SKEW PRODUCTS IN THE CENTRALIZER OF COMPACT ABELIAN GROUP EXTENSIONS

G. R. GOODSON

ABSTRACT. If T_{ψ} is an ergodic group extension of a weakly mixing transformation T having minimal self-joinings, then it is shown that isomorphism between T_{ψ} and its inverse implies isomorphism between T and T^{-1} . However, if T satisfies the weaker condition of being simple it is shown that that isomorphism between T_{ψ} and its inverse does not imply the isomorphism between T and T^{-1} . This answers a question asked by D. Rudolph.

0. INTRODUCTION

Let T be an ergodic automorphism defined on a standard Borel probability space (X, \mathcal{F}, μ) . Given a compact abelian group G with Haar measure m, and a cocycle $\phi: X \to G$, the corresponding **group extension** $T_{\phi}: X \times G \to X \times G$ is defined by

$$T_{\phi}(x,g) = (Tx,\phi(x)+g).$$

Let $S \in C(T_{\phi})$, where C(T) denotes the **centralizer** of T. The question of when S can be represented as a **skew product**: $S(x,g) = (S_0x, \psi(x,g))$ is often of importance. In this situation (when the first coordinate is independent of g), we call S a G-map. We examine some new sufficient conditions for the existence of G-maps, and give some examples where they do not occur. It is important to know when G-maps exist since if they do, the form of members of the centralizer can be completely determined.

The following was shown in [2]: Suppose that T is a simple map (in the sense of del Junco and Rudolph [3]), which is isomorphic to its inverse, and suppose that T_{ϕ} is also isomorphic to its inverse, then every conjugation between T_{ϕ} and its inverse is a G-map. D. Rudolph asked the question whether this result is still true if we do not assume that T is isomorphic to its inverse. We construct a family of simple maps T_{ψ} , each of which is an abelian group extension of a simple map T which is not isomorphic to its inverse, even though T_{ψ} is isomorphic to its inverse. Consequently, the conjugations between T_{ψ} and its inverse cannot be G-maps. Our last theorem shows that this phenomenon cannot happen if T is assumed to

Received September 14, 1998.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 28D05; Secondary 47A35.

have minimal self joinings. I would like to thank Dan Rudolph for his interest in this paper.

1. Preliminaries

Let $T: (X, \mathcal{F}, \mu) \to (X, \mathcal{F}, \mu)$ be an ergodic automorphism defined on a nonatomic standard Borel probability space. We denote the identity automorphism and the identity group automorphism by I. The group of all automorphisms $\operatorname{Aut}(X)$ of (X, \mathcal{F}, μ) becomes a completely metrizable topological group when endowed with the weak convergence of transformations $(T_n \to T \text{ if for all } A \in \mathcal{F},$ $\mu(T_n^{-1}(A) \triangle T^{-1}(A)) + \mu(T_n(A) \triangle T(A)) \to 0$ as $n \to \infty$). Denote by C(T) the centralizer (or commutant) of T, i.e., those automorphisms of (X, \mathcal{F}, μ) which commute with T. Since we are assuming the members of C(T) are invertible, C(T) is a group.

Much of the discussion concerns the set

$$\mathcal{B}(T) = \{ S \in \operatorname{Aut}(X) : TS = ST^{-1} \},\$$

whose basic properties are discussed in [2]. In particular we note that $\{S^2 : S \in \mathcal{B}(T)\} \subseteq C(T)$.

Let G be a compact abelian group equipped with Haar measure m and denote by $(X \times G, \mathcal{F}_G, \tilde{\mu})$ the product measure space, where $\tilde{\mu} = \mu \times m$. Let $\phi: X \to G$ be measurable (i.e., a G-cocycle), then the corresponding G-extension: $T_{\phi}: X \times G \to X \times G$ preserves the measure $\tilde{\mu}$.

