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CONGRUENCE CLASSES IN REGULAR VARIETIES

R. BĚLOHLÁVEK and I. CHAJDA

Abstract. A characterization of congruence classes of algebras of regular varieties
is presented. The problem of deciding whether a given subset of an algebra of
regular variety is a congruence class is shown to be solvable in polynomial time.

It has been proved by A. I. Mal’cev [6] that a nonempty subset C ⊆ A of the

support of an algebra A = (A,F ) is a class of some congruence relation on A if

and only if

either τ(C) ∩ C = ∅ or τ(C) ⊆ C

for any unary polynomial τ of A. This characterization, whatever useful, is not

much efficient. In [1], the authors found a simple characterization of congruence

classes of algebras from varieties which are both regular and permutable. They

also showed that the decision problem of being a congruence class for algebras

from a given regular and permutable variety is solvable in polynomial time. In

this paper we give a characterization of congruence classes of algebras from regular

varieties.

Recall that an algebraA = (A,F ) is regular if θ = Φ for θ,Φ ∈ ConA whenever

they have a congruence class in common. A is n-permutable if θ ◦ φ ◦ θ ◦ · · · =

φ ◦ θ ◦ φ ◦ · · · (n factors in both relational products) for every θ, φ ∈ ConA.

A variety V is regular or n-permutable if each A ∈ V has this property.

Regular varieties have been characterized independently by B. Csákány,

G. Grätzer and R. Wille in 1970s. For our purposes we present a Mal’cev con-

dition which is rather similar to that one of R. Wille (cf. Theorem 6.11 in [8]).

Theorem 1. A variety V is regular if and only if there exist a positive integer n,

ternary terms t1, . . . , tn, and 5-ary terms p1, . . . , pn such that

ti(x, x, z) = z for i = 1, . . . , n

x = p1(t1(x, y, z), z, x, y, z)

pi(z, ti(x, y, z), x, y, z) = pi+1(ti+1(x, y, z), z, x, y, z), i = 1, . . . , n− 1

y = pn(tn(x, y, z), z, x, y, z).
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Proof. Let V be a regular variety, FV (x, y, z) ∈ V be a free algebra generated by

x, y and z, let further θ = θ(x, y), C = [z]θ. For θ(x, y) and θ(C × {z}) have the

class C in common, it follows from regularity that θ(x, y) = θ(C × {z}). We have

therefore 〈x, y〉 ∈ θ(C × {z}). The compactness of congruence lattice implies that

there is a finite subset {d1, . . . , dk} ⊆ C such that 〈x, y〉 ∈ θ({d1, . . . , dk}×{z}). By

Mal’cev lemma, there are e1, . . . , em ∈ FV (x, y, z) and (2 +m)-ary terms q1, . . . , qn
such that x = q1(dj1 , z, ~e), qi(z, dji , ~e) = qi+1(dji+1 , z, ~e) for i = 1, . . . , n − 1, and

y = qn(djn , z, ~e) where ji ∈ {1, . . . , k}. Clearly, qi(u, v, ~e) = pi(u, v, x, y, z) and

dji = ti(x, y, z), i = 1, . . . , n, which are the required terms.

Conversely, let V satisfy the listed identities, let A ∈ V. To prove regularity

of A it is enough to prove that each θ ∈ ConA with some singleton class {c} is

the identity relation ω. Let then θ ∈ Con A, {c} be a class of θ, 〈a, b〉 ∈ θ. Thus

〈ti(a, b, c), c〉 = 〈ti(a, b, c), ti(a, a, c)〉 ∈ θ, i.e. ti(a, b, c) ∈ {c}, i.e. ti(a, b, c) = c.

We conclude

a = p1(t1(a, b, c), c, a, b, c) = p1(c, c, a, b, c) = · · · = pn(c, c, a, b, c)

= pn(c, tn(a, b, c), a, b, c) = b,

hence θ = ω. �
Theorem 2. Let the variety V be regular and p1, . . . , pn be terms of Theorem 1.

