WEAK CONGRUENCE SEMIDISTRIBUTIVITY LAWS AND THEIR CONJUGATES

G. CZÉDLI
Dedicated to the memory of Viktor Aleksandrovich Gorbunov

Abstract

Lattice Horn sentences including Geyer's $S D(n, 2)$ and their conjugates $C(n, 2)$ are considered. $S D(2,2)$ is the meet semidistributivity law $S D_{\wedge}$. Both $S D(n, 2)$ and $C(n, 2)$ become strictly weaker when n grows. For varieties \mathcal{V} the satisfaction of $S D(n, 2)$ in $\{\operatorname{Con}(A): A \in \mathcal{V}\}$ is characterized by a Mal'cev condition. Using this Mal'cev condition it is shown that $C(n, 2) \models{ }_{c o n} S D(n, 2)$, which means that, for every variety \mathcal{V}, whenever $C(n, 2)$ holds in $\{\operatorname{Con}(A): A \in \mathcal{V}\}$ then so does $S D(n, 2)$. In particular, $C(2,2) \models_{\text {con }} S D(2,2)$, which is a stronger statement than $S D \vee \models_{\text {con }} S D_{\wedge}$, the only previously known $\models_{\text {con }}$ result between lattice Horn sentences "not below congruence modularity". Some other \models con statements are also presented.

I. Introduction and the Main Results

This paper is primarily concerned with Mal'cev conditions and the consequence relation $\models_{\text {con }}$ between lattice Horn sentences in congruence (quasi)varieties.

Given a variety \mathcal{V} of algebras, the class of congruence lattices of members of \mathcal{V} will be denoted by

$$
\operatorname{Con}(\mathcal{V})=\{\operatorname{Con}(A): A \in \mathcal{V}\}
$$

By a (universal lattice) Horn sentence we mean a first order sentence

$$
\begin{equation*}
\left(\forall x_{0}, \ldots, x_{t-1}\right)\left(\left(p_{1}=q_{1} \& \ldots \& p_{k}=q_{k}\right) \Longrightarrow p=q\right) \tag{1}
\end{equation*}
$$

where $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}, p$ and q are lattice terms of the variables x_{0}, \ldots, x_{t-1}. Notice that using " \leq " instead of " $=$ " in (1) would give the same notion modulo lattice theory. Lattice identities are special Horn sentences with $k=0$ (or with $p_{i}=$ x_{0} and $q_{i}=x_{0}$ for all i). For convenience, lattice operations will be denoted by +

[^0](join) and \cdot (meet); \bigwedge and \& will denote conjunctions. The join semidistributivity law
$$
S D_{\vee}: \quad x+y=x+z \Longrightarrow x+y=x+y z
$$
and the meet semidistributivity law
$$
S D_{\wedge}: \quad x y=x z \Longrightarrow x y=x(y+z)
$$
are the most known Horn sentences that are not equivalent to lattice identities.
For a lattice H resp. class H of lattices and a Horn sentence λ let $H \models \lambda$ denote the fact that λ holds in H resp. in all members of H. The same symbol is used for the standard consequence relation between Horn sentences λ and $\mu: \lambda \models \mu$ means that for every lattice L if $L \models \lambda$ then $L \models \mu$. If $\operatorname{Con}(\mathcal{V}) \models \lambda$ implies $\operatorname{Con}(V) \models \mu$ for every variety \mathcal{V} then the notation
$$
\lambda \models_{\operatorname{con}} \mu
$$
is used. The statement $\lambda \models_{\text {con }} \mu$ is said to be nontrivial if $\lambda \not \models \mu$. This fact, i.e. the conjunction of $\lambda \models_{\text {con }} \mu$ and $\lambda \not \vDash \mu$, will be denoted by $\lambda \models_{\text {con }}^{\text {nt }} \mu$. Starting with Nation [22], there are many results of the form $\lambda \models_{\text {con }}^{\mathrm{nt}} \mu$, cf., e.g., Day [6], [7], Day and Freese [8], Freese, Herrmann and [11], Jónsson [17], [18], Mederly $[\mathbf{2 1}]$, and $[\mathbf{2}]$, with various lattice identities. (As a related deep result, Freese [10] is also worth mentionig here.) These results are "below congruence modularity" in the sense that modularity $\models_{\text {con }} \mu$. The only known $\lambda \models_{\text {con }}^{\mathrm{nt}} \mu$ type result not below congruence modularity is
\[

$$
\begin{equation*}
S D_{\vee} \models_{\mathrm{con}}^{\mathrm{nt}} S D_{\wedge} \tag{2}
\end{equation*}
$$

\]

from Hobby and McKenzie [14, p. 112]. One of our goals is to strengthen (2) and, by generalizing (2), to present infinitely many $\lambda \models_{\text {con }}^{\text {nt }} \mu$ results not below modularity.

Given a lattice identity λ, the class of varieties $\{\mathcal{V}: \operatorname{Con}(\mathcal{V}) \models \lambda\}$ is a weak Mal'cev class by Wille [26] and Pixley [24]. In other words, (the satisfaction of) λ (in congruence varieties) can be characterized by a weak Mal'cev condition. In many cases, all being covered by Chapter XIII in Freese and McKenzie [12], $\{\mathcal{V}: \operatorname{Con}(\mathcal{V}) \models \lambda\}$ is known to be a Mal'cev class. E.g., the distributivity resp. modularity are characterized by the famous Mal'cev conditions given by Jónsson [16] resp. Day [5].

Now let λ be a Horn sentence. Then $\{\mathcal{V}: \operatorname{Con}(\mathcal{V}) \models \lambda\}$ is known to be a weak Mal'cev class only in certain cases described in [3]; these cases include $S D_{\wedge}$ and $S D_{\vee}$. Using commutator theory, Lipparini [20] and Kearnes and Szendrei [19] have recently proved that $\left\{\mathcal{V}: \operatorname{Con}(\mathcal{V}) \models S D_{\wedge}\right\}$ is a Mal'cev class. For a direct approach (and also for an important application of the corresponding Mal'cev
condition) cf. Willard [25], and cf. also Hobby and McKenzie [14] for the locally finite case. Using ideas from [1], [3] and [25] we present Mal'cev conditions for infinitely many Horn sentences. These Mal'cev conditions provide the key to our $\lambda \models{ }_{\text {con }}^{\mathrm{nt}} \mu$ type achievements.

For $n \geq 2$ put $\mathbf{n}=\{0,1, \ldots, n-1\}$ and let $P_{2}(\mathbf{n})$ denote $\{S: S \subseteq \mathbf{n}$ and $|S| \geq 2\}$. For $\emptyset \neq H \subseteq P_{2}(\mathbf{n})$ we define the generalized meet semidistributivity law $S D(n, H)$ as follows:

$$
\alpha \beta_{0}=\alpha \beta_{1}=\ldots=\alpha \beta_{n-1} \Longrightarrow \alpha \prod_{I \in H} \sum_{i \in I} \beta_{i} \leq \beta_{0} .
$$

Equivalently, $S D(n, H)$ is

$$
\alpha \beta_{0}=\alpha \beta_{1}=\ldots=\alpha \beta_{n-1} \Longrightarrow \alpha \beta_{0}=\alpha \prod_{I \in H} \sum_{i \in I} \beta_{i} .
$$

When $H=\left\{S \in P_{2}(\mathbf{n}):|S|=2\right\}, S D(n, H)$ will be denoted by $S D(n, 2)$. Notice that

$$
S D(n, 2): \quad \alpha \beta_{0}=\alpha \beta_{1}=\ldots=\alpha \beta_{n-1} \Longrightarrow \alpha \prod_{0 \leq i<j<n}\left(\beta_{i}+\beta_{j}\right) \leq \beta_{0}
$$

has been studied by Geyer [13], and $S D(2,2)$ is exactly $S D_{\wedge}$.
Now with $S D(n, H)$ we associate its conjugate Horn sentence $C(n, H)$ as follows. Let α and $\beta_{i, I}(i \in I \in H)$ be the variables of $C(n, H)$. Denoting $\{I \in H: j \in I\}$ by $H_{j}, C(n, H)$ is

$$
\begin{aligned}
\bigwedge_{I \in H}((\alpha & \left.\left.\leq \sum_{i \in I} \beta_{i, I}\right) \& \bigwedge_{i \in I}\left(\beta_{i, I} \leq \alpha+\sum_{j \in I \backslash\{i\}} \beta_{j, I}\right)\right) \Longrightarrow \\
\alpha & \leq \sum_{I \in H_{0}} \beta_{0, I}+\alpha\left(\sum_{I \in H_{1}} \beta_{1, I}+\alpha\left(\sum_{I \in H_{2}} \beta_{2, I}+\alpha\left(\ldots+\alpha \sum_{I \in H_{n-1}} \beta_{n-1, I}\right) \ldots\right) .\right.
\end{aligned}
$$