Recall that for an automorphism $T: (X, \mathcal{F}, \mu) \to (X, \mathcal{F}, \mu)$, a *T*-invariant sub σ -algebra \mathcal{C} (i.e., $T^{-1}\mathcal{C} = \mathcal{C}$) is said to be a **factor** of *T* (or rather the map $T: (X, \mathcal{C}, \mu) \to (X, \mathcal{C}, \mu)$ is a factor of $T: (X, \mathcal{F}, \mu) \to (X, \mathcal{F}, \mu)$). J(T, S) will be used to denote the space of all 2-**joinings** of *T* with another such map *S* i.e., $\lambda \in J(T, S)$ if λ is a $T \times S$ -invariant probability measure on $\mathcal{F} \otimes \mathcal{F}$ whose marginals on each coordinate are μ . In this paper we will have either S = T, or $S = T^{-1}$. The general theory of joinings is developed in [3] (see also [6]).

T is said to be 2-simple, if the the only ergodic 2-joinings $\lambda \in J(T,T)$ are product measure $\mu \times \mu$, and measures of the form μ_S , $S \in C(T)$, (graph-joinings) defined by $\mu_S(A \times B) = \mu(A \cap S^{-1}B)$. T is said to have minimal self-joinings (MSJ) (of order two), if in addition the only graph joinings arise from powers of T.

If T and S have a common factor C, and λ is a self-joining of the factor map, we can lift it to a joining of T and S by

$$\widehat{\lambda}(A imes B) = \int_{X imes X} E(A|\mathcal{C}) E(B|\mathcal{C}) \, d\lambda, \qquad A, B \in \mathcal{B},$$

called the **relatively independent extension** of λ .

We say that a measurable transformation $S: X \times G \to X \times G$ is a *G*-map if it factors as a skew product, of the form $S(x,g) = (kx, \psi(x,g))$, for some measurable $k: X \to X$, and $\psi: X \times G \to G$. We make the distinction between skew products and *G*-maps because a transformation may be a *G*-map for one particular *G*, but not for a different one (and of course is a skew product in each case). If $\tilde{S} \in C(T_{\phi})$ is a *G*-map (respectively $\tilde{K} \in \mathcal{B}(T_{\phi})$ is a *G*-map), then it is known ([2], [5]) that there exists $S \in C(T)$, (respectively $k \in \mathcal{B}(T)$), $f: X \to G$ measurable and a continuous epimorphism $v: G \to G$ for which

$$\hat{S}(x,g) = (Sx, f(x) + v(g)); \qquad \phi(Sx) - v(\phi(x)) = f(Tx) - f(x)$$

(respectively

$$\ddot{K}(x,g) = (kx, f(x) + v(g));$$
 $\phi(kTx) + v((\phi(x)) = f(x) - f(Tx)).$

We say that S can be **lifted** to $C(T_{\phi})$ and k can be **lifted** to $\mathcal{B}(T_{\phi})$ when the above hold. It is known that if T is simple and T_{ϕ} is ergodic, then every $\tilde{S} \in C(T_{\phi})$ is a G-map (and if we also have T isomorphic to its inverse, then every $\tilde{K} \in \mathcal{B}(T_{\phi})$ is a G-map), [2], [5].

2. New Sufficient Conditions for the Existence of G-maps

Recall that T has the weak closure property if the weak closure of the powers of T equals C(T). In this section we shall see that automorphisms T with the property that the set $\{S^2 : S \in \mathcal{B}(T)\}$ is a singleton set, are of importance. For example, it was shown in [2] that transformations having the weak closure property and that are isomorphic to their inverses always satisfy this. Also if T has simple spectrum, $S^2 = I$ for all $S \in \mathcal{B}(T)$. We mention here a simple property of such automorphisms related to Proposition 5 of [2].

Proposition 1. (i) S conjugates C(T) to $C(T)^{-1}$ for every $S \in \mathcal{B}(T)$ if and only if $\{S^2 : S \in \mathcal{B}(T)\}$ is a singleton set.

(ii) If $\{S^2 : S \in \mathcal{B}(T)\}$ is a singleton set, then $S^4 = I$ for all $S \in \mathcal{B}(T)$.

Proof. (i) If $S \in \mathcal{B}(T)$ conjugates C(T) to $C(T)^{-1}$, then $S \circ R = R^{-1} \circ S$ for all $R \in C(T)$. This implies that $(S \circ R)^2 = S^2$, and the result follows since given $S_1, S_2 \in \mathcal{B}(T), S_1 = S_2 \circ R$ for some $R \in C(T)$.

