphs and vi ∈ V (Γi) (i ∈ I). There is an

isomorphism of Γ onto
∑
{(Γi, vi) : i ∈ I} iff there is a graph dual direct sum set

ϕi (i ∈ I) on V (Γ) and v ∈ V (Γ) such that for every i ∈ I, (Γi, vi) ∼= (Γ[v/ϕi], v).

Proof. Let (Γ, v) =
∑
{(Γi, vi) : i ∈ I}. Define ϕi on V (Γ) by aϕib iff aj = bj

for all j ∈ I\{i}. Checking that the family ϕi (i ∈ I) is a GDDSS routinely follows

from the definitions.

We need to show the converse. Suppose ϕi (i ∈ I) is a GDDSS on V (Γ). Let

v ∈ V (Γ) and let Γi = Γ[v/ϕi], vi = v, i ∈ I. We shall show that (Γ, v) ∼=∑
{(Γi, vi) : i ∈ I}. By Theorem 3, (V (Γ), v) ∼=

∑
{(V (Γi), vi) : i ∈ I} as pointed

sets. For every i ∈ I, we define a mapping πi : Γ → Γi. Let x ∈ V (Γ). As ϕi
and αi =

∨
{ϕj : j ∈ I\{i}} is a factor pair, there is a unique t ∈ V (Γ) such

that vϕitαix. Define πi(x) = t. It is clear that πi is surjective. Actually πi is a

graph homomorphism. Indeed, let bc ∈ E(Γ) and let πi(b) 6= πi(c). As vϕiπi(b)αib

and vϕiπi(c)αic, then πi(b)ϕiπi(c). Also there is a unique j ∈ I such that bϕjc,

since bc ∈ E(Γ). If j 6= i, then ϕj ⊆ αi and so bαic, which in turn implies

πi(b)αiπi(c) and consequently, as αi ∩ ϕi = ∆, πi(b) = πi(c). Thus j = i and

bϕic. As ϕi, i ∈ I satisfy the edge condition and αi =
∨
{ϕj : 1 ≤ j ≤ n, j 6= i},

by Lemma 5, the pair ϕi, αi satisfies the edge condition. This and αi ∩ ϕi = ∆

implies πi(b)πi(c) ∈ E(Γ[v/ϕi]). We need to show that cd ∈ E(Γ) iff π(c)π(d) is

an edge in
∑
{(Γi, vi) : i ∈ I}, where π(x) = (. . . , πi(x), . . . ). Let cd ∈ E(Γ). As

ϕi (i ∈ I) is a GDDSS, there is a unique i ∈ I, such that cϕid. As ϕi ∩ αi = ∆,
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πi(c) 6= πi(d). As πi is a graph homomrphism, πi(c)πi(d) ∈ E(Γi). If j ∈ I\{i},
then (c, d) ∈ ϕi ⊆ αj and so πj(c) = πj(d). So πk(c)πk(d) ∈ E(Γk) holds only for

k = i. Hence π(c)π(d) is an edge of the restricted Cartesian product. On the other

hand, if π(c)π(d) is an edge of the restricted Cartesian product, then cd ∈ E(Γ)

follows from the fact that there is precisely one i ∈ I with πi(c)πi(d) ∈ E(Γi)

and for j ∈ I\{i}, πj(c) = πj(d) and ϕi, αi satisfy the edge condition; i.e., the

mapping π is a graph isomorphism of (Γ, v) onto
∑
{(Γi, vi) : i ∈ I}. �

Remark 2. Viewing the equivalence relations ϕi (i ∈ I) as partitions, for

any given i ∈ I, and any vertices a, b of Γ the graphs Γ[a/ϕi] and Γ[b/ϕi] are

isomorphic subgraphs of Γ. The homomorphism πi restricted to b/ϕi provides a

graph isomorphism of Γ[b/ϕi] onto Γ[a/ϕi].

In order to adapt the definition of the strict refinement property to the case of

graphs, we need to find what a DSS for graphs should be. This is achieved by the

following definition.

Definition 7. Let Γ be a graph and v ∈ V (Γ). A set αi (i ∈ I) of equivalence

relations on V (Γ) is called a graph direct sum set (GDSS) and every αi is called

a graph direct factor if

(i) αi (i ∈ I) is a direct sum set on the pointed set (V (Γ), v).

(ii) If ab ∈ E(Γ), then there is i ∈ I such that aαjb for every j ∈ I\{i}.
(iii) For every i ∈ I, αi,

⋂
{αj : j ∈ I\{i}} satisfy the edge condition.