The conjugate of $S D(n, 2)$ is denoted by $C(n, 2)$; it is the following Horn sentence:

$$
\begin{aligned}
& \left(\bigwedge_{i<j}^{0, n-1}\left(\alpha \leq \beta_{i j}+\beta_{j i}\right) \& \bigwedge_{i \neq j}^{0, n-1}\left(\beta_{i j} \leq \alpha+\beta_{j i}\right)\right) \Longrightarrow \\
& \quad \alpha \leq \sum_{j \neq 0}^{0, n-1} \beta_{0 j}+\alpha\left(\sum_{j \neq 1}^{0, n-1} \beta_{1 j}+\alpha\left(\sum_{j \neq 2}^{0, n-1} \beta_{2 j}+\alpha\left(\ldots \alpha \sum_{j \neq n-1}^{0, n-1} \beta_{n-1, j}\right) \ldots\right) .\right.
\end{aligned}
$$

For example, $C(2,2)$, the conjugate of $S D_{\wedge}$, is (clearly equivalent to):

$$
\begin{equation*}
C(2,2): \quad x+y=x+z=y+z \Longrightarrow x+y=x+y z \tag{3}
\end{equation*}
$$

Our main results are as follows; the proofs will be given in the next chapter.

Theorem 1. For every $n \geq 2$ and $\emptyset \neq H \subseteq P_{2}(\mathbf{n}),\{\mathcal{V}: \mathcal{V}$ is a variety and $\operatorname{Con}(\mathcal{V}) \models S D(n, H)\}$ is a Mal'cev class.

A concrete Mal'cev condition will be given in Theorem 9 .
Theorem 2. For every $n \geq 2$ and $\emptyset \neq H \subseteq P_{2}(\mathbf{n}), C(n, H) \models \operatorname{con} S D(n, H)$.
Theorem 3. For every $n \geq 2$ and $\emptyset \neq H \subseteq P_{2}(\mathbf{n})$, ($S D(n, H)$ and modularity) $\models_{\text {con }}$ distributivity.

To justify the notation used in Theorem 3 let us mention that the conjunction of two Horn sentences is equivalent to a single Horn sentence modulo lattice theory. While ($S D_{\wedge}$ and modularity) \models distributivity, the five element nonmodular lattice M_{3} witnesses that $(S D(n, 2)$ and modularity) $\not \models$ distributivity for $n>2$. Hence $\models_{\text {con }}$ in Theorem 3 is nontrivial in many cases. The same is true for Theorem 2, as it is pointed out by the following

Corollary 4. For every $n \geq 2, C(n, 2) \models_{\text {con }}^{\text {nt }} S D(n, 2)$.
Notice that $C(2,2)$ is a weaker Horn sentence than $S D_{\vee}$. Indeed, $S D_{\vee} \models$ $C(2,2)$ is trivial, and $C(2,2) \not \vDash S D_{\vee}$ is witnessed by

Figure 1.
Hence Corollary 4 for $n=2$ is a stronger result than (2), and it is worth separate formulating.

Corollary 5. $C(2,2) \models_{\text {con }}^{\mathrm{nt}} S D_{\wedge}$.
Now we formulate a statement on the relations among the Horn sentences $C(n, H)$ and $S D(n, H)$.

Proposition 6. Let $k>2, m \geq 2, n \geq 2, \emptyset \neq H \subseteq P_{2}(\mathbf{n})$ and $\emptyset \neq K \subseteq P_{2}(\mathbf{m})$. Then
(a) $S D(k, 2)$ is strictly weakening in k, i.e., $S D(k-1,2) \models S D(k, 2)$ but $S D(k, 2) \not \vDash S D(k-1,2)$;
(b) $C(k, 2)$ is strictly weakening in k, i.e., $C(k-1,2) \models C(k, 2)$ but $C(k, 2) \not \vDash$ $C(k-1,2)$;
(c) $S D(2,2) \models S D(n, H)$;
(d) $S D(m, K) \notin C(n, H)$;
(e) $C(m, 2) \not \models S D(n, H)$ and, moreover, $S D_{\vee} \not \models S D(n, H)$.

Since Proposition 6 does not answer all questions, the remarks concluding the paper will add some further information. Part (d) of Proposition 6 can be strengthened to

Theorem 7. For any $m, n \geq 2, \emptyset \neq K \subseteq P_{2}(\mathbf{m})$ and $\emptyset \neq H \subseteq P_{2}(\mathbf{n})$ we have $S D(m, K) \not \models_{\text {con }} C(n, H)$.

The Mal'cev conditions we are going to present in the following chapter are far from being simple. However, they are useful to prove Theorems 2 and 3. Interestingly enough, for all known $\lambda \models_{\text {con }}^{\text {nt }} \mu$ statement $\{\mathcal{V}: \operatorname{Con}(\mathcal{V}) \models \mu\}$ is known to be a Mal'cev class (even if $\lambda \models_{\text {con }} \mu$ was proved or can be proved without Mal'cev conditions). The proof of Theorem 7 is also based on our Mal'cev condition, and resorting to Theorem 7 is, at present, the only way to prove (d) of Proposition 6. On the other hand, we could not solve the naturally arising problem if $S D(n, 2) \models_{\text {con }} S D(n-1,2)$ is true or not.

II. Proofs and Technical Statements

Like in some previous papers, e.g. in [1] and [3], our Mal'cev conditions will be given by certain graphs. This is not just an economic way to establish the appropriate Mal'cev conditions, it is also a possible way to work with them. For any lattice term $p\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$ and integer $k \geq 2$ we define a graph $G_{k}(p)$ associated with p. The edges of $G_{k}(p)$ will be coloured by the variables $\alpha_{0}, \ldots, \alpha_{n-1}$, and two distinguished vertices, the so-called left and right endpoints, will have special roles. In figures, the endpoints will always be placed on the left-hand side and on the right-hand side, respectively. By $E\left(G_{k}(p)\right)$ we denote the edge set of

Figure 2.
$G_{k}(p)$. An α-coloured edge connecting the vertices x and y will often be denoted by (x, α, y). Before defining $G_{k}(p)$ we introduce two kinds of operations for graphs. We obtain the parallel connection of graphs G_{1} and G_{2} by taking disjoint copies of G_{1} and G_{2} and identifying their left (right, resp.) endpoints, cf. Figure 2.

By taking disjoint graphs $H_{1}, \ldots, H_{k}(k \geq 2)$ such that $H_{i} \cong G_{1}$ for i odd and $H_{i} \cong G_{2}$ for i even, and identifying the right endpoint of H_{i} and the left endpoint of H_{i+1} for $i=1,2 \ldots, k-1$ we obtain the serial connection of length k of G_{1} and G_{2}. (The left endpoint of H_{1} and the right one of H_{k} are the endpoints of the serial connection, cf. Figure 3.)

Figure 3.

Figure 4.
Now, if p is a variable then, for any $k \geq 2$, let $G_{k}(p)$ be the graph depicted in Figure 4, which consists of a single edge coloured by p. Let $G_{k}\left(p_{1}+p_{2}\right)$ resp. $G_{k}\left(p_{1} p_{2}\right)$ be the serial connection of length k resp. the parallel connection of graphs $G_{k}\left(p_{1}\right)$ and $G_{k}\left(p_{2}\right)$. Now we have defined $G_{k}(p)$ for lattice terms p with binary operations. However, p is often given by means of \sum and Π as well. Then we always assume a fixed binary representation of p. Although each fixed binary form makes the rest of the paper work and the corresponding $G_{2}(p)$ does not depend too much on this form, we note that $G_{k}(p)(k \geq 3)$ heavily depends on the binary representation chosen. E.g., $G_{3}\left(\left(\beta_{0}+\beta_{1}\right)+\beta_{2}\right)$ has eight vertices while $G_{3}\left(\beta_{1}+\left(\beta_{2}+\beta_{0}\right)\right)$ has only six.

For an algebra A, a lattice term $p=p\left(\alpha_{0}, \ldots, \alpha_{n-1}\right)$, congruences $\hat{\alpha}_{0}, \ldots$, $\hat{\alpha}_{n-1} \in \operatorname{Con}(A), a_{0}, a_{1} \in A$ and $k \geq 2$ we say that a_{0} and a_{1} can be connected by $G_{k}(p)$ in the algebra A if there is a map φ (referred to as the connecting map) from the vertex set of $G_{k}(p)$ into A such that a_{0} and a_{1} are the images of the left and right endpoints, respectively, and for every edge $\left(x, \alpha_{i}, y\right) \in E\left(G_{k}(p)\right)$ we have $(\varphi(x), \varphi(y)) \in \hat{\alpha}_{i}$. If it is necessary, we can emphasize that the colour α_{i} is represented by the congruence $\hat{\alpha}_{i}$. The following statement from [3] was proved by an easy induction.