Conversely suppose that $\{S^2 : S \in \mathcal{B}(T)\}$ is a singleton set, then $(S \circ R)^2 = S^2$ for any $S \in \mathcal{B}(T)$ and $R \in C(T)$. This immediately gives $S \circ R = R^{-1} \circ S$, or that S conjugates C(T) to $C(T)^{-1}$.

(ii) Suppose $\{S^2 : S \in \mathcal{B}(T)\}$ is a singleton set, and let $S \in \mathcal{B}(T)$, then $S^3 \in \mathcal{B}(T)$ and we have $S^6 = S^2$, so $S^4 = I$.

The following was proved in [1].

Theorem 1. Suppose that T is an ergodic transformation isomorphic to its inverse and having the weak closure property. If there exists a conjugation of order 4, then every conjugation is of order 4, and T can be represented as a \mathbb{Z}_2 -extension of an ergodic map T_0 . Furthermore, every $S \in \mathcal{B}(T)$ can be represented in the form

$$S(x,j) = (kx, \psi(x) + j), \quad for \ some \quad k \in \mathcal{B}(T_0) \quad satisfying \quad k^2 = I,$$

and every $\widehat{\phi} \in C(T)$ is the lift of some $\phi \in C(T_0)$. As a consequence, $\widehat{\phi}(x,j) = (\phi(x), u(x) + j)$ for some measurable $u: X \to \mathbb{Z}_2$.

We prove here some related results, giving conditions under which a map is a skew product, and hence a G-map.

Theorem 2. Let $T_{\phi}: X \times G \to X \times G$ be a compact group extension which is isomorphic to its inverse. If the set $\{S^2: S \in \mathcal{B}(T_{\phi})\}$ is a singleton set, then for each $S \in \mathcal{B}(T_{\phi})$ there exists $k \in \mathcal{B}(T)$, and measurable $\psi: X \to G$ with $S(x,g) = (kx, \psi(x) - g)$, a.e. $x \in X, g \in G$.

Proof. We use the fact that $S: X \times G \to X \times G$ is essentially one-to-one, so that if $S(x,g) = (k(x,g), \psi(x,g))$, and if

$$k(x_1,g_1) = k(x_2,g_2)$$
 and $\psi(x_1,g_1) = \psi(x_2,g_2)$ then $(x_1,g_1) = (x_2,g_2)$ a.e. $\tilde{\mu}$.

Now let $S \in \mathcal{B}(T_{\phi})$ and $\sigma(x, g) = (x, g+h)$ for some $h \in G$, then $S \circ \sigma_h \in \mathcal{B}(T_{\phi})$, so that $S^2 = (S \circ \sigma_h)^2$. This says that

$$k(k(x,g+h),\psi(x,g+h)+h) = k(k(x,g),\psi(x,g)),$$

and

$$\psi(k(x,g+h),\psi(x,g+h)+h) = \psi(k(x,g),\psi(x,g)).$$

These two together imply that

$$k(x, g+h) = k(x, g)$$
 and $\psi(x, g+h) + h = \psi(x, g)$, a.e. $\tilde{\mu}$,

and hence for almost all $h, g \in G$ and $x \in X$. In particular, k is independent of h almost everywhere, so we can write k(x,g) = k(x), say. Also, if $\psi'(x) = \psi(x,g_0)$, where g_0 is chosen so that the above equation holds a.e., then we have $\psi(x,h) = \psi'(x) - h + g_0$ a.e. Now replace ψ' by $\psi(x) = \psi'(x) + g_0$, and we see that $\psi(x,h)$ is of the required form. It can now be seen that since $S \in \mathcal{B}(T_{\phi})$ then $k \in \mathcal{B}(T)$.

Corollary 1. Suppose T_{ϕ} is isomorphic to its inverse. If either $\tilde{K}^2 = I$ for all $\tilde{K} \in \mathcal{B}(T_{\phi})$, or if T_{ϕ} has the weak closure property, then all members of $C(T_{\phi})$ and $\mathcal{B}(T_{\phi})$ are G-maps. In fact, if $\tilde{S} \in C(T_{\phi})$, then $\tilde{S}(x,g) = (Sx, u(x) + g)$ for some $S \in C(T)$ and measurable $u: X \to G$.

