SKEW PRODUCTS IN THE CENTRALIZER OF COMPACT ABELIAN GROUP EXTENSIONS

G. R. GOODSON

Abstract

If T_{ψ} is an ergodic group extension of a weakly mixing transformation T having minimal self-joinings, then it is shown that isomorphism between T_{ψ} and its inverse implies isomorphism between T and T^{-1}. However, if T satisfies the weaker condition of being simple it is shown that that isomorphism between T_{ψ} and its inverse does not imply the isomorphism between T and T^{-1}. This answers a question asked by D. Rudolph.

0 . Introduction

Let T be an ergodic automorphism defined on a standard Borel probability space (X, \mathcal{F}, μ). Given a compact abelian group G with Haar measure m, and a cocycle $\phi: X \rightarrow G$, the corresponding group extension $T_{\phi}: X \times G \rightarrow X \times G$ is defined by

$$
T_{\phi}(x, g)=(T x, \phi(x)+g) .
$$

Let $S \in C\left(T_{\phi}\right)$, where $C(T)$ denotes the centralizer of T. The question of when S can be represented as a skew product: $S(x, g)=\left(S_{0} x, \psi(x, g)\right)$ is often of importance. In this situation (when the first coordinate is independent of g), we call S a G-map. We examine some new sufficient conditions for the existence of G-maps, and give some examples where they do not occur. It is important to know when G-maps exist since if they do, the form of members of the centralizer can be completely determined.

The following was shown in [2]: Suppose that T is a simple map (in the sense of del Junco and Rudolph [3]), which is isomorphic to its inverse, and suppose that T_{ϕ} is also isomorphic to its inverse, then every conjugation between T_{ϕ} and its inverse is a G-map. D. Rudolph asked the question whether this result is still true if we do not assume that T is isomorphic to its inverse. We construct a family of simple maps T_{ψ}, each of which is an abelian group extension of a simple map T which is not isomorphic to its inverse, even though T_{ψ} is isomorphic to its inverse. Consequently, the conjugations between T_{ψ} and its inverse cannot be G-maps. Our last theorem shows that this phenomenon cannot happen if T is assumed to

[^0]have minimal self joinings. I would like to thank Dan Rudolph for his interest in this paper.

1. Preliminaries

Let $T:(X, \mathcal{F}, \mu) \rightarrow(X, \mathcal{F}, \mu)$ be an ergodic automorphism defined on a nonatomic standard Borel probability space. We denote the identity automorphism and the identity group automorphism by I. The group of all automorphisms $\operatorname{Aut}(X)$ of (X, \mathcal{F}, μ) becomes a completely metrizable topological group when endowed with the weak convergence of transformations $\left(T_{n} \rightarrow T\right.$ if for all $A \in \mathcal{F}$, $\mu\left(T_{n}^{-1}(A) \triangle T^{-1}(A)\right)+\mu\left(T_{n}(A) \triangle T(A)\right) \rightarrow 0$ as $\left.n \rightarrow \infty\right)$. Denote by $C(T)$ the centralizer (or commutant) of T, i.e., those automorphisms of (X, \mathcal{F}, μ) which commute with T. Since we are assuming the members of $C(T)$ are invertible, $C(T)$ is a group.

Much of the discussion concerns the set

$$
\mathcal{B}(T)=\left\{S \in \operatorname{Aut}(X): T S=S T^{-1}\right\}
$$

whose basic properties are discussed in [2]. In particular we note that $\left\{S^{2}: S \in\right.$ $\mathcal{B}(T)\} \subseteq C(T)$.

Let G be a compact abelian group equipped with Haar measure m and denote by $\left(X \times G, \mathcal{F}_{G}, \tilde{\mu}\right)$ the product measure space, where $\tilde{\mu}=\mu \times m$. Let $\phi: X \rightarrow G$ be measurable (i.e., a G-cocycle), then the corresponding G-extension: $T_{\phi}: X \times G \rightarrow$ $X \times G$ preserves the measure $\tilde{\mu}$.

