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THE VECTOR INDIVIDUAL WEIGHTED ERGODIC
THEOREM FOR BOUNDED BESICOVICH SEQUENCES

K. EL BERDAN

Abstract. In this paper we prove maximal ergodic theorem and a pointwise con-
vergence theorem. Our result is to prove the convergence of

1 o) a— |
Bn(T,a,f) == a;TIf
n i
i=o0

for all ¥ COY(Q, X) = L1(X), where n tends to infinity, Q is a o-finite measure
space, X is a reflexive Banach space, aj is a bounded Besicovich sequence and T is
a linear operator on L(X) which is contracting in both L1(X) and L*°(X).

Our result has the additional advantage as it is su Lciehtly general in order to
extend the Beck and Schwartz random theorem.

We can also generalize this result to a multidimensional case.

Notations and Definitions

Denote by X a Banach space, (Q, B, 1) a o-finite measure space, [XIxJthe norm
of a vector x in X. —

(|
< LY(Q,X)=LYX) = f:Q - X, measurable and , [F{w) GJdu(w) < oo
the space of integrable functions if-the sense of Bochner which take values
in X, and L*°(Q, X) = L“I%) = f:Q - X, measurable and bounded a.e.

(i.e Sup,, (o (W) [ < o) .

e L!=LYQ,R), L> = L= (@)

- Forall f [CIF(X), L=, (o) Gddu(w) and (FIJ = sup,, o (F{w) <L

= For an operator T of L1(X) into itself: T is contracting in L1(X) i CIIf [ =
[FIIfor all £ [CO'(X), similarly, T is contracting in L*>(X) ifor all f [
L= (X), Of [d = L.

eFora > 0and f COYX), f&~ = %ﬁpin{tﬂﬁ}, far = f—fa fbk
sup,, Bh(a, T, F) kG, o) = {f*> aa}, e(a) = {(FL > a} and for A QI
we denote ¢a the indicator function of A.
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We first define the term *“Bounded Besicovich sequence”. Let a; be a sequence
of complex numbers. We say that a; is a bounded Besicovich sequence if

(i) there exists a positive real o such that |aj| < o for every j [N,
(i) for € > 0 there exists a trigonometric polynomial ¢¢ such that

) 1 1 .
“r'p N+l . o — () <e.

Introduction
In [5] J. Olsen proved an individual weighted ergodic theorem for bounded
Besicovich sequences. He proved the a.e. convergence of

Bn(T,qa,f) L TIf
n(h,o, )= —— Qj
n+1 j=o

where T is linear operator on Lt = L(Q, R) which is contracting in L = L1(Q,R)
and in L= = L*(Q,R), and q; is a bounded Besicovich sequence.

In [2] R. V. Chacon proved a maximal ergodic lemma for operators which act
in the space of functions taking their values in a Banach space, and he used this
result to obtain a vector valued ergodic theorem as a generalization of the Dunford
and Shwartz theorem.

In this paper we intend to generalize the individual ergodic theorem of Olsen
to operators acting in L*(X).

In his proof Olsen used the dominated operator of T-linear modulus (see
[5, Lemma 2.1]) but in our case we have shown in [4] that there exists a vec-
tor operator without linear modulus contracting in L*.

We prove that the method of Chacon can be adapted to this situation, then
our result is the convergence p-a.e. of Bo(T, a, f) where T is a linear operator on
L1(X) which is contracting in both L*(X) and L*(X).

In the second part, we generalize these results to a multidimensional case: If
a;j is a bounded Besicovich sequence and Ag = i1S1 + -+ + igSq where s; [N for
j =1,...,d then the limit of

1

Bn(T,d, 0, f) = ————
(n+1)d =0

G)\dTAdf

ig

exists a.e. for all f CTI(X).
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I. One Dimensional Case

We now state Chacon’s result [2]:

Theorem 1.1 (Chacon). Let T be a linear operator on L'(X) contracting in
LY(X) and in L*°(X).

1 1
. 1 1
(i) fa>0,e4) = o X sup, 1 TIf(w) (> a
=0

X

1 |
a— ¥ (0) lél du(w) < fE*(w) I%'du(w).

1

e™&)

.. . 1nEl_1 .
(i) For f CII*(X), the limit of An(T,f)(®) = n TIf(w) exists strongly
j=0
for every w as n tends to infinity.
(iii) If 1 < p < oo, then there exists a function f ™1 TP(X) such that

|in(T)f @S E—lj]@ (ae. n=0).

Main Result
We now state and prove our main result.

