
Acta Math. Univ. Comenianae
Vol. LXVIII, 1(1999), pp. 111–125

111

DIAMETER IN PATH GRAPHS

A. BELAN and P. JURICA

Abstract. If G is a graph, then its path graph, Pk(G), has vertex set identical
with the set of paths of length k in G, with two vertices adjacent in Pk(G) if and
only if the corresponding paths are “consecutive” in G. We construct bounds on
the diameter of every component of Pk(G) in form diam(G) + f(k), where f(k) is
a function depending only on k. We have a general lower bound with f(k) = −k;
upper bound for trees with f(k) = k(k−2); and an upper bound for graphs with
large diameter with f(k) = k2 − 2, if 2 ≤ k ≤ 4. All bounds are best possible.

1. Introduction

In this paper we consider only connected graphs G without loops and multiple

edges. Let G be a graph, k ≥ 1, and let Pk be the set of all subgraphs of G which

form a path of length k (i.e., with k+1 vertices). The path graph Pk(G) of G has

vertex set Pk. Let A,B ∈ Pk. The vertices of Pk(G) that correspond to A and B

are joined by an edge in Pk(G) if and only if the edges of A∩B form a path on k

vertices and A ∪B is either a path of length k + 1 or a cycle of length k + 1.

Path graphs were investigated by Broersma and Hoede in [1], as a natural

generalization of line graphs (observe that P1(G) is a line graph of G). In [1] and

[5] P2-graphs are characterized, and in [6] traversability of P2-graphs is studied.

Centers of path graphs are studied in [3] and the behavior of the diameter of

iterated P2-graphs is studied in [2]. As proved in [4], for connected graph G it

holds

diam (G) − 1 ≤ diam (P1(G)) ≤ diam (G) + 1,

where diam (H) denotes the diameter of H. In this paper we extend this result to

path graphs. We show that

diam (G)− k ≤ diam (Pk(G))

for arbitrary graph G and k ≥ 1. If k ≥ 2, it is easy to find a connected graph G

such that Pk(G) is not connected. For this reason, we stress to find an upper bound

for the diameter of every component of Pk(G), instead of finding the diameter of
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Pk(G). Let G be a graph and let H be an arbitrary component of Pk(G). If G is

a tree, we have

diam (H) ≤ diam (G) + k(k − 2);

and if 2 ≤ k ≤ 4 and diam (G) ≥ 1
2k

2 + 5k − 2, we have

diam (H) ≤ diam (G) + k2 − 2.

As shown by examples, all results are best possible in a sense. Moreover, all values

from the interval determined by the lower and the upper bound, are attainable.

2. Lower Bound

We use standard graph-theoretical terminology, so that V (G) denotes the vertex

set, and E(G) the edge set, of a graph G. By dG(u, v) we denote the distance from

u to v in G, and dG(U, V ) denotes the distance between sets of vertices U and V .

To distinguish a path of length k in G, that results to a vertex in Pk(G), from a

shortest path in G connecting two vertices, we call the later a shortest walk. We

remark that throughout the paper we use k only for the length of paths for path

graph Pk(G).

The vertices of path graph are adjacent if and only if one can be obtained

from the other by “shifting” the corresponding path in G. For easier handling

with paths of length k in G (i.e. the vertices in Pk(G)) we make the following

agreement. We denote the vertices of Pk(G) (as well as the vertices of G) by small

letters a, b, . . . , while the corresponding paths of length k in G we denote by

capital letters A, B, . . . . It means that if A is a path of length k in G and a is a

vertex in Pk(G), then a is necessary the vertex corresponding to the path A.

Let A be a path of length k in G. By A(i), 0 ≤ i ≤ k, we denote the i-th vertex

of A. If A and B are the same paths of length k in G, then either A(i) = B(k− i),
0 ≤ i ≤ k, or A(i) = B(i), 0 ≤ i ≤ k. To distinguish these situations we write

A = B if A and B are the same paths, while A ≡ B if A(i) = B(i) for all i,

0 ≤ i ≤ k.

However, if a and b are adjacent vertices in Pk(G), we always assume that the

paths are denoted so that either A(i) = B(i + 1), 0 ≤ i < k, or A(i) = B(i − 1),

0 < i ≤ k. Thus, if T = (a0, a1, . . . , al) is a walk of length l in Pk(G), then

A0(i), A1(i), . . . , Al(i) are walks in G, 0 ≤ i ≤ k.

Lemma 1. Let G be a graph and let a and b be vertices in Pk(G). Then

dPk(G)(a, b) ≥ min
{

max{dG(A(0), B(0)), dG(A(k), B(k))},

max{dG(A(0), B(k)), dG(A(k), B(0))}
}
.
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Proof. Let (a, a1, . . . , al) be a shortest walk in Pk(G) such that Al = B. Then

both A(0), A1(0), . . . , Al(0) and A(k), A1(k), . . . , Al(k) are walks in G. If Al(0) =

B(0) and Al(k) = B(k), then

dPk(G)(a, b) = l ≥ dG(A(0), B(0)) and dPk(G)(a, b) ≥ dG(A(k), B(k)),

and hence, dPk(G)(a, b) ≥ max{dG(A(0), B(0)), dG(A(k), B(k))}. On the other

hand, if Al(0) = B(k) and Al(k) = B(0), then

dPk(G)(a, b) ≥ dG(A(0), B(k)) and dPk(G)(a, b) ≥ dG(A(k), B(0)),

and hence, dPk(G)(a, b) ≥ max
{
dG(A(0), B(k)), dG(A(k), B(0))

}
. �

Theorem 2. Let G be a graph such that Pk(G) is not empty. Then

diam (Pk(G)) ≥ diam (G)− k.