Similar to Theorem 2 we have

Theorem 6. Let Γ be a graph and v ∈ V (Γ). Then

(i) If αi (i ∈ I) is a graph direct sum set on Γ, then ϕi =
⋂
{αj : j ∈ I\{i}}

(i ∈ I) is a graph dual direct sum set.

(ii) If ϕi (i ∈ I) is a graph dual direct sum set on Γ, then αi =
∨
{ϕj : j ∈

I\{i}} (i ∈ I) is a graph direct sum set.

Proof. In view of Theorem 2, we need only show that in (i), ϕi (i ∈ I) satisfy

the edge condition and for every ab ∈ E(Γ), there is i ∈ I such that aϕib. The

latter follows from (ii) of Definition 7. Let i, j ∈ I and i 6= j, a, b, c ∈ V (Γ), aϕib,

aϕjc and ab ∈ E(Γ). Since ϕi, αi is a factor pair and ϕj ⊆ αi, there is a unique

d ∈ V (Γ) such that cϕid and bαid. As αi, ϕi satisfy the edge condition ((iii) of

Definition 7), cd ∈ E(Γ). Now ϕi and ϕj are permutable. Hence there is e ∈ V (Γ)

such that cϕie and bϕje. Again ϕj ⊆ αi. So cϕie and bαie. Then e = d and bϕjd.

To show (ii), let ab ∈ E(Γ). Then there is a unique i ∈ I such that aϕib. So

aαjb for every j ∈ I\{i}. Since ϕi, ϕj satisfy the edge condition for i 6= j, by

Lemma 5, ϕi satisfies the edge condition relative to
∨
{ϕj : j ∈ I\{i}} = αi. If

ab ∈ E(Γ), aαib and aϕic. There is j ∈ I\{i} such that aϕjb. As ϕj ⊆ αi and ϕj
satisfies the edge condition relative to ϕi, αi satisfies the edge condition relative

to ϕi. Since ϕi =
⋂
{αj : j ∈ I\{i}}, (iii) of Definition 7 is satisfied. �
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Definition 8. Let Γ be a graph. A graph decomposition operation f on Γ is

a graph homomorphism of the Cartesian product Γ⊕ Γ onto Γ such that

(i) The equations f(x, x) ≈ x and f(f(x, y), z) ≈ f(x, f(y, z)) ≈ f(x, z) hold

in V (Γ).

(ii) If ab ∈ E(Γ), then f(a, b) ∈ {a, b}.

Theorem 7. Let Γ be a graph. Then

(i) If Γ = Γ1 ⊕ Γ2 and f((x1, x2), (y1, y2)) = (x1, y2), then f is a graph

decomposition operation on Γ.

(ii) If f is a graph decomposition operation on Γ and v ∈ V (Γ), then Γ ∼=
Γ[v/ ker fv]⊕ Γ[v/ ker fv].

Proof. It is sufficient to show in (i) that f(a, b) ∈ {a, b} if ab ∈ E(Γ) and f is

a graph homomorphism of Γ ⊕ Γ into Γ. If x ∈ V (Γ), then x = (x1, x2) where

xi ∈ V (Γi), i = 1, 2. f(a, b) = (a1, b2). As ab ∈ E(Γ), either a1 = b1 in which

case f(a, b) = (a1, b2) = (b1, b2) = b, or b1 = b2, in which case f(a, b) = a. If

(a, b)(c, d) ∈ E(Γ⊕ Γ), then either a = c and bd ∈ E(Γ) or ac ∈ E(Γ) and b = d.

f(a, b) = (a1, b2), f(c, d) = (c1, d2). If a = c, then a1 = c1. If f(a, b) 6= f(c, d),

then b2 6= d2. As bd ∈ E(Γ1 ⊕ Γ2) and b2 6= d2, b1 = d1 and b2d2 ∈ E(Γ2).

Hence (a1, b2)(a1, d2) ∈ E(Γ1⊕Γ2). Thus f(a, b)f(c, d) ∈ E(Γ). The other case is

similar.

To show (ii), it suffices, in view of Theorem 5, to verify that the factor pair

ker fv, ker fv is a GDSS. Let ab ∈ E(Γ). There is no loss in generality assuming

f(a, b) = a. Thus f(a, b) = a = f(a, a) and (a, b) ∈ ker fa = ker fv. We need to

show that ker fv, ker fv satisfy the edge condition. It suffices to show that ker fv
satisfies the edge condition relative to ker fv. Let (a, b) ∈ ker fv, (a, c) ∈ ker fv

and ab ∈ E(Γ). There is d ∈ V (Γ) such that (c, d) ∈ ker fv and (b, d) ∈ ker fv. As

ker fv = ker fa, f(c, a) = f(d, a). Also ker fv = ker f c and f(c, a) = f(c, c) = c.