Then V is (n+ 1)-permutable.

Proof. Put qi(x, y, z) = pi(ti(x, y, z), ti(y, z, z), x, z, z). The identities

x = q1(x, y, y)

qi(x, x, y) = qi+1(x, y, y), i = 1, . . . , n− 1

y = qn(x, x, y)

are easy to verify. Hence, by [5], V is (n+ 1)-permutable. �
Theorem 3. Let V be a regular variety, and t1, . . . , tn be the terms of The-

orem 1. Let A = (A,F ) ∈ V and ∅ 6= C ⊆ A. The following conditions are

equivalent:

(1) C is a class of some θ ∈ Con A.

(2) (i) for each m-ary f ∈ F , aj , bj ∈ A, j = 1, . . . ,m, c ∈ C, it holds

&n
i=1 ti(aj , bj, c) ∈ C ⇒ &n

i=1 ti(f(a1, . . . , am), f(b1, . . . , bm), c) ∈ C;

(ii) if a, b, d ∈ A then

&n
i=1

(
ti(a, b, c) ∈ C & ti(b, d, c) ∈ C

)
⇒ &n

i=1 ti(a, d, c) ∈ C;

(iii) if a ∈ A, c, d ∈ C, then ti(d, c, c) ∈ C for i = 1, . . . , n, and

&n
i=1 ti(a, c, c) ∈ C ⇒ a ∈ C.
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Proof. Let A ∈ V, ∅ 6= C ⊆ A, c ∈ C and let (i), (ii) and (iii) hold. Let θC be

a binary relation on A defined by

(∗) 〈x, y〉 ∈ θC iff t1(x, y, c) ∈ C, . . . , tn(x, y, c) ∈ C.

Since ti(x, x, c) = c ∈ C, the relation θC is reflexive. Compatibility and transitivity

of θC follow from the conditions (i) and (ii), respectively. Applying Theorem 2

we conclude that V is (n + 1)-permutable. By [3], each reflexive, transitive and

compatible relation in a (n+1)-permutable variety is a congruence relation, hence

θC ∈ Con A.

Let x ∈ [c]θC . Then 〈x, c〉 ∈ θC and, by (∗), ti(x, c, c) ∈ C for i = 1, . . . , k. From

(iii) it follows x ∈ C. Conversely, let x ∈ C. Then by (iii) we get ti(x, c, c) ∈ C,

i = 1, . . . , k. By (∗) this implies 〈x, c〉 ∈ θC , i.e. x ∈ [c]θ. Hence, C = [c]θ.

Conversely, let C ⊆ A be a class of some θ ∈ Con A and c ∈ C. If aj , bj ∈ A
and ti(aj , bj, c) ∈ C (j = 1, . . . ,m, i = 1, . . . , n) and if f ∈ F is m-ary then then

〈ti(aj , bj, c), c〉 ∈ θ and, by Theorem 1, we have

aj = p1(t1(aj , bj , c), c, aj, bj , c) θ p1(c, t1(aj , bj, c), aj , bj, c)

= p2(t2(aj , bj , c), c, aj, bj , c) θ p2(c, t2(aj , bj, c), aj , bj, c)

...

= pn(tn(aj , bj , c), c, aj, bj , c) θ pn(c, tn(aj , bj , c), aj , bj, c) = bj ,

hence 〈aj , bj〉 ∈ θ. From compatibility of θ it follows

〈ti(f(a1, . . . , am), f(b1, . . . , bm), c), c〉

= 〈ti(f(a1, . . . , am), f(b1, . . . , bm), c), ti(f(b1, . . . , bm), f(b1, . . . , bm), c), c〉 ∈ θ,

i.e. ti(f(a1, . . . , am), f(b1, . . . , bm), c) ∈ [c]θ = C. Hence, (i) holds.