Proof. Let u0 and ul be vertices in G such that dG(u0, ul) = l = diam (G).

Moreover, let T = (u0, u1, . . . , ul) be a walk of length l in G. Without loss of

generality we may assume that l ≥ k. Denote A ≡ (u0, u1, . . . , uk) and B ≡
(ul−k, ul−k+1, . . . , ul). Since T is a diametric path in G, we have dG(A(0), B(0)) =

l−k, dG(A(k), B(k)) = l−k, dG(A(0), B(k)) = l, and dG(A(k), B(0)) = |l−2k|.
By Lemma 1, we have diam (Pk(G)) ≥ dPk(G)(a, b) ≥ min{max{(l−k), (l−k)},
max{l, |l−2k|}} = l − k = diam (G)− k. �

Since diam (Pk(G)) = diam (G)− k if G is a path of length l ≥ k, the bound in

Theorem 2 is best possible.

3. Upper Bounds

In this part we give an upper bound for the diameter of some path graphs. For

this we need one more notion.

Let G be a graph and let T = (a0, a1, . . . , al) be a walk in Pk(G). Assume that

A0(i) = A1(i−1) for all i, 0 < i ≤ k. Then Aj is a turning path if

(i) j = 0;

(ii) Aj−1(i+1) = Aj(i) = Aj+1(i+1) for all i, 0 ≤ i < k;

(iii) Aj−1(i−1) = Aj(i) = Aj+1(i−1) for all i, 0 < i ≤ k.

The vertex A0(k) in the case (i), Aj(0) in the case (ii), and Aj(k) in the case (iii),

is a turning point of T .

Let a and a′ be vertices in Pk(G). Suppose that A and A′ are edge-disjoint,

and denote T = (u0, u1, . . . , ul) a shortest trail in G beginning in a vertex from A

and terminating in a vertex from A′. In some situations it is possible to construct

a walk from a to a′ in Pk(G) in the following way: first “shift” A “forwards and

backwards” several times to get the path A into a path B such that one endvertex

of B is u0, then utilize the walk T , and repeat the same process with A′ in a

reverse order. In the next fundamental lemma we count the distance from a to b

in Pk(G).
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Lemma 3. Let G be a graph, such that G does not contain a cycle of length

at most k if k ≥ 5. Let a be a vertex in Pk(G) and v ∈ V (A). Finally, let b be

a vertex at the shortest distance from a, such that one endvertex of B is v. If

dPk(G)(a, b) <∞, then

dPk(G)(a, b) ≤
k(k − 1)

2
.

Proof. Let T = (a0, a1, a2, . . . , al) be a shortest walk in Pk(G), such that A0 ≡
A and Al = B. Let Ai0 , Ai1 , Ai2 , . . . , Aip−1 be the turning paths, 0 = i0 < i1 <

i2 < · · · < ip−1 < l, and let v0, v1, v2, . . . , vp−1 be corresponding turning points.

Assume that v0 = A(k). Then v1 = Ai1(0), v2 = Ai2(k), v3 = Ai3(0), . . . . Set

vp = v and Aip ≡ Al = B. By induction we prove the following statement:

(∗)

All v0, v1, . . . , vp are vertices of A; vj is between vj−2 and vj−1 on A, 2 ≤
j ≤ p; and Aij contains the subpath of A between vj−1 and vj , 1 ≤ j ≤ p.

Moreover, if 1 ≤ j ≤ p, then dPk(G)(aij−1 , aij ) = k − dA(vj−1, vj).

1◦ Clearly, v0 and v1 are vertices of A. Thus, dPk(G)(a, ai1) = k − dA(v0, v1).

2◦ Suppose that (∗) is valid for all j′, j′ < j ≤ p, and denote by aq the first

vertex on T , such that Aq has one endvertex, say z, between vj−2 and vj−1. By

induction q > ij−1, and q ≤ l as j−1 < p. Since aq is the first vertex on T with

an endvertex of Aq between vj−2 and vj−1, one endvertex of Aq−1 is either vj−1

or vj−2. We will solve both these cases separately, see Figure 1 and Figure 2.

(a) Aq−1 has one endvertex in vj−1. We will prove that this case cannot occur

if T is a shortest walk. Since Aij−1 contains the subpath of A between vj−2 and

vj−1, by induction, Aq contains the subpath of A between vj−2 and z, see Figure 1.

Aq

Aij−1

Aij−2

vj−2 z vj−1

Aij−1

Aq

Aij−2

vj−2 z vj−1

Figure 1. Figure 2.

