CONGRUENCE CLASSES IN REGULAR VARIETIES

R. BĚLOHLÁVEK and I. CHAJDA

AbStract. A characterization of congruence classes of algebras of regular varieties is presented. The problem of deciding whether a given subset of an algebra of regular variety is a congruence class is shown to be solvable in polynomial time.

It has been proved by A. I. Malcev [6] that a nonempty subset $C \subseteq A$ of the support of an algebra $\mathcal{A}=(A, F)$ is a class of some congruence relation on \mathcal{A} if and only if

$$
\text { either } \quad \tau(C) \cap C=\emptyset \quad \text { or } \quad \tau(C) \subseteq C
$$

for any unary polynomial τ of \mathcal{A}. This characterization, whatever useful, is not much efficient. In [1], the authors found a simple characterization of congruence classes of algebras from varieties which are both regular and permutable. They also showed that the decision problem of being a congruence class for algebras from a given regular and permutable variety is solvable in polynomial time. In this paper we give a characterization of congruence classes of algebras from regular varieties.

Recall that an algebra $\mathcal{A}=(A, F)$ is regular if $\theta=\Phi$ for $\theta, \Phi \in \operatorname{Con} \mathcal{A}$ whenever they have a congruence class in common. \mathcal{A} is n-permutable if $\theta \circ \phi \circ \theta \circ \cdots=$ $\phi \circ \theta \circ \phi \circ \cdots$ (n factors in both relational products) for every $\theta, \phi \in \operatorname{Con} \mathcal{A}$. A variety \mathcal{V} is regular or n-permutable if each $\mathcal{A} \in \mathcal{V}$ has this property.

Regular varieties have been characterized independently by B. Csákány, G. Grätzer and R. Wille in 1970s. For our purposes we present a Malcev condition which is rather similar to that one of R . Wille (cf. Theorem 6.11 in [8]).

Theorem 1. A variety \mathcal{V} is regular if and only if there exist a positive integer n, ternary terms t_{1}, \ldots, t_{n}, and 5 -ary terms p_{1}, \ldots, p_{n} such that

$$
\begin{aligned}
t_{i}(x, x, z) & =z \quad \text { for } i=1, \ldots, n \\
x & =p_{1}\left(t_{1}(x, y, z), z, x, y, z\right) \\
p_{i}\left(z, t_{i}(x, y, z), x, y, z\right) & =p_{i+1}\left(t_{i+1}(x, y, z), z, x, y, z\right), \quad i=1, \ldots, n-1 \\
y & =p_{n}\left(t_{n}(x, y, z), z, x, y, z\right) .
\end{aligned}
$$

[^0]Proof. Let \mathcal{V} be a regular variety, $F_{\mathcal{V}}(x, y, z) \in \mathcal{V}$ be a free algebra generated by x, y and z, let further $\theta=\theta(x, y), C=[z]_{\theta}$. For $\theta(x, y)$ and $\theta(C \times\{z\})$ have the class C in common, it follows from regularity that $\theta(x, y)=\theta(C \times\{z\})$. We have therefore $\langle x, y\rangle \in \theta(C \times\{z\})$. The compactness of congruence lattice implies that there is a finite subset $\left\{d_{1}, \ldots, d_{k}\right\} \subseteq C$ such that $\langle x, y\rangle \in \theta\left(\left\{d_{1}, \ldots, d_{k}\right\} \times\{z\}\right)$. By Malcev lemma, there are $e_{1}, \ldots, e_{m} \in F_{\mathcal{V}}(x, y, z)$ and $(2+m)$-ary terms q_{1}, \ldots, q_{n} such that $x=q_{1}\left(d_{j_{1}}, z, \vec{e}\right), q_{i}\left(z, d_{j_{i}}, \vec{e}\right)=q_{i+1}\left(d_{j_{i+1}}, z, \vec{e}\right)$ for $i=1, \ldots, n-1$, and $y=q_{n}\left(d_{j_{n}}, z, \vec{e}\right)$ where $j_{i} \in\{1, \ldots, k\}$. Clearly, $q_{i}(u, v, \vec{e})=p_{i}(u, v, x, y, z)$ and $d_{j_{i}}=t_{i}(x, y, z), i=1, \ldots, n$, which are the required terms.