Similarly f(d, d) = f(d, b) = d as ker fv = ker fd. So f(d, a) = c and f(d, b) = d.

If c = d, then f(d, b) = d = c = f(c, a) = f(d, a). This implies that (a, b) ∈
ker fv ∩ ker fv = ∆(V (Γ)). So a = b contradicting ab ∈ E(Γ). Thus c 6= d. As f is

a homomorphism of the Cartesian square of Γ onto Γ and f(d, a) = c 6= d = f(d, b)

and ab ∈ E(Γ), cd ∈ E(Γ). This shows that ker fv satisfies the edge condition

relative to ker fv. �

Now we propose to define the strict refinement property for graphs.

Definition 9. A graph Γ has the strict refinement property for restricted

Cartesian products (GSRP) if for any v ∈ V (Γ) and graph direct sum sets αi
(i ∈ I) and βj (j ∈ J) on Γ, there is a graph direct sum set γij ((i, j) ∈ I × J)

such that αi =
∑
{γij : j ∈ J} for every i ∈ I and βj =

∑
{γij : i ∈ I} for every

j ∈ J .
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In view of Theorems 4, 5, 6 and 7, we have the following characterization of

GSRP:

Theorem 8. The following conditions for a graph Γ are equivalent:

(i) Γ has the strict refinement property for restricted Cartesian products.

(ii) Γ has the strict refinement property for restricted Cartesian products for

finite index sets I and J .

(iii) The set of factor congruences of Γ forms a Boolean lattice (i.e., it is a

sublattice of the lattice of equivalence relations on V (Γ) and the distributive

laws hold on this sublattice).

(iv) If ∆(V (Γ)) = α⊕ α′ = β ⊕ β′ where α, α′ and β, β′ are graph direct sum

sets on Γ, then (α ∨ β) ∧ α′ ≤ β.

(v) fvgv = gvfv for all graph decomposition operations f , g and all v ∈ V (Γ).

(vi) There is v ∈ V (Γ) such that fvgv = gvfv for all graph decomposition

operations f , g.

(vii) Γ has the strict refinement property for restricted Cartesian products for

index sets I and J such that |I| = |J | = 2.

(viii) For any graph dual direct sum sets ϕi (i ∈ I) and ψj (j ∈ J), ϕi ∩ ψj
((i, j) ∈ I×J) is a graph dual direct sum set, and ϕi =

∨
{ϕi∩ψj : j ∈ J}

for every i ∈ I and ψj =
∨
{ϕi ∩ ψj : i ∈ I} for every j ∈ J .

(ix) For any graph dual direct sum sets ϕ1, ϕ2 and ψ1, ψ2, the set ϕ1 ∩ ψ1,

ϕ1 ∩ ψ2, ϕ2 ∩ ψ1, ϕ2 ∩ ψ2 is a graph dual direct sum set.

As in the general case GSRP implies the refinement property for restricted

Cartesian products of graphs.

Theorem 9. Every connected graph has the strict refinement property for re-

stricted Cartesian products.

A graph has the strict refinement property for restricted Cartesian products iff

it satisfies condition (ix) of Theorem 8. First we prove the following lemma:

Lemma 6. If ϕ1, ϕ2 and ψ1, ψ2 are graph dual direct sum sets on a graph Γ,

then the family ϕ1∩ψ1, ϕ1 ∩ψ2, ϕ2∩ψ1, ϕ2∩ψ2 is a graph dual direct sum set iff

the equivalence relations ϕ1∩ψ1, ϕ1∩ψ2, ϕ2∩ψ1, ϕ2∩ψ2 are mutually permutable

and ϕi = (ϕi ∩ ψ1) ∨ (ϕi ∩ ψ2) and ψi = (ψi ∩ ϕ1) ∨ (ψi ∩ ϕ2), i = 1, 2.

Proof. Let ϕ1, ϕ2 and ψ1, ψ2 be GDDSS on a graph Γ. Suppose the family

ϕ1 ∩ ψ1, ϕ1 ∩ ψ2, ϕ2 ∩ ψ1, ϕ2 ∩ ψ2 is a GDDSS. Then ϕ1 ∩ ψ1, ϕ1 ∩ ψ2, ϕ2 ∩ ψ1,

ϕ2 ∩ ψ2 is a DDSS on the set V (Γ) and by Lemma 4, ϕi = (ϕi ∩ ψ1) ∨ (ϕi ∩ ψ2)

and ψi = (ψi ∩ ϕ1) ∨ (ψi ∩ ϕ2), i = 1, 2.