As Aij−1 is a turning path with turning point vj−1, the endvertex of Aij−1+1

adjacent to vj−1 is different from z. Thus,

dPk(G)(aij−1 , aq) ≥ 3.

Since T is a shortest walk in Pk(G), we have

(1)
dPk(G)(aij−2 , aq) = dPk(G)(aij−2 , aij−1) + dPk(G)(aij−1 , aq)

≥ k − dA(vj−2, vj−1) + 3,
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by induction. Consider the graph H = Aij−2 ∪Aq. If G does not contain a cycle

of length at most k, then in H we can “shift” the path Aij−2 towards Aq step by

step, and such a “shifted” path is a path again. Thus,

dPk(G)(aij−2 , aq) ≤ k − dA(vj−2, z) = k − dA(vj−2, vj−1) + 1,

which contradicts (1). Hence, it remains to solve the cases k = 3 and k = 4. Here

an obstacle can occur only if there is a cycle C of length at most k in H.

Suppose that k = 3. Since Aq and Aij−2 are paths, C = (vj−2, z, c) for some

vertex c in H, see Figure 3. As vj−1 is a vertex adjacent to z in Aij−2 , we have

c = vj−1. Thus, Aq = (vj−1, z, vj−2, vj−1), a contradiction.

Suppose that k = 4. If Aq−1 does not contain a cycle, then C has the length

four and vj−2 and z are adjacent vertices on C, see Figure 4. But then z = v and

Aq = B. Let Aij−1 = (vj−1, v, vj−2, c4, c5) for some c4, c5 ∈ V (G). By induction,

we have dP4(G)(aij−2 , aij−1) = 2, and hence c0 6= c4. We have dP4(G)(aij−1 , aq−1) ≥
4, since on a shortest walk from aij−1 to aq−1 there must be a vertex x in P4(G)

such that vj−2 is an endvertex of X. Moreover, by the definition of aq, X has

the form X = (vj−2, v, vj−1, c6, c7) for some c6, c7 ∈ V (G), c6 6= c0. Since T is a

shortest walk from a to b in P4(G), we have

dP4(G)(aij−2 , b) = dP4(G)(aij−2 , aq)

= dP4(G)(aij−2 , aij−1) + dP4(G)(aij−1 , aq−1) + dP4(G)(aq−1, aq)

≥ 2 + 4 + 1 = 7.

Denote X1 = (c4, vj−2, v, vj−1, c0), X2 = (vj−2, v, vj−1, c0, c2) and B′ =

(v, vj−1, c0, c2, c3). If c3 6= vj−1, then (aij−2 , x1, x2, b
′) is a shorter walk in P4(G)

such that one endvertex of B′ is v, which contradicts the choice of b.

Aij−2 Aq

c=vj−1

vj−2 z

Aij−2 Aq

Aij−1

c5

c4
vj−2

z=v
vj−1

c1

c0

c2 c3

c6

c7 c5

c4
vj−2

v
vj−1

c1

c0

c2

Figure 3. Figure 4. Figure 5.

Thus, suppose that c3 = vj−1, see Figure 5. Denote X1 = (c4, vj−2, v, vj−1, c0),

X2 = Aij−1 = (c5, c4, vj−2, v, vj−1), X3 = (c4, vj−2, v, vj−1, c2), X4 = (vj−2, v,

vj−1, c2, c0) andB′ = (v, vj−1, c2, c0, vj−2). If c2 6= c4, then (aij−2 , x1, x2, x3, x4, b
′)

is a shorter walk in P4(G) such that one endvertex of B′ is v, which contradicts

the choice of b.

Finally, suppose that c3 = vj−1 and c2 = c4, see Figure 6. Then c2 6= c6.

Denote X1 = (c2, vj−2, v, vj−1, c0), X2 = Aij−1 = (c5, c2, vj−2, v, vj−1), X3 =
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(c2, vj−2, v, vj−1, c6), X4 = (c0, c2, vj−2, v, vj−1) and B′ = (vj−1, c0, c2, vj−2, v).

Then (aij−2 , x1, x2, x3, x4, b
′) is a shorter walk in P4(G) such that one endvertex

of B′ is v, which contradicts the choice of b.

(b) Aq−1 has one endvertex in vj−2, see Figure 2. We will prove that Aij−1+1,

Aij−1+2, . . . , Aq−1 are not turning paths in this case. Consider the graph H =

Aij−1 ∪Aq. If G does not contain a cycle of length at most k, then we can “shift”

the path Aij−1 towards Aq step by step, and such a “shifted” path is a path again.

Thus,

dPk(G)(aij−1 , aq) ≤ k − dA(vj−1, z).

Since T is a shortest walk and all Aij−1 , Aij−1+1, . . . , Aq contain the subpath of A

between vj−1 and z, we have

dPk(G)(aij−1 , aq) = k − dA(vj−1, z),

and Aij−1+1, Aij−1+2, . . . , Aq−1 are not turning paths.