If ti(x, y, c) ∈ C, ti(y, z, c) ∈ C (i = 1, . . . , n), then as in the previous case,

〈x, y〉 ∈ θ, 〈y, z〉 ∈ θ, hence, 〈x, z〉 ∈ θ. Therefore, 〈ti(x, z, c), c〉 = 〈ti(x, z, c),
ti(z, z, c)〉 ∈ θ, i.e. ti(x, z, c) ∈ [c]θ = C, proving (ii).

If ti(a, c, c) ∈ C (i = 1, . . . , n), then again 〈a, c〉 ∈ θ, i.e. a ∈ C. If c, d ∈ C then

〈c, d〉 ∈ θ, and thus 〈ti(d, c, c), c〉 = 〈ti(d, c, c), ti(d, d, c)〉 ∈ θ, i.e. ti(d, c, c) ∈ C.

We have proved (iii). �

Let us turn to computational aspects of our problem. Computational proper-

ties of universal algebra are of recent interest, see e.g. [2]. Recall first that by

a time complexity of an algorithm it is meant a function f : N 7→ N such that

every problem of size n will be solved after at most f(n) number of (computa-

tional) steps (see [4]). The class of all problems for which there is an deterministic

algorithm (nondeterministic algorithm) of polynomial time complexity (f(n) is a

polynomial) is denoted by P (NP). Algorithms of polynomial time complexities
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are considered as practically usable, algorithms of greater complexities (e.g. expo-

nential) are considered as unusable. The class P is therefore the class of tractable

problems. In our case, we are given a class K of algebras. We face the following

decision problem: For an algebra A ∈ K and a subset C ⊆ A, decide whether C

is a congruence class. Suppose that one evaluation step consists in the evaluation

of one term. Denote the problem pK. It has been shown in [1] that in general

pK ∈ NP but for a regular and permutable variety V of a finite type, pV ∈ P .

The following theorem shows that being a regular variety for K is sufficient for the

problem to belong to P .

Theorem 4. Let V be a regular variety of a finite type, for which the terms

t1, . . . , tn of Theorem 1 are known. Then pV ∈ P .

Proof. Let ∅ 6= C ⊆ A, A = 〈A,F 〉 ∈ V. Denote further F = {f1, . . . , fk},
l = card C, m = card A, and let σ(f) denote the arity of f ∈ F . To check

whether C is a class of some congruence relation on A we can use Theorem 3, i.e.

we have to test the conditions (i), (ii) and (iii) of (2). Consider first condition

(i). We choose f ∈ F (k choices) and aj , bj ∈ A (m2 choices). For this choice we

have to test the implication. The test of the antecedent consists of n steps. The

test of the consequent part consists of nm2σ(f) steps (there are m2σ(f) possible

substitutions for the arguments of f). Since the choices are independent we have∑k
i=1 m

2 (n+nm2(σ(fi)−1)) computational steps altogether. Similarly, to test the

conditions (ii) and (iii) we have to performm2 l (2n+n) andml2 (n+(n+1)) steps,

respectively. For a given variety, the derived expressions are polynomials. Since

the overall number of steps is given by the sum of the expressions the assertion is

proved. �

Remark. The proof of the foregoing theorem gives a polynomial algorithm

solving our problem for K being a regular variety. The time complexity of the

algorithm is

n

k∑
i=1

m2σ(fi) +m2 n(3l+ k) +ml2(2n+ 1).

Note that this algorithm is of the same asymptotic complexity as that one for

regular and permutable varieties based on Theorem 1 of [1].

Recall the following concept, see e.g. [1]. If p(x1, . . . , xn, y1, . . . , ym) is an

(m + n)-ary term of an algebra A = (A,F ) and C ⊆ A we say that C is

y−closed under p if p(a1, . . . , an, c1, . . . , cm) ∈ C for every a1, . . . , an ∈ A and

c1, . . . , cm ∈ C. The following theorem presents a characterization of special con-

gruence classes of regular varieties by means of y-closeness.
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