Lemma 8. With the above notations, $\left(a_{0}, a_{1}\right) \in p\left(\hat{\alpha}_{0}, \ldots, \hat{\alpha}_{n-1}\right)$ iff a_{0} and a_{1} can be connected by $G_{k}(p)$ in A for some $k \geq 2$ iff there is a $k_{0} \geq 2$ such that a_{0} and a_{1} can be connected by $G_{k}(p)$ in A for all $k \geq k_{0}$.

Now with any pair of (finite coloured) graphs G^{\prime} and $G^{\prime \prime}$ we associate a strong Mal'cev condition $U\left(G^{\prime} \leq G^{\prime \prime}\right)$ in the following way, cf. [3]. Let $\alpha_{0}, \ldots, \alpha_{n-1}$ be the colours occurring on edges of G^{\prime} and $G^{\prime \prime}$, and let $X=\left\{x_{0}, x_{1}, \ldots, x_{t-1}\right\}$ and $F=\left\{f_{0}, f_{1}, \ldots\right\}$ be the vertex sets of G^{\prime} and $G^{\prime \prime}$, respectively, with $x_{0}, x_{1}, f_{0}, f_{1}$ being the endpoints. For $0 \leq j \leq t-1$ and $0 \leq i \leq n-1$ let $\alpha_{i}(j)$ be the smallest s such that there is an α_{i}-coloured path in G^{\prime} connecting x_{j} and x_{s}. (By convention, the empty path connecting x_{j} with itself is α_{i}-coloured.) Now $U\left(G^{\prime} \leq G^{\prime \prime}\right)$ is defined to be the following (strong Mal'cev) condition:
"There exist t-ary terms $f\left(x_{0}, \ldots, x_{t-1}\right)(f \in F)$ which satisfy (1) the endpoint identities $f_{0}\left(x_{0}, \ldots, x_{t-1}\right)=x_{0}$ and $f_{1}\left(x_{0}, \ldots, x_{t-1}\right)=x_{1}$, and (2) for every edge $\left(f, \alpha_{i}, g\right) \in E\left(G^{\prime \prime}\right)$ the corresponding identity $f\left(x_{\alpha_{i}(0)}, x_{\alpha_{i}(1)}, \ldots, x_{\alpha_{i}(t-1)}\right)=g\left(x_{\alpha_{i}(0)}, x_{\alpha_{i}(1)}, \ldots, x_{\alpha_{i}(t-1)}\right) . "$

The identity associated with the edge $\left(f, \alpha_{i}, g\right)$ above will often be denoted by $I\left(f, \alpha_{i}, g\right)$.

Now let $n \geq 2$ be fixed, and define lattice terms $\beta_{i}^{(k)}=\beta_{i}^{(k)}\left(\alpha, \beta_{0}, \ldots, \beta_{n-1}\right)$, $0 \leq i<n, 0 \leq k$, via induction as follows. Let $\beta_{i}^{(0)}=\beta_{i}$, and let $\beta_{i}^{(j+1)}=\beta_{i}+$ $\alpha \beta_{i+1}^{(j)}$. Here the subscript $i+1$ is understood modulo n, and the same convention applies for subscripts of β in the sequel. Theorem 1 is an easy consequence of the following theorem.

Theorem 9. Let $n \geq 2$ and $\emptyset \neq H \subseteq P_{2}(\mathbf{n})$. Then, for an arbitrary variety \mathcal{V}, the following three conditions are equivalent.
(i) $\operatorname{Con}(\mathcal{V}) \models S D(n, H)$.
(ii) The Mal'cev condition

$$
\text { "there is a } k \geq 2 \text { such that } U_{k}:=U\left(G_{2}\left(\alpha \prod_{I \in H} \sum_{i \in I} \beta_{i}\right) \leq G_{k}\left(\beta_{0}^{(k)}\right)\right) "
$$

holds in \mathcal{V}.
(iii) $\left(x_{0}, x_{1}\right) \in \beta_{0}^{(k)}\left(\hat{\alpha}, \hat{\beta}_{0}, \ldots, \hat{\beta}_{n-1}\right)$ for some k where X is the vertex set of $G_{2}=G_{2}\left(\alpha \prod_{I \in H} \sum_{i \in I} \beta_{i}\right), x_{0}$ and x_{1} are the endpoints, $\hat{\alpha}$ resp. $\hat{\beta}_{i}$ denote the congruence generated by $\left\{(x, y) \in X^{2}:(x, \alpha, y) \in E\left(G_{2}\right)\right\}$ resp. $\left\{(x, y) \in X^{2}:\left(x, \beta_{i}, y\right) \in E\left(G_{2}\right)\right\}$ in the free algebra $F_{\mathcal{V}}(X)$.

Proof. (i) \Longrightarrow (iii): Let $A=F_{\mathcal{V}}(X)$. With the notation $\hat{\beta}_{i}^{(k)}=\beta_{i}^{(k)}\left(\hat{\alpha}, \hat{\beta}_{0}, \ldots\right.$, $\hat{\beta}_{n-1}$), an evident induction gives $\hat{\beta}_{i}^{(0)} \subseteq \hat{\beta}_{i}^{(1)} \subseteq \hat{\beta}_{i}^{(2)} \subseteq \ldots$ for $0 \leq i<n$. Hence $\hat{\beta}_{i}^{(\omega)}:=\bigcup_{k=0}^{\infty} \hat{\beta}_{i}^{(k)} \in \operatorname{Con}(A)$. Suppose $(a, b) \in \hat{\alpha} \cap \hat{\beta}_{i}^{(\omega)}$. Then $(a, b) \in \hat{\alpha} \cap \hat{\beta}_{i}^{(k)}$ for some k, which gives $(a, b) \in \hat{\alpha} \cap \hat{\beta}_{i-1}^{(k+1)} \subseteq \hat{\alpha} \cap \hat{\beta}_{i-1}^{(\omega)}$ for all i, i.e.,

$$
\hat{\alpha} \cap \hat{\beta}_{0}^{(\omega)} \supseteq \hat{\alpha} \cap \hat{\beta}_{1}^{(\omega)} \supseteq \ldots \supseteq \hat{\alpha} \cap \hat{\beta}_{n-1}^{(\omega)} \supseteq \hat{\alpha} \cap \hat{\beta}_{0}^{(\omega)}
$$

Hence all the $\hat{\alpha} \cap \hat{\beta}_{i}^{(\omega)}$ are equal, and (i) gives $\hat{\alpha} \prod_{I \in H} \sum_{i \in I} \hat{\beta}_{i}^{(\omega)} \leq \hat{\beta}_{0}^{(\omega)}$. Using Lemma 8 we conclude

$$
\left(x_{0}, x_{1}\right) \in \hat{\alpha} \prod_{I \in H} \sum_{i \in I} \hat{\beta}_{i} \subseteq \hat{\alpha} \prod_{I \in H} \sum_{i \in I} \hat{\beta}_{i}^{(\omega)} \subseteq \hat{\beta}_{0}^{(\omega)}
$$

Hence $\left(x_{0}, x_{1}\right) \in \hat{\beta}_{0}^{(k)}=\beta_{0}^{(k)}\left(\hat{\alpha}, \hat{\beta}_{0}, \ldots, \hat{\beta}_{n-1}\right)$ for some k, i.e., (iii) holds.
(iii) \Longrightarrow (ii): Suppose (iii). By Lemma 8, x_{0} and x_{1} can be connected by $G_{t}\left(\beta_{0}^{(k)}\right)$ in $F_{\mathcal{V}}(X)$ for some $t \geq 2$. Since $\beta_{0}^{(k)} \leq \beta_{0}^{(k+1)}$ in all lattices, it is not hard to see that both k and t can be enlarged, and therefore $t=k$ can be assumed ${ }^{\dagger}$. Now the routine technique of deriving strong Mal'cev conditions, cf. e.g. Wille [26], Pixley [24] and [3], yields that U_{k} holds in \mathcal{V}.
(ii) \Longrightarrow (i): Suppose $k \geq 2, U_{k}$ holds in $\mathcal{V}, A \in \mathcal{V}, \hat{\alpha}, \hat{\beta}_{0}, \ldots, \hat{\beta}_{n-1} \in \operatorname{Con}(A)$ and $\hat{\alpha} \hat{\beta}_{0}=\ldots=\hat{\alpha} \hat{\beta}_{n-1}$. Let $\left(a_{0}, a_{1}\right)$ belong to $\hat{\alpha} \prod_{I \in H} \sum_{i \in I} \hat{\beta}_{i}$; we have to show that $\left(a_{0}, a_{1}\right) \in \hat{\beta}_{0}$. By Lemma 8 , there is an $s \geq 2$ such that a_{0} and a_{1} can be connected by $G_{s}\left(\alpha \prod_{I \in H} \sum_{i \in I} \beta_{i}\right)$ in A. Hence there are finitely many elements $c_{I, 0}=a_{0}, c_{I, 1}, \ldots, c_{I, m_{I}}=a_{1}$ for each $I \in H$ such that $\left(c_{I, j}, c_{I, j+1}\right) \in \bigcup_{i \in I} \hat{\beta}_{i}$ for $0 \leq j<m_{I}$.