Recall that for an automorphism $T:(X, \mathcal{F}, \mu) \rightarrow(X, \mathcal{F}, \mu)$, a T-invariant sub σ-algebra \mathcal{C} (i.e., $T^{-1} \mathcal{C}=\mathcal{C}$) is said to be a factor of T (or rather the map $T:(X, \mathcal{C}, \mu) \rightarrow(X, \mathcal{C}, \mu)$ is a factor of $T:(X, \mathcal{F}, \mu) \rightarrow(X, \mathcal{F}, \mu)) . J(T, S)$ will be used to denote the space of all 2-joinings of T with another such map S i.e., $\lambda \in J(T, S)$ if λ is a $T \times S$-invariant probability measure on $\mathcal{F} \otimes \mathcal{F}$ whose marginals on each coordinate are μ. In this paper we will have either $S=T$, or $S=T^{-1}$. The general theory of joinings is developed in [3] (see also [6]).
T is said to be 2 -simple, if the the only ergodic 2 -joinings $\lambda \in J(T, T)$ are product measure $\mu \times \mu$, and measures of the form $\mu_{S}, S \in C(T)$, (graph-joinings) defined by $\mu_{S}(A \times B)=\mu\left(A \cap S^{-1} B\right)$. T is said to have minimal self-joinings (MSJ) (of order two), if in addition the only graph joinings arise from powers of T.

If T and S have a common factor \mathcal{C}, and λ is a self-joining of the factor map, we can lift it to a joining of T and S by

$$
\widehat{\lambda}(A \times B)=\int_{X \times X} E(A \mid \mathcal{C}) E(B \mid \mathcal{C}) d \lambda, \quad A, B \in \mathcal{B}
$$

called the relatively independent extension of λ.

We say that a measurable transformation $S: X \times G \rightarrow X \times G$ is a G-map if it factors as a skew product, of the form $S(x, g)=(k x, \psi(x, g))$, for some measurable $k: X \rightarrow X$, and $\psi: X \times G \rightarrow G$. We make the distinction between skew products and G-maps because a transformation may be a G-map for one particular G, but not for a different one (and of course is a skew product in each case). If $\tilde{S} \in C\left(T_{\phi}\right)$ is a G-map (respectively $\tilde{K} \in \mathcal{B}\left(T_{\phi}\right)$ is a G-map), then it is known ([2], [5]) that there exists $S \in C(T)$, (respectively $k \in \mathcal{B}(T)$), $f: X \rightarrow G$ measurable and a continuous epimorphism $v: G \rightarrow G$ for which

$$
\tilde{S}(x, g)=(S x, f(x)+v(g)) ; \quad \phi(S x)-v(\phi(x))=f(T x)-f(x)
$$

(respectively

$$
\tilde{K}(x, g)=(k x, f(x)+v(g)) ; \quad \phi(k T x)+v((\phi(x))=f(x)-f(T x)) .
$$

We say that S can be lifted to $C\left(T_{\phi}\right)$ and k can be lifted to $\mathcal{B}\left(T_{\phi}\right)$ when the above hold. It is known that if T is simple and T_{ϕ} is ergodic, then every $\tilde{S} \in C\left(T_{\phi}\right)$ is a G-map (and if we also have T isomorphic to its inverse, then every $\tilde{K} \in \mathcal{B}\left(T_{\phi}\right)$ is a G-map), [2], [5].

2. New Sufficient Conditions for the Existence of G-maps

Recall that T has the weak closure property if the weak closure of the powers of T equals $C(T)$. In this section we shall see that automorphisms T with the property that the set $\left\{S^{2}: S \in \mathcal{B}(T)\right\}$ is a singleton set, are of importance. For example, it was shown in $[\mathbf{2}]$ that transformations having the weak closure property and that are isomorphic to their inverses always satisfy this. Also if T has simple spectrum, $S^{2}=I$ for all $S \in \mathcal{B}(T)$. We mention here a simple property of such automorphisms related to Proposition 5 of [2].

Proposition 1. (i) S conjugates $C(T)$ to $C(T)^{-1}$ for every $S \in \mathcal{B}(T)$ if and only if $\left\{S^{2}: S \in \mathcal{B}(T)\right\}$ is a singleton set.
(ii) If $\left\{S^{2}: S \in \mathcal{B}(T)\right\}$ is a singleton set, then $S^{4}=I$ for all $S \in \mathcal{B}(T)$.

Proof. (i) If $S \in \mathcal{B}(T)$ conjugates $C(T)$ to $C(T)^{-1}$, then $S \circ R=R^{-1} \circ S$ for all $R \in C(T)$. This implies that $(S \circ R)^{2}=S^{2}$, and the result follows since given $S_{1}, S_{2} \in \mathcal{B}(T), S_{1}=S_{2} \circ R$ for some $R \in C(T)$.