Conversely, let \mathcal{V} satisfy the listed identities, let $\mathcal{A} \in \mathcal{V}$. To prove regularity of \mathcal{A} it is enough to prove that each $\theta \in \operatorname{Con} \mathcal{A}$ with some singleton class $\{c\}$ is the identity relation ω. Let then $\theta \in \operatorname{Con} \mathcal{A},\{c\}$ be a class of $\theta,\langle a, b\rangle \in \theta$. Thus $\left\langle t_{i}(a, b, c), c\right\rangle=\left\langle t_{i}(a, b, c), t_{i}(a, a, c)\right\rangle \in \theta$, i.e. $t_{i}(a, b, c) \in\{c\}$, i.e. $t_{i}(a, b, c)=c$. We conclude

$$
\begin{aligned}
a & =p_{1}\left(t_{1}(a, b, c), c, a, b, c\right)=p_{1}(c, c, a, b, c)=\cdots=p_{n}(c, c, a, b, c) \\
& =p_{n}\left(c, t_{n}(a, b, c), a, b, c\right)=b
\end{aligned}
$$

hence $\theta=\omega$.
Theorem 2. Let the variety \mathcal{V} be regular and p_{1}, \ldots, p_{n} be terms of Theorem 1. Then \mathcal{V} is $(n+1)$-permutable.

Proof. Put $q_{i}(x, y, z)=p_{i}\left(t_{i}(x, y, z), t_{i}(y, z, z), x, z, z\right)$. The identities

$$
\begin{aligned}
x & =q_{1}(x, y, y) \\
q_{i}(x, x, y) & =q_{i+1}(x, y, y), \quad i=1, \ldots, n-1 \\
y & =q_{n}(x, x, y)
\end{aligned}
$$

are easy to verify. Hence, by $[\mathbf{5}], \mathcal{V}$ is $(n+1)$-permutable.
Theorem 3. Let \mathcal{V} be a regular variety, and t_{1}, \ldots, t_{n} be the terms of Theorem 1. Let $\mathcal{A}=(A, F) \in \mathcal{V}$ and $\emptyset \neq C \subseteq A$. The following conditions are equivalent:
(1) C is a class of some $\theta \in \operatorname{Con} \mathcal{A}$.
(2) (i) for each m-ary $f \in F, a_{j}, b_{j} \in A, j=1, \ldots, m, c \in C$, it holds

$$
\&_{i=1}^{n} t_{i}\left(a_{j}, b_{j}, c\right) \in C \Rightarrow \&_{i=1}^{n} t_{i}\left(f\left(a_{1}, \ldots, a_{m}\right), f\left(b_{1}, \ldots, b_{m}\right), c\right) \in C
$$

(ii) if $a, b, d \in A$ then

$$
\&_{i=1}^{n}\left(t_{i}(a, b, c) \in C \& t_{i}(b, d, c) \in C\right) \Rightarrow \&_{i=1}^{n} t_{i}(a, d, c) \in C
$$

(iii) if $a \in A, c, d \in C$, then $t_{i}(d, c, c) \in C$ for $i=1, \ldots, n$, and

$$
\&_{i=1}^{n} t_{i}(a, c, c) \in C \Rightarrow a \in C
$$

Proof. Let $\mathcal{A} \in \mathcal{V}, \emptyset \neq C \subseteq A, c \in C$ and let (i), (ii) and (iii) hold. Let θ_{C} be a binary relation on A defined by

$$
\begin{equation*}
\langle x, y\rangle \in \theta_{C} \quad \text { iff } \quad t_{1}(x, y, c) \in C, \ldots, t_{n}(x, y, c) \in C \tag{*}
\end{equation*}
$$

Since $t_{i}(x, x, c)=c \in C$, the relation θ_{C} is reflexive. Compatibility and transitivity of θ_{C} follow from the conditions (i) and (ii), respectively. Applying Theorem 2 we conclude that \mathcal{V} is $(n+1)$-permutable. By [3], each reflexive, transitive and compatible relation in a $(n+1)$-permutable variety is a congruence relation, hence $\theta_{C} \in \operatorname{Con} \mathcal{A}$.

Let $x \in[c]_{\theta_{C}}$. Then $\langle x, c\rangle \in \theta_{C}$ and, by $(*), t_{i}(x, c, c) \in C$ for $i=1, \ldots, k$. From (iii) it follows $x \in C$. Conversely, let $x \in C$. Then by (iii) we get $t_{i}(x, c, c) \in C$, $i=1, \ldots, k$. By $(*)$ this implies $\langle x, c\rangle \in \theta_{C}$, i.e. $x \in[c]_{\theta}$. Hence, $C=[c]_{\theta}$.