However, if H contains a cycle C of length at most k, an obstacle can occur. As

Aq−1 does not contain a cycle, it remains to solve the case k = 4 when C has the

length four and vj−1 and z are adjacent vertices on C, see Figure 7. But then z = v

and Aq = B. Since Aij−1 and Aq−1 share a path of length two and Aij−1 ∪Aq−1

contains a cycle of length four, we have dP4(G)(aij−1 , aq−1) ≥ 6, and hence,

dP4(G)(aij−2 , aq) ≥ 9.

Moreover, on a shortest walk from aij−1 to aq−1 there is a vertex x in P4(G),

such that vj−1 is an endvertex of X. Thus, X = (vj−1, v, vj−2, c6, c7) for some

c6, c7 ∈ V (G).

Denote X1 = (c4, vj−1, v, vj−2, c0), X2 = (vj−1, v, vj−2, c0, c2) and B′ =

(v, vj−2, c0, c2, c3). If c3 6= vj−2, then (aij−2 , x1, x2, b
′) is a shorter walk in P4(G)

such that one endvertex of B′ is v, which contradicts the choice of b.

Thus, suppose that c3 = vj−2, see Figure 8. Then the problem is reduced to

that in the case (a), since all walks constructed there passed through aij−1 .

vj−2 vj−1

v

c6
c0

c1 c2
c5

Aij−1Aq

Aij−2

c5

c4
vj−1

v
vj−2

c1

c0

c2c3
c6

c7 c5

c4
vj−1

v

vj−2

c1

c0

c2

Figure 6. Figure 7. Figure 8.

It means, that on a shortest walk T no obstacles with short cycles can occur, so

that Aij−1+1, Aij−1+2, . . . , Aq−1 are not turning paths. Thus, vj is between vj−2
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and vj−1 on A, and Aij contains the subpath of A between vj and vj−1. Hence

dPk(G)(aij−1 , aij ) = k − dA(vj−1, vj),

so that (∗) is proved.

By (∗) for the length of T we have

l =

p∑
j=1

dPk(G)(aij−1 , aij ) =

p∑
j=1

k − dA(vj−1, vj).

Since vj is a vertex between vj−2 and vj−1 on A, by (∗), we have k > dA(v0, v1) >

dA(v1, v2) > · · · > dA(vp−1, vp) > 0. Thus, k − dA(v0, v1), k − dA(v1, v2), . . . ,

k − dA(vp−1, vp) are all different values from [1, k−1]. Hence,

p∑
j=1

k − dA(vj−1, vj) ≤
k−1∑
i=1

i =
k(k − 1)

2
. �

We remark, that the restriction: “G does not contain a cycle of length at most

k if k ≥ 5”, is necessary in Lemma 3, as shown by graph G in Figure 9. If A =

(u1, u2, u3, u4, u5, u6) and v = u4, then the required vertex at the shortest distance

from a is b, B = (u4, u5, u7, u2, u8, u9). However, dP5(G)(a, b) = 13 > 10 = 5·4
2 .

G : u1

u2 u3 u4
u5

u6u7

u8
u9

Figure 9.

Theorem 4. Let G be a tree and let H be a component of Pk(G). Then

diam (H) ≤ diam (G) + k(k − 2).

Proof. Let H be a component of Pk(G) and let a and a′ be vertices in H, such

that dPk(G)(a, a
′) = diam (H). Let T = (a0, a1, . . . , al) be a shortest walk in Pk(G)

such that A0 ≡ A and Al = A′. Distinguish two cases:

(a) A and A′ are edge-disjoint. Let W = (v0, v1, . . . , vr) be a shortest walk

in G beginning in a vertex from A and terminating in a vertex from A′ (i.e.,

dG(V (A), V (A′)) = r). Since G is a tree, there must be a vertex, say ab, in T ,

such that v0 is an endvertex of Ab. Let b be a vertex at the shortest distance from

a, such that v0 is an endvertex of B. Then dPk(G)(a, b) < ∞. Analogously, let b′
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be a vertex at the shortest distance from a′, such that vr is an endvertex of B′.

By (∗) in Lemma 3, v0 and vr are the unique vertices of B and B′, respectively,

in W. By Lemma 3, we have

dPk(G)(a, a
′) ≤ dPk(G)(a, b) + dPk(G)(b, b

′) + dPk(G)(b
′, a′)

≤
k(k − 1)

2
+ (k + r) +

k(k − 1)

2
= (2k + r) + k(k − 2).

Since G is a tree, there is an endvertex of B, say u, and an endvertex of B′, say

u′, such that dG(u, u′) = 2k + r. Thus, diam (G) ≥ 2k + r, and hence,

diam (H) = dPk(G)(a, a
′) ≤ diam (G) + k(k − 2).

(b) A and A′ share a path W of length r ≥ 1 in G, W = (v0, v1, . . . , vr).

Distinguish three subcases:

(b1) Suppose that for every vertex c in H, the c contains a subpath V =

(vi, vi+1, . . . , vj) of W, i < j. (The subpath V is maximal with this property.)