Proof. We simply use the fact that if $\tilde{K} \in \mathcal{B}(T_{\phi})$, then $\tilde{K} \circ \tilde{S} \in \mathcal{B}(T_{\phi})$ for any $\tilde{S} \in C(T_{\phi})$.

3. Conjugations Which Are Not G-maps

In [2] the following theorem was proved:

Theorem 3. Suppose that T_{ϕ} is an ergodic compact group extension of a 2-simple map T. If T_{ϕ} is isomorphic to its inverse, then every member of $\mathcal{B}(T_{\phi})$ is a G-map if and only if T is isomorphic to its inverse.

The question arose in [2] whether for a simple map T, the isomorphism between T_{ϕ} and its inverse is enough to guarantee the same being true for T. In this section we show that this is not the case, even if T_{ϕ} is also a simple map. In particular this shows that it is possible for a group extension T_{ϕ} to be isomorphic to its inverse without the base transformation T being isomorphic to its inverse. Our final theorem shows that if T has minimal self-joinings, then it does follow that T must be isomorphic to its inverse.

We start with some new results which parallel results in [4]. We say that a cocycle $\phi: X \to G$ is **ergodic** if the corresponding group extension T_{ϕ} is ergodic. Given $k \in \mathcal{B}(T)$ we obtain a graph joining $\mu_k \in J(T, T^{-1})$ defined by $\mu_k(A \times B) = \mu(A \cap k^{-1}B)$, for $A, B \in \mathcal{F}$.

Theorem 4. Let $\phi: X \to \mathbb{Z}_2$ be an ergodic cocycle and $k \in \mathcal{B}(T)$. If $\hat{\mu}_k \in J(T_{\phi}, T_{\phi}^{-1})$ denotes the relatively independent extension of μ_k , then the following are equivalent:

- (i) $\widehat{\mu}_k$ is ergodic.
- (ii) $T_{\phi \times \phi \circ kT}(x, i, j) = (Tx, \phi(x) + i, \phi(kTx) + j)$ is ergodic.
- (iii) $k \in \mathcal{B}(T)$ does not lift to $\mathcal{B}(T_{\phi})$.
- (iv) $S(x,g) = (Tx, \phi(kTx) + \phi(x) + g)$ is ergodic.

Proof. (i) \Leftrightarrow (ii) Let us define $f: X \times \mathbb{Z}_2 \times \mathbb{Z}_2 \to X \times \mathbb{Z}_2 \times X \times \mathbb{Z}_2$ by f(x, i, j) = (x, i, kx, j), then it is easy to check that

$$f \circ T_{\phi \times \phi \circ kT} = (T_{\phi} \times T_{\phi}^{-1}) \circ f,$$

(here T_{ϕ}^{-1} denotes the inverse of the extension and not the extension of the inverse). This implies that the dynamical systems $(T_{\phi \times \phi \circ kT}, \mu \times \nu_2 \times \nu_2)$ and $(T_{\phi} \times T_{\phi}^{-1}, \lambda)$ are isomorphic (where λ is the image of $\mu \times \nu_2 \times \nu_2$ under f and ν_2 is Haar measure on \mathbb{Z}_2). We need only check that λ is the relatively independent extension of μ_k , i.e., $\lambda = \hat{\mu}_k$. Since the support of λ is the set $\{(x, i, kx, j) : x \in X; i, j \in \mathbb{Z}_2\}$, we have $\lambda = \mu_k \times \nu_2 \times \nu_2$ and this is just $\hat{\mu}_k$.

(ii) \Leftrightarrow (iii) Suppose that $\phi \times \phi \circ kT$ is ergodic (where $\phi \times \phi \circ kT(x) = (\phi(x), \phi(kTx))$), and k lifts to $\mathcal{B}(T_{\phi})$, then there exists measurable f such that

$$\phi(kTx) + \phi(x) = f(x) - f(Tx).$$

Let $\chi \in \widehat{\mathbb{Z}}_2, \, \chi \neq 1$, then

$$\chi(\phi \circ kT(x)) \cdot \chi(\phi x) = \chi \circ f(x)/\chi \circ f(Tx).$$

But $\phi \times \phi \circ kT$ ergodic implies that $\chi \circ f = \text{constant}$, and $\tilde{\chi}(i, j) = \chi(i)\chi(j) = 1$, but $\tilde{\chi}(i, j) = (-1)^{i+j} \neq 1$, so we have a contradiction.