Theorem 1.2. Let X be a reflexive Banach space, T be a linear operator on
L1(X) contracting in L*(X) and in L*>(X), aj be a bounded Besicovich sequence
then:

. _ 1nEl 1. .
(i) For f [CIL'(X), the limit of Bn(T,a,f)(w) = a. OO(J-TJf(w) exists
strongly for every o as n tends to infinity. ’
(i) If 1 <p<oo, f [IP(X) the average Bn(T, a, f) converges a.e. and

| I_ L1 @
%p@n(T,a,f)le_ pfl [FI;]

Before proving Theorem 1.2, let us remark that if a; = 1 for every j, we have

1 1
elth, 1) =elh) = sup%i»l T;fga .
n k=0

We will have to prove that Chacon’s lemma is valid also for the averages
Bn(T,a,f).
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Lemma 1.3. If f [I*(X) and a > 0, we have then

1
1 ]
a— %_(w) %l du(w) < If‘%ﬂm) %ldu(w).

e@,a)

Proof of Lemma 1.3. We can suppose that a; >0 for all j in N. As in [2] we
define:

fo :fa+,
C1 1

firi =TTF —%—f%min E’fi@,a— %‘@— i@—fkﬂg

X

and
d —

=0,
° - .
T . - %‘
diz1 = %—%mm |—':I'—l‘i|§|,a— E‘ Iél— —fk+1I§|
i k=0
By [2] these sequences satisfy the following relations:

D) %_(w) I%I+ %(w) %ls a for every i in N and for every w in Q,
2 %ﬁ(w)%l: Eﬂ(w)gh %m(w)%for all w in Q,

(R TH=TH2 +fi+ T Kdy foreveryiinN,

1

k=0
- | — 1 O r— 8l o0l
4) T+ T'kKde = T' f+ d¢ foreveryninN,

i=0 k=0 i=0

k=0
() iffor o CAfi+1(w) B0 thena= E_(w) lél+ E(w) l%'
k=0

Multiply equality (3) by a; to obtain

GJ'T'f = GiT'fa_ +0o;f; + GiT'_kdk.

k=0
To prove the following equality
= | I S i S nf—1 [
(Dd o;T'Fa + GiT'_kdk = T' o;f* + Qi+ i

i=0 k=0 i=0 k=0
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we shall argue by induction on n. It is true for n = 0. Suppose now that it is valid
up to n and let us prove it for n + 1:

nEr — U
o;T'Fa + GiT'_kdk
i=0 k=0
| — —1 [ 1 o) S| 1
= o T+ T Kdg +opeg T+ TR,
i=0 k=0 k=0
| — npi——1 [ 1 N 1
= Ti C(ifa_ + Qi+kdx + Op+1 Tn+lfa_ + Tn+1_kdk
=22 =2 O 2 O
Hn An

On the other hand we have

£ nH=— ] ¢y 31 nrp—— -
T' oif®” + aidck = T' aif +  dj+kdi + On+10n+1—i
i=0 k=0 i=0 k=0
 — 1 np——1 [ N
= T' of + Okl + ThHifa 4 On+1 T'dn+1—i
i=0 k=0 i=0
L1 . 1 1 1
r— 1 n——1 nfr—
= T' ofd + Qj+kdx  + O0p+1 Th+lfas 4 Tn+1_kdk
=P =0 - =0 O
Hn An

It follows that (D holds for every n in N. Thus
) e S — 1 nEy L

GiTif = Ti o;fd + Qj+kdi  + a;fi
i=0 i=0 k=0 i=0
(- | — . — nf1 LIt
= oof? + ode + T' o;f2 + Qj+kde  + a;fi
k=0 i=1 k=0 i=0

Now, we shall show that for all ® [E3(t,a)= « XX sup = o; T3 (w) e
n i=0

J
we have _
- E TaldE
a= 11" (w) 2+ [dd (w) =
k=0
Let w Cet(h, a) then there exists n = n(w) such that:

P - 1
oan +o0a < E aiTif(w)é do %_(w)%ﬂL Ol %(w)%l
i=1 k=0

gy =1 | nf—1 [ q
+ M oif®* +  ojdec (@) i |w)I§|-

i=1 k=0 i=0
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By (1) we have

ai E_(('0) %l B a|+k @(w) E|< Qi E (0.)) El @(W) El
=Gi% (‘D)El IEI(UJ)E'D

and, as the operator T is contracting in L*°(X), then

| — | npi ] npi
I(Gifa_ + Gi+kdk(w)§S I(Gifa_ + Aj+kdk)
i=1 k=0 X = k=0 *
0 nEi 1 :%I nf—y [
< Coa 2™+ djewdi = sup fa~ Oi+kdk (W)
i=1 k=0 ek k=0 X
| —
<  sup O _(w)@ Ui+k @(w)EI
i=1 @[ k=0
[
<o0a
whence