Conversely, let $C \subseteq A$ be a class of some $\theta \in \operatorname{Con} \mathcal{A}$ and $c \in C$. If $a_{j}, b_{j} \in A$ and $t_{i}\left(a_{j}, b_{j}, c\right) \in C(j=1, \ldots, m, i=1, \ldots, n)$ and if $f \in F$ is m-ary then then $\left\langle t_{i}\left(a_{j}, b_{j}, c\right), c\right\rangle \in \theta$ and, by Theorem 1 , we have

$$
\begin{aligned}
a_{j}= & p_{1}\left(t_{1}\left(a_{j}, b_{j}, c\right), c, a_{j}, b_{j}, c\right) \theta p_{1}\left(c, t_{1}\left(a_{j}, b_{j}, c\right), a_{j}, b_{j}, c\right) \\
= & p_{2}\left(t_{2}\left(a_{j}, b_{j}, c\right), c, a_{j}, b_{j}, c\right) \theta p_{2}\left(c, t_{2}\left(a_{j}, b_{j}, c\right), a_{j}, b_{j}, c\right) \\
& \quad \vdots \\
= & p_{n}\left(t_{n}\left(a_{j}, b_{j}, c\right), c, a_{j}, b_{j}, c\right) \theta p_{n}\left(c, t_{n}\left(a_{j}, b_{j}, c\right), a_{j}, b_{j}, c\right)=b_{j},
\end{aligned}
$$

hence $\left\langle a_{j}, b_{j}\right\rangle \in \theta$. From compatibility of θ it follows

$$
\begin{aligned}
& \left\langle t_{i}\left(f\left(a_{1}, \ldots, a_{m}\right), f\left(b_{1}, \ldots, b_{m}\right), c\right), c\right\rangle \\
& \quad=\left\langle t_{i}\left(f\left(a_{1}, \ldots, a_{m}\right), f\left(b_{1}, \ldots, b_{m}\right), c\right), t_{i}\left(f\left(b_{1}, \ldots, b_{m}\right), f\left(b_{1}, \ldots, b_{m}\right), c\right), c\right\rangle \in \theta
\end{aligned}
$$

i.e. $t_{i}\left(f\left(a_{1}, \ldots, a_{m}\right), f\left(b_{1}, \ldots, b_{m}\right), c\right) \in[c]_{\theta}=C$. Hence, (i) holds.

If $t_{i}(x, y, c) \in C, t_{i}(y, z, c) \in C(i=1, \ldots, n)$, then as in the previous case, $\langle x, y\rangle \in \theta,\langle y, z\rangle \in \theta$, hence, $\langle x, z\rangle \in \theta$. Therefore, $\left\langle t_{i}(x, z, c), c\right\rangle=\left\langle t_{i}(x, z, c)\right.$, $\left.t_{i}(z, z, c)\right\rangle \in \theta$, i.e. $t_{i}(x, z, c) \in[c]_{\theta}=C$, proving (ii).

If $t_{i}(a, c, c) \in C(i=1, \ldots, n)$, then again $\langle a, c\rangle \in \theta$, i.e. $a \in C$. If $c, d \in C$ then $\langle c, d\rangle \in \theta$, and thus $\left\langle t_{i}(d, c, c), c\right\rangle=\left\langle t_{i}(d, c, c), t_{i}(d, d, c)\right\rangle \in \theta$, i.e. $t_{i}(d, c, c) \in C$. We have proved (iii).

Let us turn to computational aspects of our problem. Computational properties of universal algebra are of recent interest, see e.g. [2]. Recall first that by a time complexity of an algorithm it is meant a function $f: N \mapsto N$ such that every problem of size n will be solved after at most $f(n)$ number of (computational) steps (see [4]). The class of all problems for which there is an deterministic algorithm (nondeterministic algorithm) of polynomial time complexity $(f(n)$ is a polynomial) is denoted by $P(N P)$. Algorithms of polynomial time complexities
are considered as practically usable, algorithms of greater complexities (e.g. exponential) are considered as unusable. The class P is therefore the class of tractable problems. In our case, we are given a class \mathcal{K} of algebras. We face the following decision problem: For an algebra $\mathcal{A} \in \mathcal{K}$ and a subset $C \subseteq A$, decide whether C is a congruence class. Suppose that one evaluation step consists in the evaluation of one term. Denote the problem $p_{\mathcal{K}}$. It has been shown in $[\mathbf{1}]$ that in general $p_{\mathcal{K}} \in N P$ but for a regular and permutable variety \mathcal{V} of a finite type, $p_{\mathcal{V}} \in P$. The following theorem shows that being a regular variety for \mathcal{K} is sufficient for the problem to belong to P.