Conversely, if ϕ1 ∩ ψ1, ϕ1 ∩ ψ2, ϕ2 ∩ ψ1, ϕ2 ∩ ψ2 are mutually permutable and

ϕi = (ϕi ∩ ψ1) ∨ (ϕi ∩ ψ2), ψi = (ψi ∩ ϕ1) ∨ (ψi ∩ ϕ2), i = 1, 2, then the family

ϕ1 ∩ ψ1, ϕ1 ∩ ψ2, ϕ2 ∩ ψ1, ϕ2 ∩ ψ2 is a DDSS. Indeed, they satisfy conditions (i)
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and (iii) of Definition 3. Let a(ϕ1 ∩ψ1)b and a((ϕ1 ∩ψ2)∨ (ϕ2 ∩ψ1)∨ (ϕ2 ∩ψ2))b.

As (ϕ1 ∩ψ2)∨ (ϕ2 ∩ψ1)∨ (ϕ2 ∩ψ2) = (ϕ1 ∩ψ2)∨ϕ2, there is c ∈ V (Γ) such that

a(ϕ1 ∩ ψ2)cϕ2b. Hence cϕ1aϕ1b and c(ϕ1 ∩ ϕ2)b. As ϕ1 ∩ ϕ2 = ∆, c = b. Then

a(ψ1 ∩ ψ2)b and a = b. The other cases to verify condition (ii) of Definition 3 are

similar. If ab ∈ E(Γ), then aϕib and aψjb for some i, j = 1, 2. It remains to verify

the edge condition. Let a(ϕ1 ∩ψ1)b and let ab ∈ E(Γ). As ψ1, ψ2 satisfy the edge

condition, if a(ϕ1 ∩ ψ2)c, there is d ∈ V (Γ) such that cψ1d, bψ2d and cd ∈ E(Γ).

As ϕ1 ∩ ψ1 and ϕ1 ∩ ψ2 are permutable, there is a vertex e such that b(ϕ1 ∩ ψ2)e

and e(ϕ1 ∩ ψ1)c. Then (e, d) ∈ ψ1 ∩ ψ2 = ∆. Thus e = d and so ϕ1 ∩ ψ1 satisfies

the edge condition relative to ϕ1 ∩ ψ2. If a(ϕ2 ∩ ψ2)c, again since ψ1, ψ2 satisfy

the edge condition, there is d ∈ V (Γ) such that cd ∈ E(Γ), cψ1d and bψ2d. As

ϕ1 ∩ ψ1 and ϕ2 ∩ ψ2 are permutable and c(ϕ2 ∩ ψ2)a(ϕ1 ∩ ψ1)b, there is e ∈ V (Γ)

with c(ϕ1 ∩ ψ1)e and e(ϕ2 ∩ ψ2)b. Thus (e, d) ∈ ψ1 ∩ ψ2 = ∆. So, e = d and

ϕ1 ∩ ψ1 satisfies the edge condition relative to φ2 ∩ ψ2. The remaining cases are

similar. Thus the family ϕ1 ∩ ψ1, ϕ1 ∩ ψ2, ϕ2 ∩ ψ1, ϕ2 ∩ ψ2 is a GDDSS. �

The following definition is useful.

Definition 10. Let Γ be a graph and let ϕ,ψ be equivalence relations on V (Γ).

The relations ϕ,ψ are edge permutable if for any vertices a, b, c ∈ V (Γ) such that

aϕb, aψc, where ab, ac ∈ E(Γ), there is d ∈ V (Γ) such that cϕd, bψd and cd,

bd ∈ E(Γ).

Lemma 7. Let Γ be a graph and let ϕ, ψ be equivalence relations on V (Γ).

If ϕ, ψ are edge permutable and for every v ∈ V (Γ), Γ[v/ψ] is connected, then ϕ

satisfies the edge condition relative to ψ.

Proof. Let aϕb, aψc, a 6= c and ab ∈ E(Γ). Then there is a path a =

c0, c1, . . . , cn = c such that ciψci+1 for all 0 ≤ i < n. As ϕ, ψ are edge per-

mutable, there is b1 ∈ V (Γ) such that bb1, c1b1 ∈ E(Γ), c1ϕb1 and bψb1. By

induction there is a path b = b0, b1, . . . , bn such that biψbi+1, cjϕbj , cjbj ∈ E(Γ)

for all 0 ≤ i < n and 1 ≤ j ≤ n. Thus bψbn, cϕbn and cbn ∈ E(Γ). �

Proof of Theorem 9. Suppose Γ is a connected graph, a ∈ V (Γ) and ϕ1, ϕ2

and ψ1, ψ2 are two GDDSSs on Γ. By Theorem 5, Γ ∼= Γ[a/ϕ1] × Γ[a/ϕ2] ∼=
Γ[a/ψ1]× Γ[a/ψ2]. Since Cartesian factors of connected graphs are connected (cf.