(n+a)aa<a% (w)l%I %(w) +naa+  qj %(u UJ)I%I
i=1
D% (w)El E(w) +na+  q; @«»)@D
i=1

a< %‘(w)%h %(w)%qn gi w)%
k=0

i=1

and so

by relation (5) we have
= %‘(w)%‘+ %(w)%l
k=0

for all w Ceth, a).
The rest of the proof can be obtained in the same way as in Chacon’s method,
in fact, using (6) and knowing that [Tl[;k 1 we deduce

- - %‘(w) %ll:dluﬁ %kg— %+151 % %+1ljﬂj
< f‘ﬁ(w) M) = TEW”) M.

e (d,0)
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Proof of Theorem 1.2. Since the Lemma 1.3 gives us maximal weak inequality
for averages Bn(T, a, ) it su [ced to prove the convergence for ¥ belonging to a
set which is dense every where in L1(X). We know that L°°(X) is such a set, so
for £ CIP°(X) we have:

[ — 1 /1 1 o1 O
Ge(T'F+ = =G T'F

+
i=0 i=0 1 i=0

Let 8 be a complex number. The operator Uf = e'®Tf is contracting in both
LY(X) and L=(X) and the theorem follows in the case a, = €' from Chacon’s
theorem. The linearity of convergence gives that

lim —— d()T'F
m———= ()
i=0
exists and is finite a.e. for any trigonometric polynomial ¢, and f CLF°(X).
In fact we have for this operators a strong mequallty in L*°(X):

g Tl q;s(.)Tf < ke (L]

and by the definition b) we also have

1
o — e (i) e %s e (FIJ
=0

limsu L
n pn+1

By Lemma 1.3 we have
1

au(e'(a o)) < © [Flw) CJdp

and so, using the rearrangement formula we get:

L] LAz
I%I%: [f P du = pa® Meron o dA dpi(w)
e Qo -
= paP }\p‘lu%‘@\,a) dA
Iy,
< paP AP2 %w) %Id}\ dp(w)
Iy,

= pap o o AP _zle()\) dA dp(w)
EE Elﬂﬂm) — ]
= paP w) 5 AP72dA dp(w)

Q 0
= ap% I:Ew) %du(w). 1
Q
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Remark 1.4. We notice that Lemma 1.3 remains true for any bounded se-
quence even if it is not a Besicovich one.

Let us consider some examples to which Theorem 1.2 is applied:

Examples 1.5.

1. Let X = R x R (reflexive Banach space) with norm [(X,y)[F X] + |y| .
Q = {1, 2} a probability space, u(1) = u(2) = %; L1({1, 2}, RxR) being a Banach
space of dimension 4. Notice that for

a b al pY

_ edd P d”
T= edf el fU
g h g ho

T will be contracting on L*({1, 2}, R x R) if the sum of the absolute values of the
terms in each column is less than 1.

It is easy to show that the operator T is contracting on L*°({1, 2}, R x R) if the
terms of the matrix T satisfy

+c|+af+[cf=1 |+ gl +ef+1gf=<1

+lc| + b +]dYf=<1 + gl +|[ff+|hf=<1
and

+ |d|+[af+|cf<1 M+ |h|+ e+ g <1

of + [d] + b+ [dT<1 i+ |n| +[f{+|hf<1

1
=y

)
@]

&

—

Let T be the linear operator on L*({1,2}, R x R) represented by a square matrix

of order 4 defined by
i;b 0 3/8 3/7

A4 1/9 2/9 2/9
ol 1/7 2/7 1/4
2/5 1/9 2/9 3/10

T is contracting on both L*({1,2},R < R) and L*({1,2},R x R).
Consider also the sequence o, = e'®™ where 8 a complex number, we have by
Theorem 1.2 the convergence of the sequence

5!) 0 3/8 3/7 ; X1

1 l%,l(f_ 1 %%1 1/9 2/9 2/9
n+1 K T+l 1/7 2/7 1/4

k=0 k=0

-

/z

T

X |9

Z

2/5 1/9 2/9 3/10  y»
e e SO s
for all f = );1 by + );2 by CIF({1,2}, R xR).
1 2
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2. Let X be a reflexive Banach space, Q a probability space, ¢ is a transforma-
tion from Q to Q such that for all f [C1TH(X),

TEL o) l%L(w) = f‘iw) l%L(w)

(or ¢ is a measure preserving transformation) and let (a;);i mn be any Besicovich
bounded sequence then
lim —* i(Foo
Mnr1 ai(f - ¢")
i=0
exists a.e. for every f [CLF(X).