Conversely suppose that $\left\{S^{2}: S \in \mathcal{B}(T)\right\}$ is a singleton set, then $(S \circ R)^{2}=S^{2}$ for any $S \in \mathcal{B}(T)$ and $R \in C(T)$. This immediately gives $S \circ R=R^{-1} \circ S$, or that S conjugates $C(T)$ to $C(T)^{-1}$.
(ii) Suppose $\left\{S^{2}: S \in \mathcal{B}(T)\right\}$ is a singleton set, and let $S \in \mathcal{B}(T)$, then $S^{3} \in$ $\mathcal{B}(T)$ and we have $S^{6}=S^{2}$, so $S^{4}=I$.

The following was proved in [1].

Theorem 1. Suppose that T is an ergodic transformation isomorphic to its inverse and having the weak closure property. If there exists a conjugation of order 4, then every conjugation is of order 4, and T can be represented as a \mathbb{Z}_{2}-extension of an ergodic map T_{0}. Furthermore, every $S \in \mathcal{B}(T)$ can be represented in the form

$$
S(x, j)=(k x, \psi(x)+j), \quad \text { for some } \quad k \in \mathcal{B}\left(T_{0}\right) \quad \text { satisfying } \quad k^{2}=I
$$

and every $\widehat{\phi} \in C(T)$ is the lift of some $\phi \in C\left(T_{0}\right)$. As a consequence, $\widehat{\phi}(x, j)=$ $(\phi(x), u(x)+j)$ for some measurable $u: X \rightarrow \mathbb{Z}_{2}$.

We prove here some related results, giving conditions under which a map is a skew product, and hence a G-map.

Theorem 2. Let $T_{\phi}: X \times G \rightarrow X \times G$ be a compact group extension which is isomorphic to its inverse. If the set $\left\{S^{2}: S \in \mathcal{B}\left(T_{\phi}\right)\right\}$ is a singleton set, then for each $S \in \mathcal{B}\left(T_{\phi}\right)$ there exists $k \in \mathcal{B}(T)$, and measurable $\psi: X \rightarrow G$ with $S(x, g)=(k x, \psi(x)-g)$, a.e. $x \in X, g \in G$.

Proof. We use the fact that $S: X \times G \rightarrow X \times G$ is essentially one-to-one, so that if $S(x, g)=(k(x, g), \psi(x, g))$, and if

$$
k\left(x_{1}, g_{1}\right)=k\left(x_{2}, g_{2}\right) \text { and } \psi\left(x_{1}, g_{1}\right)=\psi\left(x_{2}, g_{2}\right) \text { then }\left(x_{1}, g_{1}\right)=\left(x_{2}, g_{2}\right) \text { a.e. } \tilde{\mu} .
$$

Now let $S \in \mathcal{B}\left(T_{\phi}\right)$ and $\sigma(x, g)=(x, g+h)$ for some $h \in G$, then $S \circ \sigma_{h} \in \mathcal{B}\left(T_{\phi}\right)$, so that $S^{2}=\left(S \circ \sigma_{h}\right)^{2}$. This says that

$$
k(k(x, g+h), \psi(x, g+h)+h)=k(k(x, g), \psi(x, g)),
$$

and

$$
\psi(k(x, g+h), \psi(x, g+h)+h)=\psi(k(x, g), \psi(x, g)) .
$$

These two together imply that

$$
k(x, g+h)=k(x, g) \quad \text { and } \quad \psi(x, g+h)+h=\psi(x, g), \quad \text { a.e. } \quad \tilde{\mu},
$$

and hence for almost all $h, g \in G$ and $x \in X$. In particular, k is independent of h almost everywhere, so we can write $k(x, g)=k(x)$, say. Also, if $\psi^{\prime}(x)=\psi\left(x, g_{0}\right)$, where g_{0} is chosen so that the above equation holds a.e., then we have $\psi(x, h)=$ $\psi^{\prime}(x)-h+g_{0}$ a.e. Now replace ψ^{\prime} by $\psi(x)=\psi^{\prime}(x)+g_{0}$, and we see that $\psi(x, h)$ is of the required form. It can now be seen that since $S \in \mathcal{B}\left(T_{\phi}\right)$ then $k \in \mathcal{B}(T)$.

Corollary 1. Suppose T_{ϕ} is isomorphic to its inverse. If either $\tilde{K}^{2}=I$ for all $\tilde{K} \in \mathcal{B}\left(T_{\phi}\right)$, or if T_{ϕ} has the weak closure property, then all members of $C\left(T_{\phi}\right)$ and $\mathcal{B}\left(T_{\phi}\right)$ are G-maps. In fact, if $\tilde{S} \in C\left(T_{\phi}\right)$, then $\tilde{S}(x, g)=(S x, u(x)+g)$ for some $S \in C(T)$ and measurable $u: X \rightarrow G$.