Sabidussi [23]), from Theorem 5, Γ[a/ϕi], Γ[a/ψi], i = 1, 2 are connected. We

need to show that ϕi ∩ ψj (i, j = 1, 2) is a GDDSS. First we show that ϕ1, ϕ2

and similarly ψ1, ψ2 are edge permutable. Indeed, suppose a, b, c ∈ V (Γ), aϕ1b,

aϕ2c and ab, ac ∈ E(Γ). As ϕ1, ϕ2 satisfy the edge condition, there is d ∈ V (Γ)

such that cd ∈ E(Γ) and cϕ1d, bϕ2d. Reversing the roles of ϕ1, ϕ2, there is

e ∈ V (Γ) such that be ∈ E(Γ) and cϕ1e, bϕ2e. Thus dϕ1c, dϕ2b, eϕ1c, eϕ2b.

As ϕ1 ∩ ϕ2 = ∆, d = e and ϕ1, ϕ2 are edge permutable. Next we show that

any two of the four equivalence relations ϕi ∩ ψj , i, j = 1, 2 are edge permutable.
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This does not require that Γ be connected. Let ab, ac ∈ E(Γ) and a(ϕ1 ∩ ψ1)b.

Suppose a(ϕ1 ∩ ψ2)c. As ψ1, ψ2 are edge permutable, there is d ∈ V (Γ) such that

cψ1d, bψ2d and bd, cd ∈ E(Γ). Now cϕ1d or cϕ2d and bϕ1d or bϕ2d. Also cϕ1d

iff bϕ1d. If cϕ2d, then bϕ2d and c(ϕ1 ∩ ϕ2)b. Thus b = c and a(ψ1 ∩ ψ2)b; i.e.,

a = b contradicting ab ∈ E(Γ). Hence c(ϕ1 ∩ψ1)d and b(ϕ1 ∩ψ2)d. Thus ϕ1 ∩ψ1,

ϕ1 ∩ ψ2 are edge permutable. If a(ϕ2 ∩ ψ2)c, there is d ∈ V (Γ) such that cψ1d

and bψ2d where bd, cd ∈ E(Γ). Again cϕ1d or cϕ2d and bϕ1d or bϕ2d. If cϕ1d

and bϕ1d, then a(ϕ1 ∩ ϕ2)c and a = c contradicting ac ∈ E(Γ). If cϕ2d and bϕ1d,

then a(ϕ1 ∩ϕ2)d and a = d. Then c(ψ1 ∩ψ2)d and c = d contradicting cd ∈ E(Γ).

If cϕ2d and bϕ2d, then a(ϕ1 ∩ ϕ2)b and a = b contradicting ab ∈ E(Γ). Thus the

only possibility is cϕ1d and bϕ2d; i.e., c(ϕ1 ∩ ψ1)d, b(ϕ2 ∩ ψ2)d. Thus ϕ1 ∩ ψ1,

ϕ2 ∩ ψ2 are edge permutable. The treatment of the remaining pairs is similar. If

Γ is connected, we shall show that Γ[a/(ϕ1 ∩ ψ1)] is connected. If a, c ∈ V (Γ),

a 6= c and a(ϕ1 ∩ ψ1)c, there is a path a = c0, c1, . . . , cn = c in Γ[a/ϕ1]. As

ckck+1 ∈ E(Γ) for 0 ≤ k < n, ckψ1ck+1 or ckψ2ck+1 for 0 ≤ k < n. Suppose for

some 0 ≤ s < n, (cs, cs+1) /∈ ψ1. As ϕ1 ∩ ψ1 and ϕ1 ∩ ψ2 are edge permutable,

if (ck−1, ck) ∈ ψ2 and (ck, ck+1) ∈ ψ1, there is c′k such that (ck−1, c
′
k) ∈ ϕ1 ∩ ψ1

and (c′k, ck+1) ∈ ϕ1 ∩ ψ2. Thus we can assume that in the given path, for some

0 < r ≤ n, (ck, ck+1) ∈ ψ1 for all 0 ≤ k < r and (ck, ck+1) ∈ ψ2 for all r ≤ k < n.