Applications. The general result of Theorem 1.2 can be applied to give a gen-
eralization of the vector valued random ergodic theorem of Beck and Schwartz [1].

Theorem 1.6. Let be defined on Q a strongly measurable function U, with val-
ues in the Banach space B(X) of bounded linear operators on a space X. Suppose
that [T}, £ 1 for all w Q. Let ¢ be a measure preserving transformation in
(Q, B, 1) and (0;)i o be a Besicovich bounded sequence, then for £ CIF(X), the
limit

1

1 k
rl;n m o akUwU(p(m) e U(pk—l(w)f(d) ((.0))

exists for almost all w QL.

Proof. For £ CI1t(X) we define

UT (@) = U (F($(w))).

Then it can be easily seen that it satisfies the conditions of Theorem 1.2 and hence
the condition follows at once from Theorem 1.2. —1

I1. A Multidimensional Case

Obtaining an extension of Theorem 1.2 to distinct several operators Ty,...,Tqg
which more general means di Ccult. But if T; =TS, ... . Tq =T3¢ where T is an
linear operator on L*(X) and sx [N for k =1,...,d, then Theorem 1.2 can be
extended to this case. Let

1 r— m 1 .
— OrgTit... Tiof
d d 1 d
(n * l) i1=0 id=0

wher%d = i1S1 + —iqSq and q; be %ndeﬁesiwvich sequence. Let fi—=
sup, "Bh(T,d,a,f)Jand eg(a,a) = fy>oa .

Bn(T,d,a,f) =
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Theorem 2.1. Let X be a reflexive Banach space, T be a linear operator on
L1(X) contracting in L1(X) and in L*(X), a; be a bounded Besicovich sequence.
Then for Ag =i1S1+ - +igSq, S=5S1 +...,54:

(i) For f IO (X), et a> 0 we have

1
1 []
a- ~@ 5 duw) = fE+(w)de”(“’)'

(ii) For f [CM'(X), the limit of Bn(T,d,a, f)(w) exists strongly for every
0 as n tends to infinity.

(iii) fl<p<oo, f [IP(X)and a = supk%kathe average Bn(T,d,a, )
converges a.e. and

@p%n(td,a,f)@%sa ?I%l o i

Proof. We will prove the theorem in the case where d = 2, and s; = s, =1
only, for the sake of simplicity. A similar proof to that used in this case gives the
general result in the d-dimensional case (d > 2).

We now study the following averages:

1

Bn(T,2,a,f)(w) = m

Gi+jTi+jf.
i=0 j=0

By the relation (3) in the proof of the Theorem 1.2 we can write

o U — it (. .
Gi+jT'+Jf = j+k Ti+kfa—4 TJ+k_mdm + Gj+kfj+k.
i=0 j=0 j=0k=0 m=0 j=0k=0

We prove an analogous equality to (Das in the proof of Theorem 1.2

O]
I T} L O o g 1 O
Ojk TITHFA" 4+ TITREMg, = o T+ TE™Mdy,
j=0k=0 m=0 j=0 1=j I‘I'HZO O
1
i1l 111
= Gt tha_ + Tt_mdm - Gt tha_ + Tt_mdm

j=o0 l_ﬁ:o m=0 H—ﬁ——o m=0 1
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o ] nH=t— L1
= Tt tha_ + at+mdm
J=0 =0 i N
2
il U L | i
— Tt o f3 + Ot+m0dm by (D1
t=0 m=0
oy It/ nH—t— ]
= T af2 + Ot+m0m + Ot+m0m
j=0 t=0 rmlzo I_I_rlnlzj—t O
2
i} cammw B Ly L N N
- Tt tha_ + at+mdm
t=0 m=0
o ] It Cngart (I
= Tt o f3 + Ot+rmdm  + Ot+m0m
j=0 t=0 m=0 I;‘) m=jT_f_|_| O
3
i} cammw B L L [ N N
- Tt tha_ + at+mdm
t=0 m=0
r o Ol i i S | CInpg—pH—t— 111
= Tt tha_ + at+mdm + Tt at+mdm .
j=0 t=j m=0 fEP m=j|_—|_h O
3
Let
r o1l itk (I
Xn(@) = Qj+k TITRFE— 4+ TITkemg (@)
j=0k=0 m=0
and
fEEsup %L(T, a, f) Iél
n
where
Cn(T,G,f) = ﬁ Gj+ij+kf
@7 g