Now $G_{2}\left(\alpha \prod_{I \in H} \sum_{i \in I} \beta_{i}\right)$ is depicted in Figure 5 where $I, J \ldots \in H, I=$ $\left\{i_{1}<i_{2}<i_{3}<\ldots\right\}$ and $J=\left\{j_{1}<j_{2}<j_{3}<\ldots\right\}$. The inner (i.e., not endpoint) vertices of this graph are denoted by $y_{I, 1}, y_{I, 2}, \ldots(I \in H)$; the corresponding variables in the Mal'cev condition U_{k} are called inner variables.

Figure 5.

Now we define some subgraphs, referred to as permitted subgraphs, of $G_{k}\left(\beta_{0}^{(k)}\right)$. The only permitted subgraph of height k is $G_{k}\left(\beta_{0}^{(k)}\right)$ itself. By definition, $G_{k}\left(\beta_{0}^{(k)}\right)$ is a serial connection of length k of $G_{k}\left(\alpha \beta_{1}^{(k-1)}\right)$ and the single edge graph $G_{k}\left(\beta_{0}\right)$; the copies of $G_{k}\left(\alpha \beta_{1}^{(k-1)}\right)$ in the serial connection are the permitted subgraphs of height $k-1$. Each copy of $G_{k}\left(\beta_{1}^{(k-1)}\right)$, i.e. each permitted

[^1]subgraph of height $k-1$ without its α-edge connecting its endpoints, is a serial connection of length k of $G_{k}\left(\beta_{1}\right)$ and $G_{k}\left(\alpha \beta_{2}^{(k-2)}\right)$; the copies of $G_{k}\left(\alpha \beta_{2}^{(k-2)}\right)$ are the permitted subgraphs of height $k-2$. And so on, for $0 \leq j<k$, the permitted subgraphs of height j are isomorphic to $G_{k}\left(\alpha \beta_{k-j}^{(j)}\right)$, and each of them is a subgraph of a permitted subgraph of height $j+1$. (Of course, according to our general agreement, the subscript $k-j$ is understood modulo n.) In particular, the permitted subgraphs of height 0 are isomorphic to $G_{k}\left(\alpha \beta_{k}^{(0)}\right)=G_{2}\left(\alpha \beta_{k}\right)$. For $k=4$ the situation is outlined in Figure 6. The expression "permitted subgraph" will mean a permitted subgraph of $G_{k}\left(\beta_{0}^{(k)}\right)$ of height j for some $0 \leq j \leq k$.
$$
G_{4}\left(\beta_{0}^{(4)}\right):
$$

where $G_{4}\left(\beta_{2}^{(2)}\right)$:

Figure 6.

The term symbols in the strong Mal'cev condition U_{k} are vertices in $G_{k}\left(\beta_{0}^{(k)}\right)$, so they are endpoints of permitted subgraphs; this fact will be utilized in the sequel. Let $m=2+\sum_{I \in H}(|I|-1)$, the number of vertices in $G_{2}\left(\alpha \prod_{I \in H} \sum_{i \in I} \beta_{i}\right)$.

Claim 10. Let f and g be the endpoints of a permitted subgraph and let

$$
\vec{u}=\left(a_{0}, a_{1}, d_{2}, \ldots, d_{m-1}\right) \in\left\{a_{0}\right\} \times\left\{a_{1}\right\} \times A^{m-2}
$$

be arbitrary. Then $f(\vec{u}) \hat{\alpha} g(\vec{u})$.
Since (f, α, g) is an edge of the permitted subgraph in question, using the identity $I(f, \alpha, g)$ associated with this edge we obtain

$$
f(\vec{u}) \hat{\alpha} f\left(a_{0}, a_{0}, d_{2}, \ldots, d_{m-1}\right)=g\left(a_{0}, a_{0}, d_{2}, \ldots, d_{m-1}\right) \hat{\alpha} g(\vec{u}),
$$

proving Claim 10.
Claim 11. Let f and g be the endpoints of a permitted subgraph. If there exists $a \vec{u} \in\left\{a_{0}\right\} \times\left\{a_{1}\right\} \times\left\{a_{0}, a_{1}\right\}^{m-2}$ with $f(\vec{u}) \hat{\alpha} \hat{\beta}_{0} \ldots \hat{\beta}_{n-1} g(\vec{u})$ then $f(\vec{v}) \hat{\alpha} \hat{\beta}_{0} \ldots \hat{\beta}_{n-1}$ $g(\vec{v})$ holds for all $\vec{v} \in\left\{a_{0}\right\} \times\left\{a_{1}\right\} \times\left\{a_{0}, a_{1}\right\}^{m-2}$.

It suffices to show that if $2 \leq i<m$ and the i-th component of $\vec{u}=\left(a_{0}, a_{1}, u_{2}\right.$, $\left.\ldots, u_{m-1}\right)$ is $u_{i}=a_{0}$ then $f(\bar{v}) \hat{\alpha} \hat{\beta}_{0} \ldots \hat{\beta}_{n-1} g(\vec{v})$ holds for $\vec{v}=\left(a_{0}, a_{1}, u_{2}, \ldots\right.$, $\left.u_{i-1}, a_{1}, u_{i+1}, \ldots, u_{m-1}\right)$. Fix an $I \in H$ and consider the m-tuples $\vec{w}^{(j)}=\left(a_{0}\right.$, $\left.a_{1}, u_{2}, \ldots, u_{i-1}, c_{I, j}, u_{i+1}, \ldots, u_{m-1}\right), j=0,1, \ldots, m_{I}$. Then $\vec{w}^{(0)}=\vec{u}$ and $\vec{w}^{\left(m_{I}\right)}=\vec{v}$, so it suffices to show via induction that for all $j \leq m_{I}$

$$
\begin{equation*}
f\left(\vec{w}^{(j)}\right) \hat{\alpha} \hat{\beta}_{0} \ldots \hat{\beta}_{n-1} g\left(\vec{w}^{(j)}\right) \tag{4}
\end{equation*}
$$

When $j=0$, (4) states what we have assumed. Now suppose (4) for some $j<m_{I}$. Since $\left(c_{I, j}, c_{I, j+1}\right) \in \bigcup_{\ell \in I} \hat{\beta}_{\ell}$, there is an $\ell \in I$ with $\left(c_{I, j}, c_{I, j+1}\right) \in \hat{\beta}_{\ell}$, and we have $f\left(\vec{w}^{(j)}\right) \hat{\beta}_{\ell} f\left(\vec{w}^{(j+1)}\right)$ and $g\left(\vec{w}^{(j)}\right) \hat{\beta}_{\ell} g\left(\vec{w}^{(j+1)}\right)$. Using (4) for j and transitivity we infer $f\left(\vec{w}^{(j+1)}\right) \hat{\beta}_{\ell} g\left(\vec{w}^{(j+1)}\right)$. By Claim 10, $f\left(\vec{w}^{(j+1)}\right) \hat{\alpha} g\left(\vec{w}^{(j+1)}\right)$. Since $\hat{\alpha} \hat{\beta}_{0}=\ldots=\hat{\alpha} \hat{\beta}_{m-1}$, we conclude (4) for $j+1$. We have shown that a_{0} can be changed to a_{1} at the i th component; the transition from a_{1} to a_{0} follows similarly. This proves Claim 11.

Claim 12. Let f and g be the endpoints of a permitted subgraph S. Then for all $\vec{u} \in\left\{a_{0}\right\} \times\left\{a_{1}\right\} \times\left\{a_{0}, a_{1}\right\}^{m-2}$ we have $f(\vec{u}) \hat{\alpha} \hat{\beta}_{0} \ldots \hat{\beta}_{n-1} g(\vec{u})$.

