CONGRUENCE CLASSES IN REGULAR VARIETIES

R. BĚLOHLÁVEK AND I. CHAJDA

ABSTRACT. A characterization of congruence classes of algebras of regular varieties is presented. The problem of deciding whether a given subset of an algebra of regular variety is a congruence class is shown to be solvable in polynomial time.

It has been proved by A. I. Malcev [6] that a nonempty subset $C \subseteq A$ of the support of an algebra $\mathcal{A} = (A, F)$ is a class of some congruence relation on \mathcal{A} if and only if

either $\tau(C) \cap C = \emptyset$ or $\tau(C) \subseteq C$

for any unary polynomial τ of \mathcal{A} . This characterization, whatever useful, is not much efficient. In [1], the authors found a simple characterization of congruence classes of algebras from varieties which are both regular and permutable. They also showed that the decision problem of being a congruence class for algebras from a given regular and permutable variety is solvable in polynomial time. In this paper we give a characterization of congruence classes of algebras from regular varieties.

Recall that an algebra $\mathcal{A} = (A, F)$ is **regular** if $\theta = \Phi$ for $\theta, \Phi \in \text{Con } \mathcal{A}$ whenever they have a congruence class in common. \mathcal{A} is *n*-permutable if $\theta \circ \phi \circ \theta \circ \cdots = \phi \circ \theta \circ \phi \circ \cdots$ (*n* factors in both relational products) for every $\theta, \phi \in \text{Con } \mathcal{A}$. A variety \mathcal{V} is regular or *n*-permutable if each $\mathcal{A} \in \mathcal{V}$ has this property.

Regular varieties have been characterized independently by B. Csákány, G. Grätzer and R. Wille in 1970s. For our purposes we present a Malcev condition which is rather similar to that one of R. Wille (cf. Theorem 6.11 in [8]).

Theorem 1. A variety \mathcal{V} is regular if and only if there exist a positive integer n, ternary terms t_1, \ldots, t_n , and 5-ary terms p_1, \ldots, p_n such that

$$t_i(x, x, z) = z \quad for \ i = 1, \dots, n$$
$$x = p_1(t_1(x, y, z), z, x, y, z)$$
$$p_i(z, t_i(x, y, z), x, y, z) = p_{i+1}(t_{i+1}(x, y, z), z, x, y, z), \quad i = 1, \dots, n-1$$
$$y = p_n(t_n(x, y, z), z, x, y, z).$$

Received December 13, 1997.

1980 Mathematics Subject Classification (1991 Revision). Primary 08A30, 08A40, 08B05, 68Q25.

Proof. Let \mathcal{V} be a regular variety, $F_{\mathcal{V}}(x, y, z) \in \mathcal{V}$ be a free algebra generated by x, y and z, let further $\theta = \theta(x, y), C = [z]_{\theta}$. For $\theta(x, y)$ and $\theta(C \times \{z\})$ have the class C in common, it follows from regularity that $\theta(x, y) = \theta(C \times \{z\})$. We have therefore $\langle x, y \rangle \in \theta(C \times \{z\})$. The compactness of congruence lattice implies that there is a finite subset $\{d_1, \ldots, d_k\} \subseteq C$ such that $\langle x, y \rangle \in \theta(\{d_1, \ldots, d_k\} \times \{z\})$. By Malcev lemma, there are $e_1, \ldots, e_m \in F_{\mathcal{V}}(x, y, z)$ and (2+m)-ary terms q_1, \ldots, q_n such that $x = q_1(d_{j_1}, z, \vec{e}), q_i(z, d_{j_i}, \vec{e}) = q_{i+1}(d_{j_{i+1}}, z, \vec{e})$ for $i = 1, \ldots, n-1$, and $y = q_n(d_{j_n}, z, \vec{e})$ where $j_i \in \{1, \ldots, k\}$. Clearly, $q_i(u, v, \vec{e}) = p_i(u, v, x, y, z)$ and $d_{j_i} = t_i(x, y, z), i = 1, \ldots, n$, which are the required terms.