Then there is a vertex b∗ in H, such that vi is an endvertex of B∗. Let b be a

vertex at the shortest distance from a, such that vi is an endvertex of B. Then

dPk(G)(a, b) < ∞ and B = (vi, vi+1, . . . , vj , . . . ). Analogously, let b′ be a vertex

at the shortest distance from a′, such that vj is an endvertex of B′. Then B′ =

(vj , vj−1, . . . , vi, . . . ). By Lemma 3, we have

dPk(G)(a, a
′) = dPk(G)(a, b) + dPk(G)(b, b

′) + dPk(G)(b
′, a′)

≤
k(k − 1)

2
+ (k − (j−i)) +

k(k − 1)

2
= (2k − (j−i)) + k(k − 2).

Since G is a tree, there is an endvertex of B, say u, and an endvertex of B′, say

u′, such that dG(u, u′) = 2k − (j−i). Thus, diam (G) ≥ 2k − (j−i), and hence,

diam (H) = dPk(G)(a, a
′) ≤ diam (G) + k(k − 2).

Now suppose that every vertex v of W is an endvertex of some C, such that

dPk(G)(a, c) <∞. For every vertex vj in W denote by cij a vertex in H, such that

vj is an endvertex of Cij and dPk(G)(a, cij ) is minimum. Let vs be a vertex in W
such that

dPk(G)(a, cis) = max
{
dPk(G)(a, cij ); vj ∈ V (W)

}
.

Denote B = Ais . The edge of B incident to vs lies in A, by (∗) in Lemma 3.

(b2) Suppose that the edge of B incident to vs lies in W, and assume that

B = (vs, vs+1, . . . ). Let b′ be a vertex at the shortest distance from a′, such that

one endvertex of B′ is vs+1. If B′ = (vs+1, vs, . . . ), then analogously as in (b1) we

have dPk(G)(a, a
′) ≤ (2k−1) + k(k−2) and diam (G) ≥ 2k−1, so that diam (H) ≤

diam (G) + k(k−2). Thus, suppose that B′ = (vs+1, v
∗, . . . ), v∗ 6= vs. On a



DIAMETER IN PATH GRAPHS 119

shortest a− b walk in Pk(G) there is a vertex d, such that D = (vs+1, vs, . . . ), by

(∗) in Lemma 3. Then analogously as in (b1) we have dPk(G)(a, a
′) ≤ dPk(G)(a, d)+

dPk(G)(d, b
′)+dPk(G)(b

′, a′) ≤ 2k+k(k−2) and diam (G) ≥ 2k, so that diam (H) ≤
diam (G) + k(k−2).

(b3) Suppose that the edge of B incident to vs lies in A−W. Assume that vs =

v0 and B = (v0, v
∗, . . . ), v∗ 6= v1. Let b′ be a vertex at the shortest distance from

a′, such that one endvertex ofB′ is v0, B′ = (v0, v
∗′, . . . ). Since v∗ ∈ V (A)−V (W),

v∗′ 6= v∗. Then analogously as above we have dPk(G)(a, a
′) ≤ 2k + k(k−2) and

diam (G) ≥ 2k, so that diam (H) ≤ diam (G) + k(k−2). �

In Corollary 5 we prove that the bound in Theorem 4 is best possible. Moreover,

we show that the diameter of a component of Pk(G) can achieve all values from

the range bounded by Theorem 2 and Theorem 4, if G is a tree.

Corollary 5. Let r ≥ 2k and −k ≤ s ≤ k(k − 2). Then there is a tree Gr,s
with diameter r such that for one component H of Pk(Gr,s) we have

diam (H) = diam (Gr,s) + s.

Proof. First we construct a graph Gr with diameter r. Let A0, A1, . . . , Ak−1

be a collection of vertex-disjoint paths, such that the length of Ai is i, 0 ≤ i ≤
k−1. Let a graph G be obtained from a path (v0, v2, v4, . . . , vk, . . . , v5, v3, v1) by

identifying one endvertex of Ai with vi, 0 ≤ i ≤ k−1, see Figure 10 for the case k =

6. Moreover, let G′ be a copy of G, consisting from a path (v′0, v
′
2, v
′
4, . . . , v

′
k, . . . , v

′
5,

v′3, v
′
1) and A′0, A

′
1, . . . , A

′
k−1. Denote by Gr a graph consisting from G, G′, and a

path W of length r − 2k joining vk with v′k. Then Gr is a tree and diam (Gr) =

r, since one endvertex of Ak−1 has distance (k − 1) + 1 + (r − 2k) + 1 + (k −
1) = r from one endvertex of A′k−1. Let A = (v0, v2, . . . , vk, . . . , v3, v1) and A′ =

(v′0, v
′
2, . . . , v

′
k, . . . , v

′
3, v
′
1). Denote by H the component of Pk(G) containing a.

Since every vertex of H (except a and a′) has degree two, H is a path. Thus,

dPk(G)(a, a
′) = k(k−1)

2 + ((r−2k) + k) + k(k−1)
2 = diam (Gr) + k(k−2).