We prove this claim via induction on the height of S. Suppose S is of height 0 , i.e., $S=G_{k}\left(\alpha \beta_{k}\right)$. We define $\vec{u}=\left(u_{0}, \ldots, u_{m-1}\right) \in\left\{a_{0}\right\} \times\left\{a_{1}\right\} \times\left\{a_{0}, a_{1}\right\}^{m-2}$ as follows. Let $u_{0}=a_{0}$, and for all edge $\left(x_{0}, \beta_{k}, y_{I, 1}\right) \in E\left(G_{2}\left(\alpha \prod_{I \in H} \sum_{i \in I} \beta_{i}\right)\right)$, cf. Figure 5 , let the component of \vec{u} corresponding to $y_{I, 1}$ be a_{0}. Let the rest of the components be defined as a_{1}. Since $2 \leq|I|$ for all $I \in H$, for each β_{k}-coloured edge of $G_{2}\left(\alpha \prod_{I \in H} \sum_{i \in I} \beta_{i}\right)$ the components of \vec{u} corresponding to the endpoints of this edge are equal. Hence the identity $I\left(f, \beta_{k}, g\right)$ applies and we obtain $f(\vec{u})=g(\vec{u})$. This gives $f(\vec{u}) \hat{\alpha} \hat{\beta}_{0} \ldots \hat{\beta}_{n-1} g(\vec{u})$ for one \vec{u}, whence it holds for all \vec{u} in virtue of Claim 11.
$S:$

Figure 7.
Now let S be of height $k-j, 0 \leq j<k$. Then S is a serial connection of length k of graphs $G_{k}\left(\beta_{j}\right)$ and $S^{\prime}=G_{k}\left(\alpha \beta_{j+1}^{(k-j-1)}\right)$. Let $h_{0}=f, h_{1}, \ldots, h_{k}=g$ be the endpoints of copies of $G_{k}\left(\beta_{j}\right)$ and S^{\prime} in this serial connection, cf. Figure 7.

As previously, we can choose a $\vec{u} \in\left\{a_{0}\right\} \times\left\{a_{1}\right\} \times\left\{a_{0}, a_{1}\right\}^{m-2}$ such that, applying the identity associated with $\left(h_{t}, \beta_{j}, h_{t+1}\right) \in E(S)$, we obtain $h_{t}(\vec{u})=h_{t+1}(\vec{u})$ for t even, $0 \leq t<k$. Since each copy of S^{\prime} in Figure (7) is a permitted subgraph of height $k-j-1$, the induction hypothesis yields $h_{t}(\vec{u}) \hat{\alpha} \hat{\beta}_{0} \ldots \hat{\beta}_{m-1} h_{t+1}(\vec{u})$ for $0<t<k, t$ odd. By transitivity, $(f(\vec{u}), g(\vec{u}))=\left(h_{0}(\vec{u}), h_{k}(\vec{u})\right) \in \hat{\alpha} \hat{\beta}_{0} \ldots \hat{\beta}_{n-1}$. This holds for one carefully chosen \vec{u}, whence for all $\vec{u} \in\left\{a_{0}\right\} \times\left\{a_{1}\right\} \times\left\{a_{0}, a_{1}\right\}^{m-2}$ in virtue of Claim 11. Claim 12 has been shown.

Now let us apply Claim 12 for the whole graph $G_{k}\left(\hat{\beta}_{0}^{(k)}\right)$ with endpoints f_{0} and f_{1}; we obtain $\left(a_{0}, a_{1}\right)=\left(f_{0}(\vec{u}), f_{1}(\vec{u})\right) \in \hat{\alpha} \hat{\beta}_{0} \ldots \hat{\beta}_{m-1} \subseteq \hat{\beta}_{0}$ for arbitrary $\vec{u} \in\left\{a_{0}\right\} \times\left\{a_{1}\right\} \times\left\{a_{0}, a_{1}\right\}^{m-2}$. This proves (ii) \Longrightarrow (i) and Theorem 9.

Proof of Theorem 2. Let \mathcal{V} be a variety with $\operatorname{Con}(\mathcal{V}) \models C(n, H)$, and let us consider the graph $G_{2}\left(\alpha \prod_{I \in H} \sum_{i \in I} \beta_{i}\right)$, cf. Figure 5 . The vertex set of this graph is denoted by X. For $i \in I \in H$, the path $x_{0}, y_{I, 1}, y_{I, 2}, \ldots, x_{1}$ contains a unique β_{i}-coloured edge; let $\hat{\beta}_{i, I}$ be the smallest congruence of the free algebra $F_{\mathcal{V}}(X)$ that collapses the endpoints of this edge. The congruence generated by $\left(x_{0}, x_{1}\right)$ is denoted by $\hat{\alpha}$. Clearly, $\hat{\alpha}$ and the $\hat{\beta}_{i, I}(i \in I, I \in H)$ satisfy the premise of $C(n, H)$. Since $C(n, H)$ holds in $\operatorname{Con}\left(F_{\mathcal{V}}(X)\right)$,

$$
\begin{equation*}
\left(x_{0}, x_{1}\right) \in \hat{\alpha} \leq \hat{\beta}_{0}+\hat{\alpha}\left(\hat{\beta}_{1}+\hat{\alpha}\left(\hat{\beta}_{2}+\ldots+\hat{\alpha} \hat{\beta}_{n-1}\right) \ldots\right) \tag{5}
\end{equation*}
$$

where $\hat{\beta}_{i}:=\sum_{I \in H_{i}} \hat{\beta}_{i, I}\left(0 \leq i<n, H_{i}=\{I \in H: i \in I\}\right)$. Notice that the righthand side of (5) is just $\beta_{0}^{(n-1)}\left(\hat{\alpha}, \hat{\beta}_{0}, \ldots, \hat{\beta}_{n-1}\right)$, and $\hat{\alpha}, \hat{\beta}_{0}, \ldots, \hat{\beta}_{n-1}$ are exactly the congruences occurring in (iii) of Theorem 9. Hence $\operatorname{Con}(\mathcal{V}) \models S D(n, H)$ by Theorem 9. The proof is complete.

Proof of Theorem 3. Suppose, to obtain a contradiction, that \mathcal{V} is a congruence modular but not congruence distributive variety such that $\operatorname{Con}(\mathcal{V}) \models S D(n, H)$. Let $k:=1+\sum_{I \in H}|I-1|=|X|-1$ where X is the vertex set of $G_{2}:=$ $G_{2}\left(\alpha \prod_{I \in H} \sum_{i \in I} \beta_{i}\right)$, cf. Figure 5. Since $|I| \geq 2$ for $I \in H, k \geq 2$. If $k=2$ then $S D(n, H)$ is equivalent to $S D_{\wedge}$ modulo lattice theory, and the theorem follows from $\left(S D_{\wedge}\right.$ and modularity $) \models$ distributivity. Thus we can assume that $k \geq 3$.

Now, recalling Huhn's lattice identity

$$
\operatorname{dist}_{k}: \quad x \sum_{i=0}^{k} y_{i}=\sum_{j=0}^{k}\left(x \sum_{i \neq j}^{0, k} y_{i}\right)
$$

it is known that $\operatorname{dist}_{k} \models_{\text {con }}$ distributivity, cf. Nation $[\mathbf{2 2}]$. Therefore $\operatorname{Con}(\mathcal{V}) \not \models$ dist_{k}, so we can take an algebra $A \in \mathcal{V}$ with $\operatorname{Con}(A) \not \vDash \operatorname{dist}_{k}$. We conclude from Huhn [15, Thm. 1.1(C)] that there is a prime field K such that $L\left(P G_{k}(K)\right)$, the subspace lattice of the k-dimensional projective geometry over K, is a sublattice of $\operatorname{Con}(A)$. Let M be the vector space over K freely generated by X. Then $L\left(P G_{k}(K)\right)$ is isomorphic to $L(M)$, the subspace lattice of M, so we conclude that $S D(n, H)$ holds in $L(M)$.

Now the desired contradiction proving Theorem 3 is supplied by the following statement.