Proof. We simply use the fact that if $\tilde{K} \in \mathcal{B}\left(T_{\phi}\right)$, then $\tilde{K} \circ \tilde{S} \in \mathcal{B}\left(T_{\phi}\right)$ for any $\tilde{S} \in C\left(T_{\phi}\right)$.

3. Conjugations Which Are Not G-maps

In $[\mathbf{2}]$ the following theorem was proved:
Theorem 3. Suppose that T_{ϕ} is an ergodic compact group extension of a 2-simple map T. If T_{ϕ} is isomorphic to its inverse, then every member of $\mathcal{B}\left(T_{\phi}\right)$ is a G-map if and only if T is isomorphic to its inverse.

The question arose in [2] whether for a simple map T, the isomorphism between T_{ϕ} and its inverse is enough to guarantee the same being true for T. In this section we show that this is not the case, even if T_{ϕ} is also a simple map. In particular this shows that it is possible for a group extension T_{ϕ} to be isomorphic to its inverse without the base transformation T being isomorphic to its inverse. Our final theorem shows that if T has minimal self-joinings, then it does follow that T must be isomorphic to its inverse.

We start with some new results which parallel results in [4]. We say that a cocycle $\phi: X \rightarrow G$ is ergodic if the corresponding group extension T_{ϕ} is ergodic. Given $k \in \mathcal{B}(T)$ we obtain a graph joining $\mu_{k} \in J\left(T, T^{-1}\right)$ defined by $\mu_{k}(A \times B)=$ $\mu\left(A \cap k^{-1} B\right)$, for $A, B \in \mathcal{F}$.

Theorem 4. Let $\phi: X \rightarrow \mathbb{Z}_{2}$ be an ergodic cocycle and $k \in \mathcal{B}(T)$. If $\widehat{\mu}_{k} \in$ $J\left(T_{\phi}, T_{\phi}^{-1}\right)$ denotes the relatively independent extension of μ_{k}, then the following are equivalent:
(i) $\widehat{\mu}_{k}$ is ergodic.
(ii) $T_{\phi \times \phi \circ k T}(x, i, j)=(T x, \phi(x)+i, \phi(k T x)+j)$ is ergodic.
(iii) $k \in \mathcal{B}(T)$ does not lift to $\mathcal{B}\left(T_{\phi}\right)$.
(iv) $S(x, g)=(T x, \phi(k T x)+\phi(x)+g)$ is ergodic.

Proof. (i) \Leftrightarrow (ii) Let us define $f: X \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow X \times \mathbb{Z}_{2} \times X \times \mathbb{Z}_{2}$ by $f(x, i, j)=$ $(x, i, k x, j)$, then it is easy to check that

$$
f \circ T_{\phi \times \phi \circ k T}=\left(T_{\phi} \times T_{\phi}^{-1}\right) \circ f,
$$

(here T_{ϕ}^{-1} denotes the inverse of the extension and not the extension of the inverse). This implies that the dynamical systems $\left(T_{\phi \times \phi \circ k T}, \mu \times \nu_{2} \times \nu_{2}\right)$ and $\left(T_{\phi} \times T_{\phi}^{-1}, \lambda\right)$ are isomorphic (where λ is the image of $\mu \times \nu_{2} \times \nu_{2}$ under f and ν_{2} is Haar measure on \mathbb{Z}_{2}). We need only check that λ is the relatively independent extension of μ_{k}, i.e., $\lambda=\widehat{\mu}_{k}$. Since the support of λ is the set $\left\{(x, i, k x, j): x \in X ; i, j \in \mathbb{Z}_{2}\right\}$, we have $\lambda=\mu_{k} \times \nu_{2} \times \nu_{2}$ and this is just $\widehat{\mu}_{k}$.
(ii) \Leftrightarrow (iii) Suppose that $\phi \times \phi \circ k T$ is ergodic (where $\phi \times \phi \circ k T(x)=$ $(\phi(x), \phi(k T x))$), and k lifts to $\mathcal{B}\left(T_{\phi}\right)$, then there exists measurable f such that

$$
\phi(k T x)+\phi(x)=f(x)-f(T x) .
$$

Let $\chi \in \widehat{\mathbb{Z}}_{2}, \chi \neq 1$, then

$$
\chi(\phi \circ k T(x)) \cdot \chi(\phi x)=\chi \circ f(x) / \chi \circ f(T x)
$$

But $\phi \times \phi \circ k T$ ergodic implies that $\chi \circ f=$ constant, and $\tilde{\chi}(i, j)=\chi(i) \chi(j)=1$, but $\tilde{\chi}(i, j)=(-1)^{i+j} \neq 1$, so we have a contradiction.