Conversely suppose the product cocycle $\phi \times \phi \circ kT$ is not ergodic. Then there exist measurable \tilde{f} and characters χ_1 and χ_2 (both not 1, for otherwise ϕ would not be ergodic), satisfying

$$\tilde{f}(Tx)/\tilde{f}(x) = \chi_1(\phi(x))\chi_2(\phi(kTx)).$$

Therefore $\tilde{f}^2(Tx) = \tilde{f}^2(x)$, and the ergodicity of T implies that $\tilde{f}^2 = a$ constant. We see that \tilde{f} takes 2 values, which we may assume are ± 1 . It follows that there exists f such that

$$\phi(kTx) + \phi(x) = f(x) - f(Tx),$$

and this implies that k lifts to $\mathcal{B}(T_{\phi})$, a contradiction.

(ii) \Rightarrow (iv) It is easy to see that S is a factor of $T_{\phi \times \phi \circ kT}$, via the map F(x, i, j) = (x, i - j), i.e., $F \circ T_{\phi \times \phi \circ kT} = S \circ F$. The ergodicity of $T_{\phi \times \phi \circ kT}$ now implies that of S.

 $(iv) \Rightarrow (iii)$ This now follows using a similar argument to $(ii) \Rightarrow (iii)$.

Corollary 2. $k \in \mathcal{B}(T)$ lifts to $\mathcal{B}(T_{\phi})$ if and only if $T_{\phi \times \phi \circ kT}$ is not ergodic.

Proposition 2. Define $R: X \times \mathbb{Z}_2 \times \mathbb{Z}_2 \to X \times \mathbb{Z}_2 \times \mathbb{Z}_2$ by

$$R(x,i,j) = (kx,j,i), \quad where \quad k^2 = I,$$

then $R \circ T_{\phi \times \phi \circ kT} = T_{\phi \times \phi \circ kT}^{-1} \circ R$, i.e., R conjugates $T_{\phi \times \phi \circ kT}$ to its inverse.

Proof. Note that $T_{\phi \times \phi \circ kT}^{-1}(x,i,j) = (T^{-1}x, -\phi(T^{-1}x) + i, -\phi(kx) + j)$, and

 $R \circ T_{\phi \times \phi \circ kT}(x,i,j) = R(Tx,\phi(x)+i,\phi(kTx)+j) = (kTx,\phi(kTx)+j,\phi(x)+i),$

$$T_{\phi \times \phi \circ kT}^{-1} \circ R(x, i, j) = T_{\phi \times \phi \circ kT}^{-1}(kx, j, i)$$

= $(T^{-1}kx, -\phi(T^{-1}kx) + j, -\phi(k^2x) + i) = (kTx, \phi(kTx) + j, \phi(x) + i)$

in \mathbb{Z}_2 .

Remark. R is a G-map for T with $G = \mathbb{Z}_2 \times \mathbb{Z}_2$, but is not a \mathbb{Z}_2 -map for T_{ϕ} . Although R is an involution, there are members of $\mathcal{B}(T_{\phi \times \phi kT})$ which are not involutions. For example

$$K(x, i, j) = (kx, j+1, i).$$

176

Theorem 5. There is a weakly mixing automorphism $T: X \to X$ having a weakly mixing compact group extension $T_{\psi}: X \times G \to X \times G$ of a compact abelian group G with the following properties:

- (i) T and T_{ψ} are simple maps.
- (*ii*) $T_{\psi} \cong T_{\psi}^{-1}$.
- (iii) T and T^{-1} are not isomorphic.
- (iv) If $K \in \mathcal{B}(T_{\psi})$, then K is not a G-map for T.

Proof. Start by choosing S to be an automorphism having minimal self-joinings and isomorphic to its inverse (for example, the rank one substitution $\theta(0) = 00100$, $\theta(1) = 1$, see [3] or [6]). Choose a cocycle $\phi: X \to \mathbb{Z}_2$ with the property that $\mathcal{B}(S_{\phi}) = \emptyset$ and S_{ϕ} is ergodic. In particular S_{ϕ} is not isomorphic to its inverse and hence is weakly mixing (see [2], Proposition 11(i)).