Conversely, let \mathcal{V} satisfy the listed identities, let $\mathcal{A} \in \mathcal{V}$. To prove regularity of \mathcal{A} it is enough to prove that each $\theta \in \text{Con }\mathcal{A}$ with some singleton class $\{c\}$ is the identity relation ω . Let then $\theta \in \text{Con }\mathcal{A}$, $\{c\}$ be a class of θ , $\langle a, b \rangle \in \theta$. Thus $\langle t_i(a, b, c), c \rangle = \langle t_i(a, b, c), t_i(a, a, c) \rangle \in \theta$, i.e. $t_i(a, b, c) \in \{c\}$, i.e. $t_i(a, b, c) = c$. We conclude

$$a = p_1(t_1(a, b, c), c, a, b, c) = p_1(c, c, a, b, c) = \dots = p_n(c, c, a, b, c)$$

= $p_n(c, t_n(a, b, c), a, b, c) = b,$

hence $\theta = \omega$.

Theorem 2. Let the variety \mathcal{V} be regular and p_1, \ldots, p_n be terms of Theorem 1. Then \mathcal{V} is (n + 1)-permutable.

Proof. Put $q_i(x, y, z) = p_i(t_i(x, y, z), t_i(y, z, z), x, z, z)$. The identities $x = q_1(x, y, y)$

$$q_i(x, x, y) = q_{i+1}(x, y, y), \quad i = 1, \dots, n-1$$
$$y = q_n(x, x, y)$$

are easy to verify. Hence, by [5], \mathcal{V} is (n+1)-permutable.

Theorem 3. Let \mathcal{V} be a regular variety, and t_1, \ldots, t_n be the terms of Theorem 1. Let $\mathcal{A} = (A, F) \in \mathcal{V}$ and $\emptyset \neq C \subseteq A$. The following conditions are equivalent:

- (1) C is a class of some $\theta \in \text{Con } \mathcal{A}$.
- (2) (i) for each m-ary $f \in F$, $a_j, b_j \in A$, $j = 1, \ldots, m$, $c \in C$, it holds

 $\&_{i=1}^{n} t_{i}(a_{j}, b_{j}, c) \in C \implies \&_{i=1}^{n} t_{i}(f(a_{1}, \dots, a_{m}), f(b_{1}, \dots, b_{m}), c) \in C;$

(ii) if $a, b, d \in A$ then

$$\&_{i=1}^n \left(t_i(a,b,c) \in C \& t_i(b,d,c) \in C \right) \implies \&_{i=1}^n t_i(a,d,c) \in C;$$

(iii) if
$$a \in A$$
, $c, d \in C$, then $t_i(d, c, c) \in C$ for $i = 1, ..., n$, and

$$\&_{i=1}^n t_i(a,c,c) \in C \implies a \in C.$$

Proof. Let $\mathcal{A} \in \mathcal{V}, \ \emptyset \neq C \subseteq A, c \in C$ and let (i), (ii) and (iii) hold. Let θ_C be a binary relation on A defined by

(*)
$$\langle x, y \rangle \in \theta_C$$
 iff $t_1(x, y, c) \in C, \dots, t_n(x, y, c) \in C.$

Since $t_i(x, x, c) = c \in C$, the relation θ_C is reflexive. Compatibility and transitivity of θ_C follow from the conditions (i) and (ii), respectively. Applying Theorem 2 we conclude that \mathcal{V} is (n + 1)-permutable. By [3], each reflexive, transitive and compatible relation in a (n + 1)-permutable variety is a congruence relation, hence $\theta_C \in \text{Con } \mathcal{A}$.

Let $x \in [c]_{\theta_C}$. Then $\langle x, c \rangle \in \theta_C$ and, by (*), $t_i(x, c, c) \in C$ for $i = 1, \ldots, k$. From (iii) it follows $x \in C$. Conversely, let $x \in C$. Then by (iii) we get $t_i(x, c, c) \in C$, $i = 1, \ldots, k$. By (*) this implies $\langle x, c \rangle \in \theta_C$, i.e. $x \in [c]_{\theta}$. Hence, $C = [c]_{\theta}$.