Now we order the k(k−1) vertices of A0, A1, . . . , Ak−2, A
′
0, A

′
1, . . . , A

′
k−2. Let

A0 = (u1=v0), A1 = (u2,u3=v1), A2 = (u4, u5, u6=v2), . . . ,

Ak−2 = (u k(k−1)
2 −k+2

,u k(k−1)
2 −k+3

, . . . , u k(k−1)
2

=vk−2),

A′0 = (u k(k−1)
2 +1

=v′0), A1 = (u k(k−1)
2 +2

, u k(k−1)
2 +3

=v′1), . . . ,

A′k−2 = (uk(k−1)−k+2,uk(k−1)−k+3, . . . , uk(k−1)=v
′
k−2),

see Figure 10 for ordering the vertices of A0, A1, . . . , Ak−2 in the case k = 6.

Let Gr,s be a graph obtained from Gr by deleting the vertices u1, u2, . . . ,

uk(k−2)−s. Since Gr,s is a subgraph of Gr, and Gr,s contains Ak−1, A′k−1, and

the path W joining vk with v′k, we have diam (Gr,s) = diam (Gr) = r. Denote
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G :
A0

A2

A4

A1

A3

A5B

W

v0 v2 v4 v6 v5 v3 v1

u1

u2

u3

u4

u5

u6

u7

u8

u9

u10

u11

u12

u13

u14

u15

Figure 10.

by B the path of length k consisting from Ak−1 and the edge vk−1vk, and de-

note H the component of Pk(Gr,s) containing b. Since H is a path of length

r + k(k−2)− (k(k−2)− s), we have diam (H) = diam (Gr,s) + s. �

If 2 ≤ k ≤ 4, then using Lemma 3 we are able to determine a good upper bound

for the diameter in Pk(G) for arbitrary graph G, provided that G has sufficiently

large diameter.

Theorem 6. Let G be a graph such that diam (G) ≥ 1
2k

2 + 5k − 2, and 2 ≤
k ≤ 4. Then for any component H of Pk(G) we have

diam (H) ≤ diam (G) + k2 − 2

Proof. Let H be a component of Pk(G), and let diam (H) = dPk(G)(a, a
′) = l.

Suppose that T = (a0, a1, . . . , al) is a shortest walk in Pk(G), such that A0 ≡ A

and Al = A′. Let W = (v0, v1, . . . , vr) be a shortest walk in G beginning in a

vertex from A and terminating in a vertex from A′ (i.e., dG(V (A), V (A′)) = r).

Distinguish two cases.

(a) r ≥ k − 1. Since A and A′ are edge-disjoint, there are vertices ab and ab′

in T , such that v0 is an endvertex of Ab and vr is an endvertex of Ab′ . Let b and

b′ be vertices at the shortest distance from a and a′, respectively, such that v0 is

an endvertex of B and vr is an endvertex of B′. Then dPk(G)(a, b) ≤
k(k−1)

2 and

dPk(G)(b
′, a′) ≤ k(k−1)

2 , by Lemma 3. Moreover, the edge e of B incident to v0 is

in A, and the edge e′ of B′ incident to vr is in A′, by (∗) in Lemma 3. If there is

not a cycle of length at most k in W ∪B and W ∪B′, then dPk(G)(b, b
′) ≤ r + k,

and hence, dPk(G)(a, a
′) ≤ dPk(G)(a, b) + dPk(G)(b, b

′) + dPk(G)(b
′, a′) ≤ k2 + r.

Thus, suppose that there is a “short” cycle in W ∪B. Since e is an edge of B,

the “short” cycle necessarily contains v1. Hence, on a shortest a− b walk there is

a vertex c, such that one endvertex of C is v1. Assume that c is the first vertex on

a shortest a− b walk with this property. If c = b, then the endvertices of C are v0

and v1, so that there cannot be a “short” cycle in W ∪B. Thus c 6= b, and hence,

C contains at least two edges of A. It means that if k = 3, then v1 is the unique

vertex of C outside A; and if k = 4, then at most one vertex of C different from



DIAMETER IN PATH GRAPHS 121

v1 can have a nonzero distance at most one from A. If W ∪B′ does not contain a

“short” cycle, then dPk(G)(c, b
′) ≤ (r−1) + k. Thus, suppose that W∪B′ contains

a cycle of length at most k and construct C′ analogously as C. Since r ≥ k − 1,

C ∪ (v1, v2, . . . , vr−1)∪C′ form a path in G, so that dPk(G)(c, c
′) ≤ (r−2) + k. As

dPk(G)(a, c) < dPk(G)(a, b) and dPk(G)(c
′, a′) < dPk(G)(b

′, a′), in all cases we have

dPk(G)(a, a
′) ≤

k(k − 1)

2
+ (k + r) +

k(k − 1)

2
= k2 + r.

Now we bound the diameter of G. Consider three cases.

(i) Suppose that there is a walk V of length r from an endvertex of A to an

endvertex of A′ in G. Then dPk(G)(a, a
′) ≤ k+r, and diam (G) ≥ r. Thus,

diam (H) ≤ diam (G) + k ≤ diam (G) + k2 − 2, since k ≥ 2.

(ii) Suppose that there is a walk V of length r from an endvertex of A to a

vertex of A′, but there is no walk of type (i) in G (we remark, that the

case when there is a walk V of length r from a vertex of A to an endvertex

of A′ can be solved analogously). Then dPk(G)(a, a
′) ≤ k(k−1)

2 + k + r,

and diam (G) ≥ r + 1. Thus, diam (H) ≤ diam (G) + k(k−1)
2 + k − 1 ≤

diam (G) + k2 − 2, since k ≥ 2.