Conversely suppose the product cocycle $\phi \times \phi \circ k T$ is not ergodic. Then there exist measurable \tilde{f} and characters χ_{1} and χ_{2} (both not 1 , for otherwise ϕ would not be ergodic), satisfying

$$
\tilde{f}(T x) / \tilde{f}(x)=\chi_{1}(\phi(x)) \chi_{2}(\phi(k T x))
$$

Therefore $\tilde{f}^{2}(T x)=\tilde{f}^{2}(x)$, and the ergodicity of T implies that $\tilde{f}^{2}=$ a constant. We see that \tilde{f} takes 2 values, which we may assume are ± 1. It follows that there exists f such that

$$
\phi(k T x)+\phi(x)=f(x)-f(T x)
$$

and this implies that k lifts to $\mathcal{B}\left(T_{\phi}\right)$, a contradiction.
(ii) \Rightarrow (iv) It is easy to see that S is a factor of $T_{\phi \times \phi \circ k T}$, via the map $F(x, i, j)=$ $(x, i-j)$, i.e., $F \circ T_{\phi \times \phi \circ k T}=S \circ F$. The ergodicity of $T_{\phi \times \phi \circ k T}$ now implies that of S.
(iv) \Rightarrow (iii) This now follows using a similar argument to (ii) \Rightarrow (iii).

Corollary 2. $k \in \mathcal{B}(T)$ lifts to $\mathcal{B}\left(T_{\phi}\right)$ if and only if $T_{\phi \times \phi \circ k T}$ is not ergodic.
Proposition 2. Define $R: X \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow X \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ by

$$
R(x, i, j)=(k x, j, i), \quad \text { where } \quad k^{2}=I
$$

then $R \circ T_{\phi \times \phi \circ k T}=T_{\phi \times \phi \circ k T}^{-1} \circ R$, i.e., R conjugates $T_{\phi \times \phi \circ k T}$ to its inverse.
Proof. Note that $T_{\phi \times \phi \circ k T}^{-1}(x, i, j)=\left(T^{-1} x,-\phi\left(T^{-1} x\right)+i,-\phi(k x)+j\right)$, and

$$
\begin{gathered}
R \circ T_{\phi \times \phi \circ k T}(x, i, j)=R(T x, \phi(x)+i, \phi(k T x)+j)=(k T x, \phi(k T x)+j, \phi(x)+i), \\
T_{\phi \times \phi \circ k T}^{-1} \circ R(x, i, j)=T_{\phi \times \phi \circ k T}^{-1}(k x, j, i) \\
=\left(T^{-1} k x,-\phi\left(T^{-1} k x\right)+j,-\phi\left(k^{2} x\right)+i\right)=(k T x, \phi(k T x)+j, \phi(x)+i)
\end{gathered}
$$

in \mathbb{Z}_{2}.
Remark. R is a G-map for T with $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, but is not a \mathbb{Z}_{2}-map for T_{ϕ}. Although R is an involution, there are members of $\mathcal{B}\left(T_{\phi \times \phi k T}\right)$ which are not involutions. For example

$$
\tilde{K}(x, i, j)=(k x, j+1, i)
$$

Theorem 5. There is a weakly mixing automorphism $T: X \rightarrow X$ having a weakly mixing compact group extension $T_{\psi}: X \times G \rightarrow X \times G$ of a compact abelian group G with the following properties:
(i) T and T_{ψ} are simple maps.
(ii) $T_{\psi} \cong T_{\psi}^{-1}$.
(iii) T and T^{-1} are not isomorphic.
(iv) If $K \in \mathcal{B}\left(T_{\psi}\right)$, then K is not a G-map for T.

Proof. Start by choosing S to be an automorphism having minimal self-joinings and isomorphic to its inverse (for example, the rank one substitution $\theta(0)=00100$, $\theta(1)=1$, see $[\mathbf{3}]$ or $[\mathbf{6}])$. Choose a cocycle $\phi: X \rightarrow \mathbb{Z}_{2}$ with the property that $\mathcal{B}\left(S_{\phi}\right)=\emptyset$ and S_{ϕ} is ergodic. In particular S_{ϕ} is not isomorphic to its inverse and hence is weakly mixing (see [2], Proposition 11(i)).