Thus a(ϕ1 ∩ ψ1)cr(ϕ1 ∩ ψ2)c. Then cr(ψ1 ∩ ψ2)c and c = cr. Thus there is a

path a = c0, c1, . . . , cn = c in Γ[a/(ϕ1 ∩ ψ1)]. This shows that for any v ∈ V (Γ)

and for any i, j = 1, 2, the subgraph Γ[v/(ϕi ∩ ψj)] is connected. Now we show

that the family ϕi ∩ ψj (i, j = 1, 2) satisfies the edge condition. This follows

from Lemma 7. We need to show that any pair of ϕi ∩ ψj are permutable. Let

a(ϕi∩ψj)b, a(ϕr∩ψs)c, where i, j, r, s ∈ {1, 2} and (i, j) 6= (r, s). As Γ[a/(ϕi∩ψj)]
is connected, there is a path a = b0, b1, . . . , bn = b such that (bk, bk+1) ∈ ϕi∩ψj for

all 0 ≤ k < n. By the edge condition there is d1 with cd1 ∈ E[Γ], (b1, d1) ∈ ϕr∩ψs
and (c, d1) ∈ ϕi ∩ ψj . By induction there is a path c = d0, d1, . . . , dn in Γ[ϕi ∩ ψj ]
such that (bk, dk) ∈ ϕr ∩ ψs for every 1 ≤ k ≤ n. Thus there is d(= dn) such that

c(ϕi ∩ ψj)d(ϕr ∩ ψs)b. This shows the permutability of ϕi ∩ ψj and ϕr ∩ ψs. By

Lemma 6, and by symmetry, it suffices to show that ϕi = (ϕi ∩ ψ1) ∨ (ϕi ∩ ψ2).

Let aϕib. As Γ[a/ϕi] is connected, there is a path a = b0, b1, . . . , bn = b in Γ[a/ϕi].

Every (bk, bk+1) ∈ ψr for some r ∈ {1, 2} and thus belongs to (ϕi∩ψ1)∨ (ϕi∩ψ2).

Thus (a, b) ∈ (ϕi ∩ ψ1) ∨ (ϕi ∩ ψ2). This shows that ϕ1 ∩ ψ1, ϕ1 ∩ ψ2, ϕ2 ∩ ψ1,

ϕ2 ∩ ψ2 form a GDDSS. �

If a graph satisfies the strict refinement property for restricted Cartesian prod-

ucts, it satisfies the property for any two GDDSSs. However, the Cartesian prod-

uct of an infinite family of nontrivial connected graphs is not connected as shown

in [23]. For general structures, as indicated in [6], the strict refinement prop-

erty carries over to infinite direct products. Since pointed sets do not satisfy

the strict refinement property, there are (disconnected) graphs that do not sat-
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isfy GSRP. If ϕi (i ∈ I) and ψj (j ∈ J) are GDDSSs on a connected graph Γ,

a ∈ V (Γ) and all Γ[a/ϕi] and Γ[a/ψj] are Cartesian indecomposable, then |I| = |J |,
{ϕi : i ∈ I} = {ψj : j ∈ J} and so {Γ[a/ϕi] : i ∈ I} = {Γ[a/ψj] : j ∈ J}. The

following theorem is due to Imrich ([14, Szatz 4]). We shall give a proof using

methods from the present paper.

Theorem 10. Every connected graph is a restricted Cartesian product of

Cartesian indecomposable graphs.

The proof will be based on the following lemmas:

Lemma 8. Let Γ be a connected graph and let α be an equivalence relation on

V (Γ). Then α is a graph direct factor on Γ iff

(i) If aαb, (a, c) /∈ α and ab, ac ∈ E(Γ), then there is d ∈ V (Γ) such that

cαd, (b, d) /∈ α and bd, cd ∈ E(Γ).

(ii) If a0a1 . . . an is a path and (ai, ai+1) /∈ α for 0 ≤ i < n and a0 6= an, then

(a0, an) /∈ α.

Proof. If α, β is a GDSS, then (i) follows from the edge condition and ii follows

from (ai, ai+1) ∈ β, for 0 ≤ i < n and so (a0, an) ∈ β. As α∩ β = ∆, (a0, an) /∈ α.