(iii) Suppose that there is a walk V of length r from a vertex of A to a vertex

of A′, but there are no walks of type (i) or (ii) in G. If there is a walk

V ′ of length r+1 from an endvertex of A to an endvertex of A′, then V ′

contains only one vertex from A and only one vertex from A′. Hence,

dPk(G)(a, a
′) ≤ k + (r + 1) and diam (G) ≥ r + 1, so that diam (H) ≤

diam (G) + k ≤ diam (G) + k2 − 2, since k ≥ 2. Thus, suppose that

diam (G) ≥ r+ 2. As dPk(G)(a, a
′) ≤ k(k−1) + k+ r, we have diam (H) ≤

diam (G) + k2 − 2.

(b) r ≤ k − 2. Let w0 and w1 be vertices in G such that dG(w0, w1) =

diam (G). Assume that dG(w0, V (A)) is the shortest distance from dG(w0, V (A)),

dG(w0, V (A′)), dG(w1, V (A)), and dG(w1, V (A′)) (the other cases can be proved

analogously). Since

2·dG(w1, V (A′)) + (3k−2)

≥ dG(w0, V (A)) + k + dG(V (A), V (A′)) + k + dG(V (A′), w1)

≥ dG(w0, w1) = diam (G),

we have

dG(w1, V (A′)) ≥
diam (G)− (3k − 2)

2

(1
2k

2 + 5k − 2)− (3k − 2)

2

=
1

4
k2 + k ≥ 2k − 1,
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and dG(w1, V (A)) ≥ 2k − 1 as well. Assume that dG(w1, V (A′)) ≤ dG(w1, V (A)),

and denote V = (u0, u1, . . . , us = w1) a shortest walk beginning in a vertex

from A (i.e., dG(V (A′), w1) = s). Denote A∗ = (uk−1, uk, . . . , u2k−1). Then

dG(V (A′), V (A∗)) = k − 1 and dG(V (A), V (A∗)) ≥ k−1.

Suppose that there is a vertex b′ in Pk(G), such that one endvertex of B′ is u0

and dPk(G)(a
′, b′) <∞. As dG(V (A′), V (A∗)) = k − 1, analogously as in the case

(a) can be shown

dPk(G)(a
′, a∗) ≤

k(k − 1)

2
+ ((k−1) + k) =

1

2
k2 +

3

2
k − 1.

Since dPk(G)(a
′, a∗) < ∞, we have dPk(G)(a, a

∗) < ∞. As dG(V (A), V (A∗)) ≤
dG(V (A), V (A′)) + k+ dG(V (A′), V (A∗)) ≤ (k−2) + k+ (k−1) = 3k− 3, we have

dPk(G)(a, a
∗) ≤

k(k − 1)

2
+ ((3k−3) + k) +

k(k − 1)

2
= k2 + 3k − 3,

and hence

dPk(G)(a, a
′) ≤ dPk(G)(a, a

∗) + dPk(G)(a
∗, a′) ≤

3

2
k2 +

9

2
k − 4.

Thus,

dPk(G)(a, a
′) ≤ diam (G) + k2 −

1

2
k − 2 < diam (G) + k2 − 2,

since diam (G) ≥ 1
2k

2 + 5k − 2.

Now suppose that there is not b′ in Pk(G) such that one endvertex of B′ is u0

and dPk(G)(a
′, b′) < ∞, and denote this fact by (4). Since dPk(G)(a, a

′) < ∞,

A and A′ share two incident edges in G. If k = 2, then dPk(G)(a, a
′) = 0; and if

k = 3, then dPk(G)(a, a
′) ≤ 2, by (4). Thus, suppose that k = 4. Then diam (G) ≥

1
2k

2 + 5k−2 = 26 and diam (G)+k2−2 ≥ 40. Assume that diam (H) ≥ 41. Since

T is a shortest walk from a to a′ in P4(G), there are vertices ai and ai′ in T , such

that Ai = (y0, x1, x2, x3, y4) and Ai′ = (y′0, x1, x2, x3, y
′
4), x2 = u0, 0 ≤ i ≤ 2 and

l−2 ≤ i′ ≤ l, see Figure 11. Clearly, y0 6= y′0 and y4 6= y′4. By Lemma 3, there

is a vertex c in P4(G) such that one endvertex of C is x3 and dP4(G)(ai, c) ≤ 3.

Analogously, there is a vertex c′ in P4(G) such that one endvertex of C′ is x1

and dP4(G)(c
′, ai′) ≤ 3. If C ∪ C′ does not contain a cycle of length four, then

l = dP4(G)(a, a
′) ≤ dP4(G)(a, ai) + dP4(G)(ai, c) + dP4(G)(c, c

′) + dP4(G)(c
′, ai′) +

dP4(G)(ai′ , a
′) ≤ 2 + 3 + 2 + 3 + 2 = 12.