Let $T=S_{\phi}$, and put $\psi=\phi \circ k S$, for some $k \in \mathcal{B}(S)$, then by Corollary 2 and Proposition 2 (using $k^{2}=I$), T_{ψ} is ergodic and isomorphic to its inverse. T and T_{ψ}, being extensions of a map with minimal self-joinings, are both simple and hence weakly mixing (by Proposition 11(iii) of [2]). Clearly T_{ψ} is an extension of T, and the conclusions of the theorem are satisfied.

Remarks. 1. Every $K \in \mathcal{B}\left(T_{\psi}\right)$ is of the form $K=T_{\psi}^{m} \circ R$, where $R(x, i, j)=$ $\left(k x, j+c_{1}, i+c_{2}\right), c_{1}, c_{2} \in \mathbb{Z}_{2}, k \in \mathcal{B}(T)$ and $m \in \mathbb{Z}$.
2. It follows from results in [1] that T_{ψ} has an even multiplicity function on the subspace

$$
\left\{f \in L^{2}\left(X \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right): f \circ K^{2}=f\right\}^{\perp}=\{f: f(x, i, j)=f(x, i+1, j+1)\}^{\perp}
$$

and also that the spectra of T and that of $T_{\psi}\left(\right.$ on $\left.L^{2}\left(X \times \mathbb{Z}_{2}\right)^{\perp}\right)$ cannot be mutually singular.

Finally we show that if T has minimal self-joinings, then the phenomena of Theorem 5 cannot happen.

Theorem 6. Suppose that $T: X \rightarrow X$ is weakly mixing and has minimal selfjoinings. Let $T_{\phi}: X \times G \rightarrow X \times G$ be a weakly mixing group extension for which $T_{\phi} \cong T_{\phi}^{-1}$, then $T \cong T^{-1}$.

Proof. Suppose S satisfies $S T_{\phi}=T_{\phi}^{-1} S$, and let $\tilde{\mu}_{S} \in J\left(T_{\phi}, T_{\phi}^{-1}\right)$ be the corresponding graph joining (where $\tilde{\mu}=\mu \times m$).

Now $\tilde{\mu}_{S} \mid \mathcal{F} \times \mathcal{F}$ is a joining of T and T^{-1}, i.e.,

$$
\tilde{\mu}_{S} \mid \mathcal{F} \times \mathcal{F} \in J\left(T, T^{-1}\right)
$$

However, since T and T^{-1} have minimal self-joinings, T and T^{-1} are either disjoint or conjugate (see [3]).

If they are disjoint, then $J\left(T, T^{-1}\right)=\{\mu \times \mu\}$, i.e., $\tilde{\mu}_{S} \mid \mathcal{F} \times \mathcal{F}=\mu \times \mu$. This, together with the fact that $T_{\phi} \times T_{\phi}^{-1}$ is weakly mixing implies that $\tilde{\mu}_{S}=\tilde{\mu} \times$ $\tilde{\mu}$, which is clearly impossible for a graph joining. Hence T and T^{-1} must be conjugate, i.e., there exists a measure preserving conjugation $k: X \rightarrow X$ for which $T k=k T^{-1}$, and the result follows.

References

1. Goodson G. R., The structure of ergodic transformations conjugate to their inverses, Proceedings of the Warwick Symposium 1993-4, Ergodic Theory of \mathbb{Z}^{d}-Actions, Cambridge University Press, 1996, pp. 369-386.
2. Goodson G. R., del Junco A., Lemańczyk M. and Rudolph D. J., Ergodic transformations conjugate to their inverses by involutions, Ergodic Theory and Dynamical Systems 16 (1996), 97-124.
3. del Junco A. and Rudolph D. J., On ergodic actions whose self-joinings are graphs, Ergodic Theory and Dynamical Systems 7 (1987), 531-557.
4. Lemańczyk M., Weakly isomorphic transformations that are not isomorphic, Prob. and Related Fields 78 (1988), 491-507.
5. Newton D., On canonical factors of ergodic dynamical systems, J. London Math. Soc. 2(19) (1979), 129-136.
6. Rudolph D. J., Fundamentals of Measurable Dynamics, Oxford University Press, 1990.

[^0]: Received September 14, 1998.
 1980 Mathematics Subject Classification (1991 Revision). Primary 28D05; Secondary 47A35.