Conversely, the set {(x, y) : xy ∈ E(Γ), (x, y) /∈ α} generates an equivalence

relation β on V (Γ). We need to show that α, β is a GDSS. It is clear that

for every v ∈ V (Γ), Γ[v/β] is connected. From (i), α, β are edge permutable. By

Lemma 7, α satisfies the edge condition relative to β. We shall show that for every

v ∈ V (Γ), Γ[v/α] is connected. Indeed, let aαb and a 6= b. As Γ is connected, there

is a path a = c0, c1, . . . , cn = b. If (ci, ci+1) /∈ α, then ciβci+1. In view of the edge

permutabilty of α, β we can assume that ciαci+1 for all 0 ≤ i < r and ciβci+1 for

all r ≤ i < n. If r = n, we are through. Otherwise, bβcr, aαcr and aαb. Thus

bαcr. In view of (ii), b = cr and Γ[a/α] is connected. Again, applying Lemma 7,

β satisfies the edge condition relative to α. Every edge belongs to either α or β.

Thus we need only show that α, β is a DSS. If a, b ∈ V (Γ) and a 6= b, then there

is a path from a to b. As α, β are edge permutable, we can assume the existence

of a path a = b0, b1, . . . , bn = b such that biαbi+1 and bjβbj+1 implies i < j. Thus

V (Γ)× V (Γ) = α ◦ β. From (ii), α ∩ β = ∆. Thus α, β form a GDSS and α is a

graph direct factor. �

Lemma 9. If ϕi is a graph direct factor on a connected graph Γ for every i ∈ I,

then
⋂
{ϕi : i ∈ I} is a graph direct factor on Γ.

Proof. Let α =
⋂
{ϕi : i ∈ I}. We need to show that α is a graph direct factor.

Let aαb, ab, ac ∈ E(Γ) and (a, c) /∈ α. There is k ∈ I such that (a, c) /∈ ϕk. As

ϕk is a graph direct factor, there is d ∈ V (Γ) such that cϕkd, (b, d) /∈ ϕk,and bd,

cd ∈ E(Γ). If cϕkd
′, bd′ ∈ E(Γ) and (b, d′) /∈ ϕk, then d = d′, otherwise, dbd′ is

a path where db, bd′ ∈ E(Γ), (d, b) /∈ ϕk, (b, d′) /∈ ϕk and dϕkcϕkd
′ contradicting
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(ii) of Lemma 8. Let j ∈ I. Applying GSRP to the GDDSSs ϕk, ϕ′k and ϕj , ϕ
′
j ,

where ϕk, ϕ′k and ϕj , ϕ
′
j are (graph) factor pairs, ϕk ∩ ϕj , ϕk ∩ ϕ′j , ϕ

′
k ∩ ϕj ,

ϕ′k ∩ ϕ
′
j is a GDDSS on Γ. Thus ϕk ∩ ϕj is a graph direct factor. As a(ϕk ∩ ϕj)b,

(a, c) /∈ ϕk ∩ ϕj and ab, ac ∈ E(Γ), there is e ∈ V (Γ) such that c(ϕk ∩ ϕj)e,
(b, e) /∈ ϕk ∩ ϕj and be, ce ∈ E(Γ). If (b, e) ∈ ϕk, then aϕkeϕkc contradicting

(a, c) /∈ ϕk. Thus (b, e) /∈ ϕk. Hence d = e. Thus cϕid for every i ∈ I; i.e., cαd.

As (b, d) /∈ ϕk, (b, d) /∈ α and so α satisfies (i) of Lemma 8. We need to show

that α satisfy (ii) of Lemma 8. If a0a1 . . . an is a path, a0 6= an and (ai, ai+1) /∈ α
for 0 ≤ i < n, there is a finite set F ⊆ I such that β =

⋂
{ϕr : r ∈ F} and

(ai, ai+1) /∈ β for 0 ≤ i < n. As F is finite, GSRP implies β is a graph direct

factor and so (a0, an) /∈ β. Since α ⊆ β, (a0, an) /∈ α. Thus α is a graph direct

factor. �
Proof of Theorem 10. Let Γ be a connected graph with at least two vertices.

For every ab ∈ E(Γ), let ϕab =
⋂
{ϕ : aϕb and ϕ is a graph direct factor on Γ}. We

shall show that {ϕab : ab ∈ E(Γ)} is a GDDSS on Γ and for any v ∈ V (Γ), Γ[v/ϕab]

is Cartesian indecomposable. Since a 6= b, ϕab 6= ∆. Every ϕab is a graph direct

factor on Γ by Lemma 9. If Γ[v/ϕab] ∼= Γ1⊕Γ2, then ϕab = χ∨ψ, where χ, ψ are

graph direct factors on Γ and Γ[v/ϕab] ∼= Γ[v/χ] ⊕ Γ[v/ψ]. Hence either aχb, or

aψb. If aχb, then ϕab ⊆ χ ⊆ ϕab. Thus Γ[v/ϕab] is Cartesian indecomposable. If

ϕab 6= ϕef , then ϕab ∩ ϕef = ∆. Otherwise, ϕab ∩ ϕef is a nontrivial graph direct

factor and ϕab ∩ ϕef , ϕab ∩ ϕ′ef , ϕ′ab ∩ ϕef , ϕ′ab ∩ ϕ
′
ef is a GDDSS by GSRP and