Claim 13. $S D(n, H)$ fails in the subspace lattice $L(M)$ defined above.
Indeed, for $0 \leq i<n$, let $\hat{\beta}_{i} \in L(M)$ be the subspace spanned by $\{u-v$: $\left.\left(u, \beta_{i}, v\right) \in E\left(G_{2}\right)\right\}$, and let $\hat{\alpha}:=K\left(x_{1}-x_{0}\right)$, the (cyclic) subspace spanned by $\left\{u-v:(u, \alpha, v) \in E\left(G_{2}\right)\right\}=\left\{x_{0}-x_{1}\right\}$. Since for each edge $\left(u, \beta_{i}, v\right)$ either u or v is an endpoint of no other β_{i}-coloured edge, and $\{u, v\} \neq\left\{x_{0}, x_{1}\right\}$, it is easy to conclude that $x_{1}-x_{0} \notin \hat{\beta}_{i}$. Hence $\hat{\alpha} \hat{\beta}_{0}=\ldots=\hat{\alpha} \hat{\beta}_{n-1}=0$. By the construction, $x_{1}-x_{0} \in \hat{\alpha} \prod_{I \in H} \sum_{i \in I} \hat{\beta}_{i}$ but $x_{1}-x_{0} \notin \hat{\beta}_{0}$. So $S D(n, H)$ fails in $L(M)$. This proves Claim 13 and Theorem 3.

Proof of Proposition 6. (a) $S D(k-1,2) \models S D(k, 2)$ is evident. It is easy to see that $S D(k, 2)$ holds for any $k+1$ elements in a lattice that do not form an antichain. Let M_{k} denote the $k+2$ element lattice with a k element antichain, then $S D(k, 2)$ holds but $S D(k-1,2)$ fails in M_{k}. Hence $S D(k, 2) \not \models S D(k-1,2)$.
(b) $C(k-1,2) \models C(k, 2)$ is easy, so we do not detail it. For $t>1$ let L_{t} be the lattice depicted in Figure 8.

Figure 8.

The substitution $\alpha=b_{k}, \beta_{i j}=b_{i+1}(i \neq j, 0 \leq i<k-1,0 \leq j<k-1)$ shows that $C(k-1,2)$ fails in L_{k}. Now we show that $C(k, 2)$ holds in L_{k}. Suppose the contrary and fix $\alpha, \beta_{i j} \in L_{k}(i<k, j<k, i \neq j)$ satisfying the premise of $C(k, 2)$ such that, with the notation $\beta_{i}:=\sum_{j \neq i} \beta_{i j}$,

$$
\begin{equation*}
\alpha \not \leq \beta_{0}+\alpha\left(\beta_{1}+\alpha\left(\beta_{2}+\ldots+\alpha \beta_{k-1}\right) \ldots\right) \tag{6}
\end{equation*}
$$

Then $\alpha \not \leq \beta_{i j}$, for otherwise $\alpha \leq \beta_{i}$ would contradict (6). Hence $\beta_{i j} \neq 0$, for otherwise $\alpha \leq \beta_{i j}+\beta_{j i}=\beta_{j i}$, which we have already excluded.

Case 1: $\alpha=1$. Then $\beta_{i j}=a$ would lead to $1=\alpha=a+\beta_{j i} \Longrightarrow \beta_{j i}=1 \geq \alpha$, a contradiction. Hence $\left\{\beta_{i j}: i \neq j\right\} \subseteq\left\{b_{1}, \ldots, b_{k}, c_{1}, \ldots, c_{k}\right\}$. For a given i, the $\beta_{i j}$ must belong to the same $\left\{b_{\varphi(i)}, c_{\varphi(i)}\right\}$, for otherwise $\beta_{i}=1 \geq \alpha$. Since $\beta_{i j}+\beta_{j i} \geq \alpha=1, \varphi:\{0, \ldots, k-1\} \rightarrow\{1, \ldots, k\}$ is injective, and therefore surjective. Hence the right-hand side of (6) is $\sum_{i \neq j} \beta_{i j} \geq b_{1}+\ldots+b_{k}=1$, a contradiction.

Case 2: α is a coatom, say $\alpha=c_{1}$. If we had $\beta_{i j} \in\left\{a, b_{1}\right\}$ for some pair (i, j), $i \neq j$, then $\alpha \not \leq \beta_{j i} \leq \alpha+\beta_{i j}=\alpha$ and $\alpha \leq \beta_{i j}+\beta_{j i}$ would yield $\left\{\beta_{i j}, \beta_{j i}\right\}=\left\{a, b_{1}\right\}$, say $\left(\beta_{i j}, \beta_{j i}\right)=\left(a, b_{1}\right)$, and $\beta_{i} \geq a$ and $\beta_{j} \geq b_{1}$ would easily contradict (6). Hence $\left\{\beta_{i j}: i \neq j\right\} \subseteq\left\{b_{2}, \ldots, b_{k}, c_{2}, \ldots, c_{k}\right\}$, whence the previous φ cannot be injective, a contradiction.

Case 3: $\alpha=a$. Then $\left\{\beta_{i j}: i \neq j\right\} \subseteq\left\{b_{1}, \ldots, b_{k}\right\}, \varphi$ is a bijection, and $\alpha+\beta_{i j}=\alpha+b_{\varphi(i)}=c_{\varphi(i)} \nsupseteq b_{\varphi(j)}=\beta_{j i}$ is a contradiction.

Case 4: α is another atom, say $\alpha=b_{1}$. Then $\left\{\beta_{i j}: i \neq j\right\} \subseteq\left\{a, b_{2}, \ldots, b_{k}\right.$, $\left.c_{2}, \ldots, c_{k}\right\}$. If $\beta_{i j} \neq a$ for all $i \neq j$ then φ cannot be a bijection. Hence $\beta_{i j}=a$ for some $i \neq j$, and $b_{1}=\alpha \leq \beta_{i j}+\beta_{j i}=a+\beta_{j i}$ implies $\alpha \leq \beta_{j i}$, a contradiction. We have seen that $L_{k} \models C(k, 2)$. Hence $C(k, 2) \not \vDash C(k-1,2)$, proving (b).
(c) To show $S D(2,2) \models S D(n, H)$, firstly we assume that $|H|=1$, say $H=\{\{0$, $1, \ldots, t-1\}\}$. Then the statement follows via induction; indeed, after deriving $\alpha\left(\beta_{1}+\ldots+\beta_{t-1}\right)=\alpha \beta_{1}=\alpha \beta_{0}$ from the induction hypothesis, we can apply $S D_{\wedge}$ for the elements α, β_{0} and $\beta_{1}+\ldots+\beta_{t-1}$. From the $|H|=1$ case the general case is evident.
(d) is a consequence of Theorem 7.

In order to show (e), let L be the set of convex polytopes in the $(n-1)$ dimensional Euclidean space E_{n-1}. By a polytope we mean the convex hull of finitely many points. Since polytopes can also be defined as bounded intersections of finitely many half spaces, cf., e.g., Ziegler $[\mathbf{2 7}], L$ is a lattice with intersection as meet and convex hull of union as join. First we show that $L \models S D_{\vee}$. Let $P, Q_{1}, Q_{2} \in L$ such that $P+Q_{1}=P+Q_{2}$. Let $R=P+Q_{1}+Q_{2}=P+Q_{1}=P+Q_{2}$, and denote by V the vertex set of R. Then $\operatorname{conv}(V)$, the convex hull of V, is R but $\operatorname{conv}(R \backslash\{v\}) \neq R$ for all $v \in V$. We claim that

$$
\begin{equation*}
V \subseteq P \cup\left(Q_{1} \cap Q_{2}\right) \tag{7}
\end{equation*}
$$

Suppose $a \in V \backslash\left(P \cup\left(Q_{1} \cap Q_{2}\right)\right)=\left(V \backslash\left(P \cup Q_{1}\right)\right) \cup\left(V \backslash\left(P \cup Q_{2}\right)\right)$, then $P+Q_{i} \subseteq \operatorname{conv}(R \backslash\{a\}) \subset R=P+Q_{i}$ for $i=1$ or $i=2$, a contradiction. This shows (7). Armed with (7) we conclude $P+Q_{1}=R=\operatorname{conv}(V) \subseteq \operatorname{conv}\left(P \cup\left(Q_{1} \cap Q_{2}\right)\right)=$ $\operatorname{conv}(P)+\operatorname{conv}\left(Q_{1} \cap Q_{2}\right)=P+Q_{1} Q_{2}$. Hence $L \models S D_{\vee}$; therefore $L \models C(2,2)$ and, by (b), $L \models C(m, 2)$.

Now let $b_{0}, b_{1}, \ldots, b_{n-1} \in E_{n-1}$ be points in general position, i.e., they do not belong to a hyperplane. Then $S=\operatorname{conv}\left(\left\{b_{0}, \ldots, b_{n-1}\right\}\right)$ is a symplex. For $i=$ $0, \ldots, n-1$ let $\beta_{i}:=\operatorname{conv}\left(\left\{b_{0}, \ldots, b_{i-1}, b_{i+1}, \ldots, b_{n-1}\right\}\right)$, a facet of the symplex. Choose an inner point a of the symplex, i.e., $a \in S \backslash\left\{\beta_{0} \cup \beta_{1} \cup \ldots \cup \beta_{n-1}\right\}$. Set $\alpha=\{a\}$. Since $\alpha \beta_{i}=\{a\} \cap \beta_{i}=\emptyset$, the polytopes $\alpha, \beta_{0}, \ldots, \beta_{n-1}$ easily witness that $S D(n, H)$ fails in L. This yields (e). Proposition 6 is proved.