Thus, suppose that there is a cycle of length four in C ∪ C′, and denote the

vertices as indicated in Figure 12. By (4), x5 is not adjacent to any vertex from

V (G) − {x1, x2, x4}, and x6 is not adjacent to any vertex from V − {x2, x3, x4}.
By (∗) in Lemma 3, there is a vertex d in P4(G) such that one endvertex of D is

x1 and dP4(G)(c, d) ≤ 2. Analogously, there is a vertex d′ in P4(G) such that one
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x8 x9
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Figure 11. Figure 12. Figure 13.

endvertex of D′ is x3 and dP4(G)(d
′, c′) ≤ 2. If D ∪D′ does not contain a cycle of

length four, then dP4(G)(a, a
′) ≤ 2 + 3 + 2 + 2 + 2 + 3 + 2 = 16.

Thus, suppose that there is a cycle of length four in D ∪ D′, see Figure 13.

Note that not all vertices x1, x2, . . . , x9 are necessarily distinct. Denote X =

{x1, x2, . . . , x9} and consider the vertices from V ∗ = V (G)−X. By (4), no vertex

from V ∗ is adjacent to x5, x6, x8 or x9. Moreover, if v ∈ V ∗ and v is adjacent to

x4 (or to x7), then v may be adjacent only to x2 and x4 (only to x2 and x7), by

(4). Finally, if u ∈ V ∗ and u is adjacent to x1 (or to x3), then u may be adjacent

only to x1, x2 and x3, as otherwise dP4(G)(d, c
′) ≤ 4 (or dP4(G)(c, d

′) ≤ 4), so that

dP4(G)(c, c
′) ≤ 6 and dP4(G)(a, a

′) ≤ 16. But then dP4(G)(c, c
′) = ∞, and hence

dP4(G)(a, a
′) =∞, a contradiction. �

In Corollary 7 we prove that the bound in Theorem 6 is best possible. Moreover,

we show that the diameter of a component of Pk(G) can achieve all values from

the range bounded by Theorem 2 and Theorem 6, if 2 ≤ k ≤ 4.

Corollary 7. Let r ≥ 2k and −k ≤ s ≤ k2 − 2. Then there is a graph G∗r,s
with diameter r such that for one component H of Pk(G∗r,s) we have

diam (H) = diam (G∗r,s) + s.

Proof. First we construct a graph G∗r with diameter r. Let G be a graph con-

structed from a collection A0, A1, . . . , Ak−1 of paths and the path A = (v0, v2, . . . ,

vk, . . . , v3, v1) in Corollary 5. Let a graph G∗ be obtained from G by joining every

vertex of G with vk, see Figure 14 for the case k = 4, and let G∗′ be a copy of G∗.

Denote by G∗r a graph consisting from G∗, G∗′, and a pathW of length r−2 joining

vk with v′k. Then the diameter of G∗r equals r.

Let b be a vertex of Pk(G∗) at the shortest distance from a, such that vk is an

endvertex of B. By (∗) in Lemma 3, the edge of B incident to vk lies in A, and

hence, B consists from the edge vkvk−1 and Ak−1. In Corollary 5 we showed that

dPk(G)(a, b) = k(k−1)
2 . Since vk is an interior vertex of every C such that c is a
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vertex of Pk(G), c 6= b, the shortest a−b walk cannot be shorten in Pk(G∗). Thus,

dPk(G∗)(a, b) = k(k−1)
2 , and hence dPk(G∗r)(a, a

′) = k(k−1)
2 + ((r−2) + k) + k(k−1)

2 =

r+k2−2, A′ = (v′0, v
′
2, . . . , v

′
k, . . . , v

′
3, v
′
1). Hence, if we denote by H the component

of G∗r containing a, then diam (H) = diam (G∗r) + k2 − 2.

G∗ :
A

BW

vk

Figure 14.

Now remove from G∗r−i−j i edges joining the last i vertices of B with vk, and

j edges joining the last j vertices of B′ with v′k, and denote the resulting graph

by G∗r,k2−i−j−2, 0 ≤ i ≤ k−1 and 0 ≤ j ≤ k−1. Denote s = k2 − i− j − 2. Then

k(k−2) ≤ s ≤ k2−2 and diam (G∗r,s) = r. Moreover, dH(a, a′) = (r−i−j)+k2−2,

and hence, diam (H) = diam (G∗r,s)+s (recall that H is the component of Pk(G∗r,s)

containing a). Combining this with Corollary 5 we obtain the result. �

We remark, that using more gentle techniques, the bound on the diameter of

G can be decreased in Theorem 6. In fact, for k = 2 the statement of Theorem 6

is valid for all graphs, see [2, Theorem 6]. However, for k ≥ 3 some bound is

necessary, as shown by graph G pictured in Figure 15. If A = (v2, v3, v1, v9) and

A′ = (v5, v4, v1, v6), then dP3(G)(a, a
′) = 10 > 2 + 7 = diam (G) + k2 − 2.

G :

v1

v2

v3 v4

v5

v6

v7v8

v9

Figure 15.

The problem of bounding the diameter of a component of Pk(G) if k ≥ 5 remains

open.
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