Conversely, let $C \subseteq A$ be a class of some $\theta \in \text{Con } \mathcal{A}$ and $c \in C$. If $a_j, b_j \in A$ and $t_i(a_j, b_j, c) \in C$ (j = 1, ..., m, i = 1, ..., n) and if $f \in F$ is *m*-ary then then $\langle t_i(a_j, b_j, c), c \rangle \in \theta$ and, by Theorem 1, we have

$$\begin{aligned} a_j &= p_1(t_1(a_j, b_j, c), c, a_j, b_j, c) \,\theta \, p_1(c, t_1(a_j, b_j, c), a_j, b_j, c) \\ &= p_2(t_2(a_j, b_j, c), c, a_j, b_j, c) \,\theta \, p_2(c, t_2(a_j, b_j, c), a_j, b_j, c) \\ &\vdots \\ &= p_n(t_n(a_j, b_j, c), c, a_j, b_j, c) \,\theta \, p_n(c, t_n(a_j, b_j, c), a_j, b_j, c) = b_j \end{aligned}$$

hence $\langle a_i, b_i \rangle \in \theta$. From compatibility of θ it follows

$$egin{aligned} &\langle t_i(f(a_1,\ldots,a_m),f(b_1,\ldots,b_m),c),c
angle\ &=\langle t_i(f(a_1,\ldots,a_m),f(b_1,\ldots,b_m),c),t_i(f(b_1,\ldots,b_m),f(b_1,\ldots,b_m),c),c
angle\in heta, \end{aligned}$$

i.e. $t_i(f(a_1, ..., a_m), f(b_1, ..., b_m), c) \in [c]_{\theta} = C$. Hence, (i) holds.

If $t_i(x, y, c) \in C$, $t_i(y, z, c) \in C$ (i = 1, ..., n), then as in the previous case, $\langle x, y \rangle \in \theta$, $\langle y, z \rangle \in \theta$, hence, $\langle x, z \rangle \in \theta$. Therefore, $\langle t_i(x, z, c), c \rangle = \langle t_i(x, z, c), t_i(z, z, c) \rangle \in \theta$, i.e. $t_i(x, z, c) \in [c]_{\theta} = C$, proving (ii).

If $t_i(a, c, c) \in C$ (i = 1, ..., n), then again $\langle a, c \rangle \in \theta$, i.e. $a \in C$. If $c, d \in C$ then $\langle c, d \rangle \in \theta$, and thus $\langle t_i(d, c, c), c \rangle = \langle t_i(d, c, c), t_i(d, d, c) \rangle \in \theta$, i.e. $t_i(d, c, c) \in C$. We have proved (iii).

Let us turn to computational aspects of our problem. Computational properties of universal algebra are of recent interest, see e.g. [2]. Recall first that by a time complexity of an algorithm it is meant a function $f: N \mapsto N$ such that every problem of size n will be solved after at most f(n) number of (computational) steps (see [4]). The class of all problems for which there is an deterministic algorithm (nondeterministic algorithm) of polynomial time complexity (f(n) is a polynomial) is denoted by P(NP). Algorithms of polynomial time complexities are considered as practically usable, algorithms of greater complexities (e.g. exponential) are considered as unusable. The class P is therefore the class of tractable problems. In our case, we are given a class \mathcal{K} of algebras. We face the following decision problem: For an algebra $\mathcal{A} \in \mathcal{K}$ and a subset $C \subseteq A$, decide whether Cis a congruence class. Suppose that one evaluation step consists in the evaluation of one term. Denote the problem $p_{\mathcal{K}}$. It has been shown in [1] that in general $p_{\mathcal{K}} \in NP$ but for a regular and permutable variety \mathcal{V} of a finite type, $p_{\mathcal{V}} \in P$. The following theorem shows that being a regular variety for \mathcal{K} is sufficient for the problem to belong to P.