Let $T = S_{\phi}$, and put $\psi = \phi \circ kS$, for some $k \in \mathcal{B}(S)$, then by Corollary 2 and Proposition 2 (using $k^2 = I$), T_{ψ} is ergodic and isomorphic to its inverse. Tand T_{ψ} , being extensions of a map with minimal self-joinings, are both simple and hence weakly mixing (by Proposition 11(iii) of [2]). Clearly T_{ψ} is an extension of T, and the conclusions of the theorem are satisfied. \Box

Remarks. 1. Every $K \in \mathcal{B}(T_{\psi})$ is of the form $K = T_{\psi}^m \circ R$, where $R(x, i, j) = (kx, j + c_1, i + c_2), c_1, c_2 \in \mathbb{Z}_2, k \in \mathcal{B}(T)$ and $m \in \mathbb{Z}$.

2. It follows from results in [1] that T_{ψ} has an even multiplicity function on the subspace

$$\{f \in L^2(X \times \mathbb{Z}_2 \times \mathbb{Z}_2) : f \circ K^2 = f\}^{\perp} = \{f : f(x, i, j) = f(x, i+1, j+1)\}^{\perp},\$$

and also that the spectra of T and that of T_{ψ} (on $L^2(X \times \mathbb{Z}_2)^{\perp}$) cannot be mutually singular.

Finally we show that if T has minimal self-joinings, then the phenomena of Theorem 5 cannot happen.

Theorem 6. Suppose that $T: X \to X$ is weakly mixing and has minimal selfjoinings. Let $T_{\phi}: X \times G \to X \times G$ be a weakly mixing group extension for which $T_{\phi} \cong T_{\phi}^{-1}$, then $T \cong T^{-1}$.

Proof. Suppose S satisfies $ST_{\phi} = T_{\phi}^{-1}S$, and let $\tilde{\mu}_S \in J(T_{\phi}, T_{\phi}^{-1})$ be the corresponding graph joining (where $\tilde{\mu} = \mu \times m$).

Now $\tilde{\mu}_S | \mathcal{F} \times \mathcal{F}$ is a joining of T and T^{-1} , i.e.,

$$\tilde{\mu}_S | \mathcal{F} \times \mathcal{F} \in J(T, T^{-1}).$$

However, since T and T^{-1} have minimal self-joinings, T and T^{-1} are either disjoint or conjugate (see [3]).

If they are disjoint, then $J(T, T^{-1}) = \{\mu \times \mu\}$, i.e., $\tilde{\mu}_S | \mathcal{F} \times \mathcal{F} = \mu \times \mu$. This, together with the fact that $T_{\phi} \times T_{\phi}^{-1}$ is weakly mixing implies that $\tilde{\mu}_S = \tilde{\mu} \times \tilde{\mu}$, which is clearly impossible for a graph joining. Hence T and T^{-1} must be conjugate, i.e., there exists a measure preserving conjugation $k \colon X \to X$ for which $Tk = kT^{-1}$, and the result follows.

References

- Goodson G. R., The structure of ergodic transformations conjugate to their inverses, Proceedings of the Warwick Symposium 1993-4, Ergodic Theory of Z^d-Actions, Cambridge University Press, 1996, pp. 369–386.
- Goodson G. R., del Junco A., Lemańczyk M. and Rudolph D. J., Ergodic transformations conjugate to their inverses by involutions, Ergodic Theory and Dynamical Systems 16 (1996), 97–124.
- del Junco A. and Rudolph D. J., On ergodic actions whose self-joinings are graphs, Ergodic Theory and Dynamical Systems 7 (1987), 531–557.
- Lemańczyk M., Weakly isomorphic transformations that are not isomorphic, Prob. and Related Fields 78 (1988), 491–507.
- Newton D., On canonical factors of ergodic dynamical systems, J. London Math. Soc. 2(19) (1979), 129–136.
- 6. Rudolph D. J., Fundamentals of Measurable Dynamics, Oxford University Press, 1990.