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CONGRUENCE CLASSES IN REGULAR VARIETIES

R. BELOHLAVEK and I. CHAJDA

Abstract. A characterization of congruence classes of algebras of regular varieties
is presented. The problem of deciding whether a given subset of an algebra of
regular variety is a congruence class is shown to be solvable in polynomial time.

It has been proved by A. I. Malcev [6] that a nonempty subset C [Alof the
support of an algebra A = (A, F) is a class of some congruence relation on A if
and only if

either 1T(C)nC=[0[CdJor Tt(C) [C]

for any unary polynomial t of A. This characterization, whatever useful, is not
much e Lcieht. In [1], the authors found a simple characterization of congruence
classes of algebras from varieties which are both regular and permutable. They
also showed that the decision problem of being a congruence class for algebras
from a given regular and permutable variety is solvable in polynomial time. In
this paper we give a characterization of congruence classes of algebras from regular
varieties.

Recall that an algebra A = (A, F) isregular if 6 = ¢ for 8, ® [Clon A whenever
they have a congruence class in common. A is n-permutable if 6 e oo - - =
@e>0°@---- (n factors in both relational products) for every 6,9 [—QonA.
A variety V is regular or n-permutable if each A [V1has this property.

Regular varieties have been characterized independently by B. Csakany,
G. Grdtzer and R. Wille in 1970s. For our purposes we present a Malcev con-
dition which is rather similar to that one of R. Wille (cf. Theorem 6.11 in [8]).

Theorem 1. Avariety V is regular if and only if there exist a positive integer n,

ternary terms ty, ..., tn, and 5-ary terms py, ..., pn such that
tix,x,z)=z fori=1,...,n
x=p1(t1(X,y,2),2,X,Y,2)
pi(Z, ti(X! y! Z)! X,y, Z) = pi+1(ti+1(xyy, Z)n Z, X, y, Z)! | = 11 R ) 1

y = pn(tn(x,y, Z), Z, vav Z)'
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Proof. Let V be a regular variety, Fy (X,y,z) [M1be a free algebra generated by
X, ¥y and z, let further 6 = 6(X,y), C = [z]s. For 8(x,y) and 6(C x {z}) have the
class C in common, it follows from regularity that 8(x,y) = 6(C < {z}). We have
therefore X, y [T 8{C x {z}). The compactness of congruence lattice implies that
there is a finite subset {d;, ..., dx} [Clsuch that X, y[T8¢{d,,...,dx}>{z}). By
Malcev lemma, there are ey, ...,em [CH/(X,y,2) and (2+m)-ary terms qi,...,0n
such that x = d1(d;,, z, €.14i(z, dj,, & di+1(dj;.,, 2, & For i =1,...,n—1, and
y = gn(dj,,z,&where j; L,...,k}. Clearly, gi(u,v, &1= pi(u,v,X,y,z) and
dj; =ti(x,y,2), i=1,...,n, which are the required terms.

Conversely, let V satisfy the listed identities, let A [C\M. To prove regularity
of A it is enough to prove that each 8 [“Qon A with some singleton class {c} is
the identity relation w. Let then 8 [Con A, {c} be a class of 8, [@ b[CI_8] Thus
[fi(a, b,c),cF [(a,b,C), ti(a,a,c)H ie. ti(a,b,c) Lt} i.e. ti(a,b,c) =c.
We conclude

a=py(tz(a,b,c),c,a,b,c) =ps(c,c,a,b,c)=--- =pn(cc,a,b,c)
= pn(C1 tn(a1 by C)1 a1 b1 C) = by
hence 6 = w. —1
Theorem 2. Let the variety V be regular and py, .. ., pn be terms of Theorem 1.

Then V is (n + 1)-permutable.
Proof. Put gi(x,y,2z) = pi(ti(X,Y, 2), ti(y, z,2), X, z,2). The identities

X =01(x,Y,Y)
6% Y) = Gi+1(X,y,y), i=1,...,n—1
Y = tn(X,X,Y)
are easy to verify. Hence, by [5], V is (n + 1)-permutable. 1

Theorem 3. Let V be a regular variety, and ty,...,t, be the terms of The-
orem 1. Let A = (A,F) [CM and BB C [A. The following conditions are
equivalent:

(1) C is a class of some 6 [CCbn A.
(2) (i) for each m-ary ¥ LFl, a;,b; CA, j =1,...,m, ¢ ], it holds

&L, ti(aj,bj,c) CA &L, ti(f(as,...,am), F(b1,...,bm),c) [,
(i) if a,b,d Al then
1 1
&L, ti(a,b,c) CA&ti(b,d,c) LA L[&I,ti(a,dc) [T
(iii) if a A, c¢,d Cd, then tj(d,c,c) (A fori=1,...,n, and
&, ti(a,c,c) CA [Calldl
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Proof. Let A [Vl (& C [CA] ¢ A and let (i), (ii) and (iii) hold. Let 8¢ be
a binary relation on A defined by

(Dd X,yCITaE  iCdti(x,y,c) ..., th(X Yy, c) CC

Since ti(X, X, ¢) = ¢ [, the relation 6¢ is reflexive. Compatibility and transitivity
of B¢ follow from the conditions (i) and (ii), respectively. Applying Theorem 2
we conclude that V is (n + 1)-permutable. By [3], each reflexive, transitive and
compatible relation in a (n + 1)-permutable variety is a congruence relation, hence
ec [Con A.