Proof of Theorem 7. Let \mathcal{V} be the variety of (meet) semilattices. By Papert $[\mathbf{2 3}] \operatorname{Con}(\mathcal{V}) \models S D(2,2)$, so $\operatorname{Con}(\mathcal{V}) \models S D(m, K)$ by Proposition 6 (c). We intend to show that $\operatorname{Con}(\mathcal{V}) \not \vDash C(n, H)$; suppose the contrary. The graph $G_{2}\left(\alpha \prod_{I \in H} \sum_{i \in I} \beta_{i}\right)$ will be denoted by G_{2}. With the notations of the proof of Theorem 2 we have

$$
\begin{equation*}
\left(x_{0}, x_{1}\right) \in \beta_{0}^{(n-1)}\left(\hat{\alpha}, \hat{\beta}_{0}, \ldots, \hat{\beta}_{n-1}\right) \tag{8}
\end{equation*}
$$

For semilattice terms g_{0} and g_{1} over the vertex set $X=\left\{x_{0}, x_{1}, \ldots\right\}$ of G_{2} and for a permitted subgraph S (cf. the proof of Theorem 9) of $G_{k}\left(\beta_{0}^{(n-1)}\right)$ with vertex set F_{S} and endpoints $f_{0 S}$ and $f_{1 S}$ we define the following condition:
"there exist semilattice terms $h\left(x_{0}, x_{1}, \ldots\right), h \in F_{S}$, which satisfy the identities $f_{0 S}\left(x_{0}, x_{1}, \ldots\right)=g_{0}\left(x_{0}, x_{1}, \ldots\right), f_{1 S}\left(x_{0}, x_{1}, \ldots\right)=g_{1}\left(x_{0}, x_{1}, \ldots\right)$ and for each $\left(h_{1}, \gamma, h_{2}\right) \in E(S)$ the identity $I\left(h_{1}, \gamma, h_{2}\right)$."
This condition will be denoted by $U^{*}\left(G_{2} \leq S ; f_{0 S}=g_{0}, f_{1 S}=g_{1}\right)$. For example, $U^{*}\left(G_{2} \leq S ; f_{0 S}=x_{0}, f_{1 S}=x_{1}\right)$ is the same as $" U\left(G_{2} \leq S\right)$ holds in \mathcal{V} ".

From (8) we obtain $\left(x_{1}, x_{0}\right) \in \beta_{0}^{(n-1)}\left(\hat{\alpha}, \hat{\beta}_{0}, \ldots, \hat{\beta}_{n-1}\right)$, whence, similarly to the proof of (iii) \Longrightarrow (ii) in Theorem 9, we conclude that there is a $k \geq 2$ such that

$$
\begin{equation*}
U^{*}\left(G_{2} \leq G_{k}\left(\beta_{0}^{(n-1)}\right) ; f_{0 S}=x_{1}, f_{1 S}=x_{0}\right) \quad \text { holds. } \tag{9}
\end{equation*}
$$

(Interchanging x_{0} and x_{1} serves technical purposes.) We will use the fact that each semilattice term is, modulo semilattice theory, the meet of all variables occurring in it.

Multiplying (i.e., meeting) all terms by x_{1}, we infer from (9) that

$$
\begin{equation*}
U^{*}\left(G_{2} \leq G_{k}\left(\beta_{0}^{(n-1)}\right) ; f_{0}=x_{1}, f_{1}=x_{0} x_{1}\right) \quad \text { holds. } \tag{10}
\end{equation*}
$$

We intend to show that for all permitted subgraphs S of $G_{k}\left(\beta_{0}^{(n-1)}\right)$

$$
\begin{equation*}
U^{*}\left(G_{2} \leq S ; f_{0 S}=x_{1}, f_{1 S}=x_{0} x_{1}\right) \quad \text { holds. } \tag{11}
\end{equation*}
$$

This will be done via a downward induction on the height of S. If S is of height $n-1$ then (11) coincides with (10).

Now suppose that S is of height $n-1-t>0$, i.e., $S=G_{k}\left(\beta_{t}^{(n-1-t)}\right)$, and $U^{*}\left(G_{2} \leq S ; f_{0 S}=x_{1}, f_{1 S}=x_{0} x_{1}\right)$ holds. We want to show the same for $T=$ $G_{k}\left(\beta_{t+1}^{(n-2-t)}\right)$. Let $g_{0}=f_{0 S}, g_{1}, g_{2}, \ldots, g_{k}=f_{1 S}$ be the endpoints needed to form S from $G_{k}\left(\beta_{t}\right)$ and T via serial connection, cf. Figure 9, and suppose that all

S :

Figure 9.

terms are chosen in \mathcal{V} such that they witness $U^{*}\left(G_{2} \leq S ; f_{0 S}=x_{1}, f_{1 S}=x_{0}\right)$. Let $A_{t}:=\left\{u \in X:\left(u, \beta_{t}, x_{1}\right) \in E\left(G_{2}\right)\right\}$. Our argument uses the general convention that the colours on the arcs of G_{2} (cf. Figure 5) occur from left to right order. This means that if $\left(x_{0}, \beta_{i_{1}}, y_{I, 1}\right),\left(y_{I, 1}, \beta_{i_{2}}, y_{I, 2}\right),\left(y_{I, 2}, \beta_{i_{3}}, y_{I, 3}\right), \ldots,\left(y_{I, \ell-1}, \beta_{i_{\ell}}, x_{1}\right)$ are adjacent consecutive edges from the left to the right then $i_{1}<i_{2}<i_{3} \ldots<i_{\ell}$. Let $\breve{\beta}_{i}$ denote the smallest equivalence on X that includes $\left\{(u, v) \in X^{2}:\left(u, \beta_{i}, v\right) \in\right.$ $\left.E\left(G_{2}\right)\right\}$. It follows from the above-mentioned convention that

$$
\begin{equation*}
\text { for } u \in A_{t} \text { and } j>t, \quad\left|[u] \breve{\beta}_{j}\right|=1 \tag{12}
\end{equation*}
$$

i.e., the $\breve{\beta}_{j}$-class of u is a singleton.

Suppose first that one of the $g_{i}(0<i<k)$ contains some $u \in A_{t}$. Let d be the smallest integer such that g_{d} contains u, and let m be the largest integer such that $g_{d}, g_{d+1}, \ldots, g_{m}$ all contain u. Since any two vertices of T are connected by a path containing the colours $\beta_{t+1}, \beta_{t+2}, \ldots, \beta_{n-1}$ only, we conclude from (12) that if one of the endpoints of (a copy of) T contains u then all vertices (inner and endpoint vertices) of T contain u. Therefore d is odd and m is even, for otherwise g_{d-1} and g_{d} or g_{m} and g_{m+1} would be the endpoints of a copy of T.

Now we can change u to x_{1} in all terms (vertices) between g_{d} and g_{m} (including g_{d}, g_{m}, and the inner vertices of the corresponding copies of $\left.T\right)$. We claim that the new terms obtained this way still witness that $U^{*}\left(G_{2} \leq S ; f_{0 S}=x_{1}, f_{1 S}=x_{0} x_{1}\right)$ holds. Since (12) and $|[u] \breve{\alpha}|=1, u$ "was not used" within T, whence for every copy of T between g_{d} and g_{m} the identities associated with the edges of T hold. Since $\left(u, x_{1}\right) \in \breve{\beta}_{t}$, the identities $I\left(g_{i}, \beta_{t}, g_{i+1}\right)$ remain valid for $d<i<m, i$ even, and also for $i=d-1$ and $i=m$. Hence the new terms do the job.

We have seen how to reduce the occurrences of elements of A_{t}. After doing this reduction in a finite number of steps we can get rid of all elements of A_{t}. Hence we can assume that
no $u \in A_{t}$ occurs in our terms.

From now on let m be the smallest number such that x_{0} occurs in g_{m}. We claim that

$$
\begin{equation*}
g_{j}=x_{1} \text { for } 0 \leq j<m \tag{14}
\end{equation*}
$$

This is true for $g_{0}=f_{0 S}$. If $g_{j-1}=x_{1}, j<m$ and $j-1$ is even then (13) and $I\left(g_{j-1}, \beta_{t}, g_{j}\right)$ yield $g_{j}=x_{1}$. If $g_{j-1}=x_{1}, j<m$ and $j-1$ is odd then the identity $I\left(g_{j-1}, \alpha, g_{j}\right)$ associated with $\left(g_{j-1}, \alpha, g_{j}\right) \in E(T)$ and the lack of x_{0} in g_{j} give $g_{j}=x_{1}$. This induction shows (14).