and e5(a, o) = {f{ > aa}. Fix w Ceffa, a) there exists n = n(w) such that

11

QID - | I
@n+1)%0a< aj+kTJ+kf(w)@s Ia;e,l](m)lih Oj+k Firk %l

j=0k=0 j=0k=0
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But
1]
o Hs - (co)E o T ]
O] Jl=1_—| - oIty O
+ [Tt o F2 + Ot+mdm (W) Tt Ot+m0m (0.))
j=0 t=j m=0 j=0t=0 m=j—t

We know that T is contracting in L°>(X), using (1) we obtain:

I%‘(OJ)EI< Go% (w)EI %(w) El[l

j—o t=j j=0 t=0

| 1
< 0(0 (w)EI E(w)EI + (n—J —JJoaa+ (n+]j)oa.
=0 =0

i= i

By (3) we can write

1
@n+1)%0a< ao ()5 El @(w) H

rri1i
+n(n + 1)aa + 2n0a + Oj+k EJLK H

X
j= o k=0
% ()5 El %(w) + (3n? + n)aa + a Eﬂ El
j=0k=0
As in the case d = 1 we have by the relations (3), (4) and (5)
1 E%l
as %_(w)lih %(w)l%I + ,+k(w)%|.
k=0 j=0k=0

By the (5) we see for all w Cekfa, o)

= %_(w)gh ) %(w)l%|

This implies
|
]
e ‘(w)% du(w) < % %I%l: Ij‘ﬁ(w) I%L(w)-
ecla.a k=0

On the other hand we can write

(2n +1)?

Bn(T, o0 F) = 70

Cnh(T,a,T)
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which gives f5< 2f hence e5(a, a) Celfa/2, o). For b =a/2 we have

1 1
%I— %_ (W) I%ll:dlp(u)) =2 %I— %_ (W) I%ll:dlp(u))

e5(a,a) La,a)
<2 Iie]%““(w) I%Idu(w) <2 fE*(w) I%Idu(w)

Q

o)
| [
(8) au%‘Bj('a, a) < au%\&alz, a) <2 I:Ew) I%L(w).
Q

Now, we shall prove that averages

1 'EEIlzI o nmini

B(ny,n2, T,a,f) = — o~ (He°G)T™F
M2 4 =0

converge on a dense set in L*(X). We will need the following lemma:

Lemma 2.2. Let T be a linear operator on L*(X) which is contracting in both
L1(X) and L*(X), then for ¥ CIAv (T) + Im (I — T) n L=(X) the limit

) 2 .
TiHIf

exists as ny and n; tend to infinity.

Proof. Let f =g+ (h—Th) with Tg =g, g CIF(X) and h CIF°(X). Then

1 EET_] 1 E—_ % [
THIf=g+ T' (Th=TI")
N2 55 5-0 N2 =0
(.
—g+— T'h—Tr7'f
niny i=o
— N -
:g+iq_ : T'h_iq_ Tn2—1+|h
N1 r‘2| 0 ! r]2i 0

and
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Let Uf = el T F, k = 1,2. Uy is a linear operator satisfying the conditions

of Lemma 2.2 and so the ds in the case @ (n) = e%n,
This implies that - T2 20 ¢ (I)d? ()T f converges a.e. on Inv(T) +

Im (1 —T) n L*(X) which is dense, by Kakutani-Yoshida theorem in L(X) (X a
reflexive Banach space). From Theorem 2.1(i) and the linearity of convergence of
sequences we obtain that

L 2 o
or (DG THIF
i=0 j=0

ni,nz2 - oo NNy

exists and is finite a.e. for any trigonometric polynomial @, k = 1,2, and f [
L1(X).

The general case (d > 2) is similar to the real case studied by Olsen [5].

The second assertion (ii) follows from the maximal equality (3) and the re-
arrangement formula used in part I.

Letaj =1,andsx =1foralljinN andk =1,...,d the average B,(T,d, a, )
becomes

1
1 Ti1+---+idf — 1

(n+1) b0 iy=0 n+1j:0

Bn(T,d,a,f) =

Using Theorem 2.1, we deduce the following:

Corollary 2.3. Let X be a reflexive Banach space, T be a linear operator on
L1(X) contracting in L*(X) and in L*°(X), then for d [N and f [CF(X)

[ SV v B
lim T f
n n+1.

j=0

exists a.e.
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