Theorem 4. Let \mathcal{V} be a regular variety of a finite type, for which the terms t_1, \ldots, t_n of Theorem 1 are known. Then $p_{\mathcal{V}} \in P$.

Proof. Let $\emptyset \neq C \subseteq A$, $\mathcal{A} = \langle A, F \rangle \in \mathcal{V}$. Denote further $F = \{f_1, \ldots, f_k\}$, $l = \operatorname{card} C$, $m = \operatorname{card} A$, and let $\sigma(f)$ denote the arity of $f \in F$. To check whether C is a class of some congruence relation on \mathcal{A} we can use Theorem 3, i.e. we have to test the conditions (i), (ii) and (iii) of (2). Consider first condition (i). We choose $f \in F$ (k choices) and $a_j, b_j \in A$ (m^2 choices). For this choice we have to test the implication. The test of the antecedent consists of n steps. The test of the consequent part consists of $n \, m^{2\sigma(f)}$ steps (there are $m^{2\sigma(f)}$ possible substitutions for the arguments of f). Since the choices are independent we have $\sum_{i=1}^{k} m^2 (n+n \, m^{2(\sigma(f_i)-1)})$ computational steps altogether. Similarly, to test the conditions (*ii*) and (*iii*) we have to perform $m^2 l (2n+n)$ and $m \, l^2 (n+(n+1))$ steps, respectively. For a given variety, the derived expressions are polynomials. Since the overall number of steps is given by the sum of the expressions the assertion is proved. □

Remark. The proof of the foregoing theorem gives a polynomial algorithm solving our problem for \mathcal{K} being a regular variety. The time complexity of the algorithm is

$$n \sum_{i=1}^{k} m^{2\sigma(f_i)} + m^2 n(3l+k) + ml^2(2n+1).$$

Note that this algorithm is of the same asymptotic complexity as that one for regular and permutable varieties based on Theorem 1 of [1].

Recall the following concept, see e.g. [1]. If $p(x_1, \ldots, x_n, y_1, \ldots, y_m)$ is an (m + n)-ary term of an algebra $\mathcal{A} = (A, F)$ and $C \subseteq A$ we say that C is y-closed under p if $p(a_1, \ldots, a_n, c_1, \ldots, c_m) \in C$ for every $a_1, \ldots, a_n \in A$ and $c_1, \ldots, c_m \in C$. The following theorem presents a characterization of special congruence classes of regular varieties by means of y-closeness.

References

- Bělohlávek R. and Chajda I., A polynomial characterization of congruence classes, Algebra Univ. 37 (1997), 235–242.
- 2. Burris S., Computers and universal algebra: some directions, Algebra Univ. 34 (1995), 61–71.
- 3. Chajda I. and Rachůnek, J. Relational characterizations of permutable and n-permutable varieties, Czech. Math. J. 33 (1983), 505–508.
- 4. Garey M. and Johnson D., Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, New York, 1979.
- 5. Hagemann J. and Mitschke A., On n-permutable congruences, Algebra Univ. 3 (1973), 8–12.
- Malcev A. I., On the general theory of algebraic systems, Matem. Sbornik 35 (1954), 3–20. (in Russian)
- 7. Werner H., A Malcev condition on admissible relations, Algebra Univ. 3 (1973), 263.
- Wille R., Kongruenzklassengeometrien., Lecture Notes in Math., vol. 113, Springer-Verlag, Berlin-New York, 1970.

R. Bělohlávek, Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Bráfova 7, 701 03 Ostrava, Czech Republic; *e-mail*: belohlav@osu.cz

and Department of Computer Science, Technical University of Ostrava, tř. 17. listopadu, 708 33 Ostrava-Poruba, Czech Republic

I. Chajda, Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 779 00 Olomouc, Czech Republic; *e-mail*: chajda@risc.upol.cz