If $m-1$ is even then $I\left(g_{m-1}, \beta_{t}, g_{m}\right)$ cannot hold, for $g_{m-1}=x_{1},\left(x_{0}, x_{1}\right) \notin \breve{\beta}_{t}$ but x_{0} occurs in g_{m}. Consequently, $m-1$ is odd and $\left(g_{m-1}, \alpha, g_{m}\right) \in E(S)$. Since $g_{m-1}=x_{1}$ and x_{0} occurs in g_{m}, the identity $I\left(g_{m-1}, \alpha, g_{m}\right)$ can hold only if $g_{m}=x_{0}$ or $g_{m}=x_{0} x_{1}$. Hence either

$$
\begin{equation*}
U^{*}\left(G_{2} \leq T ; f_{0 T}=x_{1}, f_{1 T}=x_{0}\right) \tag{15}
\end{equation*}
$$

or

$$
\begin{equation*}
U^{*}\left(G_{2} \leq T ; f_{0 T}=x_{1}, f_{1 T}=x_{0} x_{1}\right) \tag{16}
\end{equation*}
$$

holds. Notice that (15) implies (16), for all terms h occurring in (15) can be replaced by $h x_{1}$. This completes the induction proving (11).

Applying (11) to the subgraphs of height 0 , it follows that $U^{*}\left(G_{2} \leq G_{k}\left(\alpha \beta_{n-1}\right)\right.$; $\left.f_{0}=x_{1}, f_{1}=x_{0} x_{1}\right)$ holds, which contradicts $\left(x_{0}, x_{1}\right) \notin \breve{\beta}_{n-1}$. This proves Theorem 7 .

We conclude the paper with some remarks on Proposition 6. The five element nonmodular lattice N_{5} witnesses that $S D_{\vee} \not \models C(3,\{\{0,1,2\}\})$ and so $C(2,2) \not \models$ $C(3,\{\{0,1,2\}\})$. This explains why Proposition 6 does not include a "conjugate" counterpart of (c).

We do not know if (e) holds with $C(m, K)$ instead of $C(2,2)$ but the present proof of (e) is not appropriate to decide this. Indeed, if K is the center and B_{0}, \ldots, B_{4} are consecutive vertices of a (planar) regular pentagon then $\alpha=$ $\operatorname{conv}\left(\left\{B_{0}, B_{1}, K\right\}\right), \beta_{0}=\operatorname{conv}\left(\left\{B_{1}, B_{2}\right\}\right), \beta_{1}=\operatorname{conv}\left(\left\{B_{0}, B_{3}, B_{4}\right\}\right)$ and $\beta_{2}=$ $\operatorname{conv}\left(\left\{B_{2}, B_{3}, B_{4}\right\}\right)$ witness that $C(3,\{\{0,1,2\}\})$ fails in L.

Acknowledgment. The author expresses his thanks to János Kincses for a helpful discussion on convex geometry.

Added on June 19, 1998. As an affirmative answer to the problem raised at the end of the first section, an anonymous referee has proved that $S D(n, H) \models_{\text {con }}$ $S D_{\wedge}$ for every $n \geq 2$ and $\emptyset \neq H \subseteq P_{2}(\mathbf{n})$. The proof is based on Kearnes and Szendrei [19], Lipparini [20], and Theorem 3. Now Theorem 1 becomes a consequence of Proposition 6(c) and Willard [25], and the referee's method together with [3] gives a shorter proof of Theorem 2. However, the present approach to Theorems 1 and 2 can still be justified. Not only by its role in finding the results but also in the proofs of Theorem 7 and (the purely lattice theoretic) Proposition 6(d).

References

1. Czédli G., A characterization for congruence semidistributivity, Proc. Conf. Universal algebra and Lattice Theory (Puebla, Mexico 1982), Springer Lecture Notes no. 1004, 1983, pp. 267-272.
2. , Some nontrivial implications in congruence varieties, Acta Sci. Math. (Szeged) 56 (1992), 15-18.
3. Czédli G. and Day A., Horn sentences with (W) and weak Mal'cev conditions, Algebra Universalis 19 (1984), 115-124.
4. Czédli G. and Freese R., On congruence distributivity and modularity, Algebra Universalis 17 (1983), 216-219.
5. Day A., A characterization of modularity of congruence lattices of algebras, Canad. Math. Bull. 12 (1993), 167-173.
6. _, p-modularity implies modularity in equational classes, Algebra Universalis 3 (1973), 398-399.
7. —_, Splitting lattices and congruence modularity, Colloquia Math. Soc. J. Bolyai 17. Contributions to Universal Algebra, (Proc. Conf. Szeged 1975), Bolyai - North Holland, Budapest - Amsterdam - Oxford - New York, 1977, pp. 57-71.
8. Day A. and Freese R., A characterization of identities implying congruence modularity, I, Canadian J. Math. (Szeged) 32 (1980), 1140-1167.
9. Freese R., Minimal modular congruence varieties, Amer. Math. Soc. Notices 23(1) (1976), 76T-A14.
10. , Finitely based modular congruence varieties are distributive, Algebra Universalis 32 (1994), 104-114.
11. Freese R., Herrmann C. and Huhn A. P., On some identities valid in modular congruence varieties, Algebra Universalis 12 (1981), 322-334.
12. Freese R. and McKenzie R., Commutator Theory for Congruence Modular Algebras, London Math. Soc. Lecture Notes Series 125, Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sidney, 1987.
13. Geyer W., Generalizing semidistributivity, Order 10 (1993), 77-92.
14. Hobby D. and McKenzie R., The Structure of Finite Algebras, AMS Contemporary Math. 76, Providence, Rhode Island, 1988.
15. Huhn A. P., Two notes on n-distributive lattices, Colloquia Math. Soc. J. Bolyai 14, Lattice Theory, (Proc. Conf. Szeged 1974), Bolyai - North Holland, Budapest - Amsterdam - Oxford - New York, 1976, pp. 137-147.
16. Jónsson B., Algebras whose congruence lattices are distributive, Math. Scandinavica 21 (1967), 110-121.
17. __, Identities congruence varieties, Colloquia Math. Soc. J. Bolyai 14. Lattice Theory, (Proc. Conf. Szeged 1974), Bolyai - North Holland, Budapest - Amsterdam - Oxford - New York, 1976, pp. 195-205.
18. _, Congruence varieties, Algebra Universalis 10 (1980), 355-394.
19. Kearnes K. and Szendrei Á., The relationship between two commutators, International Journal of Algebra and Computation 8 (1998), 497-531.
20. Lipparini P., A characterization of varieties with a difference term, II: neutral $=$ meet semidistributive, Canadian Math. Bulletin 41 (1988), 318-327.
21. Mederly P., Three Mal'cev type theorems and their applications, Math. Časopis Sloven Akad. Vied. 25 (1975), 83-95.
22. Nation J. B., Varieties whose congruences satisfy certain lattice identities, Algebra Universalis 4 (1974), 78-88.
23. Papert D., Congruence relations in semilattices, J. London Math. Soc. 39 (1964), 723-729.
24. Pixley A. F., Local Mal'cev condiditions, Canadian Math. Bull. 15 (1972), 559-568.
25. Willard R., A finite basis theorem for residually very finite congruence meet-semidistributive varieties, preprint.
26. Wille R., Kongruenzklassengeometrien, Lecture Notes in Math. 113, Springer-Verlag, Berlin - Heidelberg - New York, 1970.
27. Ziegler G. M., Lectures on Polytopes, Graduate Texts in Math. 152, Springer-Verlag, Berlin - Heidelberg - New York, 1995.
G. Czédli, JATE Bolyai Institute, Szeged, Aradi vértanúk tere 1, H-6720 Hungary, e-mail: czedli@math.u-szeged.hu

[^0]: Received August 10, 1997; revised March 4, 1999.
 1980 Mathematics Subject Classification (1991 Revision). Primary 08B10; Secondary 08B05.
 Key words and phrases. Mal'cev condition, congruence variety, lattice, semidistributivity, Horn sentence.

 This research was partially supported by the NFSR of Hungary (OTKA), grant no. T023186 and T022867, and also by the Hungarian Ministry of Education, grant no. FKFP 1259/1997.

[^1]: ${ }^{\dagger}$ Essentially by the same reason, $U_{k} \models U_{k+1}$, i.e., " $(\exists k)\left(U_{k}\right)$ " is a Mal'cev condition, indeed.