Theorem 4. Let \mathcal{V} be a regular variety of a finite type, for which the terms t_{1}, \ldots, t_{n} of Theorem 1 are known. Then $p_{\mathcal{V}} \in P$.

Proof. Let $\emptyset \neq C \subseteq A, \mathcal{A}=\langle A, F\rangle \in \mathcal{V}$. Denote further $F=\left\{f_{1}, \ldots, f_{k}\right\}$, $l=\operatorname{card} C, m=\operatorname{card} A$, and let $\sigma(f)$ denote the arity of $f \in F$. To check whether C is a class of some congruence relation on \mathcal{A} we can use Theorem 3, i.e. we have to test the conditions (i), (ii) and (iii) of (2). Consider first condition (i). We choose $f \in F$ (k choices) and $a_{j}, b_{j} \in A$ (m^{2} choices). For this choice we have to test the implication. The test of the antecedent consists of n steps. The test of the consequent part consists of $n m^{2 \sigma(f)}$ steps (there are $m^{2 \sigma(f)}$ possible substitutions for the arguments of f). Since the choices are independent we have $\sum_{i=1}^{k} m^{2}\left(n+n m^{2\left(\sigma\left(f_{i}\right)-1\right)}\right)$ computational steps altogether. Similarly, to test the conditions (ii) and (iii) we have to perform $m^{2} l(2 n+n)$ and $m l^{2}(n+(n+1))$ steps, respectively. For a given variety, the derived expressions are polynomials. Since the overall number of steps is given by the sum of the expressions the assertion is proved.

Remark. The proof of the foregoing theorem gives a polynomial algorithm solving our problem for \mathcal{K} being a regular variety. The time complexity of the algorithm is

$$
n \sum_{i=1}^{k} m^{2 \sigma\left(f_{i}\right)}+m^{2} n(3 l+k)+m l^{2}(2 n+1)
$$

Note that this algorithm is of the same asymptotic complexity as that one for regular and permutable varieties based on Theorem 1 of $[\mathbf{1}]$.

Recall the following concept, see e.g. [1]. If $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ is an $(m+n)$-ary term of an algebra $\mathcal{A}=(A, F)$ and $C \subseteq A$ we say that C is y-closed under p if $p\left(a_{1}, \ldots, a_{n}, c_{1}, \ldots, c_{m}\right) \in C$ for every $a_{1}, \ldots, a_{n} \in A$ and $c_{1}, \ldots, c_{m} \in C$. The following theorem presents a characterization of special congruence classes of regular varieties by means of y-closeness.

References

1. Bělohlávek R. and Chajda I., A polynomial characterization of congruence classes, Algebra Univ. 37 (1997), 235-242.
2. Burris S., Computers and universal algebra: some directions, Algebra Univ. 34 (1995), 61-71.
3. Chajda I. and Rachůnek, J. Relational characterizations of permutable and n-permutable varieties, Czech. Math. J. 33 (1983), 505-508.
4. Garey M. and Johnson D., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, New York, 1979.
5. Hagemann J. and Mitschke A., On n-permutable congruences, Algebra Univ. 3 (1973), 8-12.
6. Malcev A. I., On the general theory of algebraic systems, Matem. Sbornik 35 (1954), 3-20. (in Russian)
7. Werner H., A Malcev condition on admissible relations, Algebra Univ. 3 (1973), 263.
8. Wille R., Kongruenzklassengeometrien., Lecture Notes in Math., vol. 113, Springer-Verlag, Berlin-New York, 1970.
R. Bělohlávek, Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Bráfova 7, 70103 Ostrava, Czech Republic; e-mail: belohlav@osu.cz
and Department of Computer Science, Technical University of Ostrava, tř. 17. listopadu, 70833 Ostrava-Poruba, Czech Republic
I. Chajda, Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 77900 Olomouc, Czech Republic; e-mail: chajda@risc.upol.cz

[^0]: Received December 13, 1997.
 1980 Mathematics Subject Classification (1991 Revision). Primary 08A30, 08A40, 08B05, 68Q25.