Let x []de.. Then X, c[CI° B¢ and, by (Olti(x,c,c) CCfori=1,...,k. From
(iii) it follows x [CQ. Conversely, let x [CQ. Then by (iii) we get tj(x,c,c) [Q,
i=1,...,k. By (Ddthis implies X, cCI_8¢, i.e. x [Jclg. Hence, C = [Clo.

Conversely, let C [CAlbe a class of some 8 [Con A and ¢ Q. If a;,b; CA
and ti(aj,bj,c) LA (G =1,....m,i=1,...,n) and if f [H is m-ary then then
[E(a;j, by, ), cCIHland, by Theorem 1, we have

aj = p1(t(aj, b5, €), ¢, a5, bj, ) B p1(c, ta(aj, bj, ), aj, by, ©)
= p2(t2(aj, bj, €), ¢, a5, bj, €) B p2(c, t2(aj, bj, ), aj, bj, €)

= pn(tn(aj, bj, c), c, a5, bj,¢) 8 pn(c, ta(aj, bj, c), aj, bj, c) = b;,
hence [&}, bj CI8] From compatibility of 8 it follows

E(f(az,...,am), F(b1,...,bm),c),c
= E(f(@,...,am), F(b,...,bm),c), ti(F(bz,...,bm), F(bs,...,bm),c),cCLH]

i.e. ti(f(as,...,am), F(b1,...,bm),c) CIde = C. Hence, (i) holds.

If ti(x,y,c) [Q, ti(y,z,¢) A (i =1,...,n), then as in the previous case,
X,y 8 [yl zCOC AL hence, X, zCICAl Therefore, (X, z,c),c= (X, z,c),
ti(z,z,c)I Al i.e. tj(x,z,c) C[de = C, proving (ii).

If ti(a,c,c) (A (i=1,...,n), then again [a c[CI B]i.e. a CCl If ¢,d [Clthen
[c]d8) and thus {(d,c,c),cF {(d,c,c),ti(d,d,c)dA i.e. tj(d,c,c) Q.
We have proved (iii). 1

Let us turn to computational aspects of our problem. Computational proper-
ties of universal algebra are of recent interest, see e.g. [2]. Recall first that by
a time complexity of an algorithm it is meant a function f: N @ N such that
every problem of size n will be solved after at most f(n) number of (computa-
tional) steps (see [4]). The class of all problems for which there is an deterministic
algorithm (nondeterministic algorithm) of polynomial time complexity (f(n) is a
polynomial) is denoted by P (NP). Algorithms of polynomial time complexities
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are considered as practically usable, algorithms of greater complexities (e.g. expo-
nential) are considered as unusable. The class P is therefore the class of tractable
problems. In our case, we are given a class K of algebras. We face the following
decision problem: For an algebra A K and a subset C [CAl decide whether C
is a congruence class. Suppose that one evaluation step consists in the evaluation
of one term. Denote the problem pk. It has been shown in [1] that in general
px NP but for a regular and permutable variety V of a finite type, py [R.
The following theorem shows that being a regular variety for K is su Lcieht for the
problem to belong to P.

Theorem 4. Let V be a regular variety of a finite type, for which the terms
t1, ..., tn of Theorem 1 are known. Then py [Pl

Proof. Let CH C [A, A = [A,FCIC\. Denote further F = {fy,..., f},
| = card C, m = card A, and let o(f) denote the arity of f [CH. To check
whether C is a class of some congruence relation on A we can use Theorem 3, i.e.
we have to test the conditions (i), (ii) and (iii) of (2). Consider first condition
(). We choose f [Fl (k choices) and aj,b; A (m? choices). For this choice we
have to test the implication. The test of the antecedent consists of n steps. The
test of the consequent part consists of nm2°( steps (there are m2°( possible
S itutions for the arguments of ). Since the choices are independent we have

—; m? (n+nm?2Cf~D) computational steps altogether. Similarly, to test the
conditions (ii) and (iii) we have to perform m? | (2n+n) and m 12 (n+(n+1)) steps,
respectively. For a given variety, the derived expressions are polynomials. Since
the overall number of steps is given by the sum of the expressions the assertion is
proved. 1

Remark. The proof of the foregoing theorem gives a polynomial algorithm
solving our problem for K being a regular variety. The time complexity of the
algorithm is

| S—
n  m ™ +m2n(3l + k) + mi22n + 1).
i=1

Note that this algorithm is of the same asymptotic complexity as that one for
regular and permutable varieties based on Theorem 1 of [1].

Recall the following concept, see e.g. [1]. If p(X1,...,Xn,¥Y1,--.,Ym) IS an
(m + n)-ary term of an algebra A = (A,F) and C [CA we say that C is
y—closed under p if p(az,...,an,C1,...,tm) QA for every a;,...,an A and
C1,...,Cm Q. The following theorem presents a characterization of special con-
gruence classes of regular varieties by means of y-closeness.
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