ϕab = (ϕab∩ϕef )∨(ϕab∩ϕ′ef ). As Γ[a/ϕab] is Cartesian indecomposable, ϕab ⊆ ϕef
or ϕab ⊆ ϕ′ef . If ϕab ⊆ ϕef , then ϕef = (ϕab ∩ϕef )∨ (ϕ′ab ∩ϕef ), again by GSRP.

As Γ[v/ϕef ] is Cartesian indecomposable, ϕef = ϕab ∩ ϕef or ϕef = ϕ′ab ∩ ϕef .

The first option implies ϕef = ϕab which is a contradiction. The other option

(ϕef = ϕ′ab∩ϕef ) contradicts ϕab ⊆ ϕef . Thus ϕab ⊆ ϕ′ef and ϕab∩ϕef = ∆. Then

(e, f) ∈ ϕ′ab for every ef ∈ E(Γ), ϕef 6= ϕab since (e, f) /∈ ϕab. Thus ϕef ⊆ ϕ′ab for

every ef ∈ E(Γ) such that ϕab 6= ϕef . Hence
∨
{ϕef : ef ∈ E(Γ), ϕef 6= ϕab} ⊆

ϕ′ab. Actually ϕ′ab =
∨
{ϕef : ef ∈ E(Γ), ϕef 6= ϕab}, since for every cd ∈ E(Γ),

(c, d) /∈ ϕab implies ϕcd 6= ϕab. Thus ϕab ∩ (
∨
{ϕef : ef ∈ E(Γ), ϕef 6= ϕab}) = ∆.

If ϕab 6= ϕcd, then ϕab, ϕ
′
ab and ϕcd, ϕ

′
cd are GDDSSs. Hence by GSRP, ϕab, ϕcd,

ϕ′ab ∩ ϕ
′
cd is a GDDSS since ϕab ∩ ϕcd = ∆, ϕ′ab ∩ ϕcd = ϕcd and ϕab ∩ ϕ′cd = ϕab.

Thus ϕab ◦ ϕcd = ϕcd ◦ ϕab. As
∨
{ϕxy : xy ∈ E(Γ)} = ϕab ∨ (

∨
{ϕef : ef ∈

E(Γ), ϕef 6= ϕab}) = ϕab ∨ ϕ′ab = V (Γ) × V (Γ) and if uv ∈ E(Γ), then uϕuvv.

This shows that (iii) of Definition 6 holds. Thus ϕxy (xy ∈ E(Γ)) is a GDDSS

on Γ. Since every Γ[v/ϕab] is Cartesian indecomposable for every v ∈ V (Γ) and

every ab ∈ E(Γ), by Theorem 5, Γ is a restricted Cartesian product of Cartesian

indecomposable graphs. �
The factorization in Theorem 10 is essentially unique. On a connected graph Γ,

the relation ab ∼ cd iff ϕab = ϕcd is an equivalence relation on E(Γ), where ϕab is

the smallest graph direct factor on Γ containing (a, b). Let T (Γ) be a transversal
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of the equivalence relation ∼; i.e., T (Γ) ⊆ E(Γ) such that if ab, cd ∈ T (Γ) and

{a, b} 6= {c, d}, then ϕab 6= ϕcd and if xy ∈ E(Γ), there is ef ∈ T (Γ) such that

ϕxy = ϕef . Then the uniqueness of factorization can be expressed as follows:

Theorem 11. Let Γ ∼=
∑
{(Γi, vi) : i ∈ I}, vi ∈ V (Γi), i ∈ I. Suppose Γ

is connected and Γi is a Cartesian indecomposable graph for every i ∈ I. Then

there is a bijective mapping g : I −→ T (Γ) such that Γi ∼= Γ[v/ϕg(i)], i ∈ I where

v ∈ V (Γ) corresponds to (. . . , vi, . . . ) ∈ V (
∑
{(Γi, vi) : i ∈ I}).

This theorem states the uniqueness of decomposition of connected graphs as

restricted Cartesian products of Cartesian indecomposable graphs. It is essentially

Szatz 5 in Imrich [14].
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