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INVARIANT CONE OF SLOWLY OSCILLATING SOLUTION

IN TWO DELAYS DIFFERENTIAL EQUATIONS

N. YOUSFI and O. ARINO

Abstract. Scalar delay differential equations with two delays are considered in
this paper. Some monotonicity results permit to establish existence of non trivial
slowly oscillating solutions.

1. Introduction

Oscillations of delay differential equations have been considered recently by

many authors (see [1], [2], [3], [6], [7]). In this work, we investigate the monotony

properties to establish existence of slowly oscillating solution (s.o.) of retarded

differential equations with two delays.

This paper is organized in three sections. In the introduction, we present our

model and give the definition of a s.o. solution. In the second section, we construct

an invariant cone K ⊆ C ([−σ, 0],R) of s.o. solutions. Section 3 is devoted to an

example.

We consider the equation

(1) ẋ (t) = −f (x (t− τ))− g (x (t− σ))

under the following general assumptions:

f and g are smooth functions such that:

1. 0 ≤
f(x)

x
≤ a for x 6= 0,

2. 0 ≤
g(x)

x
for x 6= 0,

3. τ < σ.

Definition 1. A solution of (1) is slowly oscillating if the distance between two

successive zeros of x(t) is not less than max(τ, σ).
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2. Slowly Oscillating Solution

In this section, we start with the study of the retarded differential equation

(2) ẋ(t) = −a x(t− τ) − g(x(t− σ)).

We assume that:

(H) a satisfies 0 ≤ aτ <
1

e
,

and we indicate how this hypothesis may be used to derive existence of slowly

oscillating solutions.

The advantage of using hypothesis (H) lies in the fact that the fundamental

solution of the retarded differential equation

(3) ẋ(t) = −a x(t− τ)

is positive. This implies the same conclusion for x(t) solution of the retarded

differential equation

ẋ(t) = −a x(t− τ) + f(t)

with initial condition x0 ≥ 0, when f is positive.

From hypothesis (H), we know that there are two negative roots λ1 < λ2 of the

characteristic equation λ = −a e−λτ , associated with the linear equation (3).

We define the cone ([5], [9]):

Γ =
{
ϕ ∈ C : ϕ ≥ 0, ϕ(θ) ≤ eλ2θϕ(0)

}
where C = C ([−τ, 0] ,R).

Proposition 2. Under hypothesis (H), if ϕ ∈ Γ, then, the solution x(t) of the

retarded differential equation

(4)

{
ẋ(t) = −a x(t− τ),

x0 = ϕ,

satisfies xt ∈ Γ, for all t > 0, where xt denotes as usual, the function defined by

xt(θ) = x(t+ θ) for all −τ ≤ θ ≤ 0.

Proof. Let y(t) = e−λ2tx(t). In terms of y, equation (4) reads:{
ẏ(t) = −λ2(y(t)− y(t− τ)),

y0 = ϕ̃,

where ϕ̃ = e−λ2·ϕ.
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The cone Γ becomes:

Γ0 =
{
ϕ̃ ∈ C : ϕ̃ ≥ 0, ϕ̃(θ) ≤ ϕ̃(0)

}
.

So, we are lead to prove that yt ∈ Γ0. To do this, we demonstrate that y(t) is

positive and increasing for all t ∈ [0,+∞).

ẏ(0) ≥ 0 gives ẏ(t) ≥ 0 for all t in a right neighborhood of 0. Let us prove that

ẏ(t) ≥ 0 for all t > 0.

In case ϕ̃(θ) < ϕ̃(0), we assert that ẏ (t) > 0 for all t > 0. Indeed, on the

contrary, suppose there exists t > 0 such that ẏ(t) = 0 and ẏ(t) > 0 for all

0 ≤ t < t, this implies:

If 0 ≤ t − τ < t then y(t) − y(t − τ) > 0, if t − τ ≤ 0 < t then y(t − τ) =

ϕ(t − τ) ≤ ϕ (0) < y(t). In either case, we have, ẏ(t) = −λ2(y(t) − y(t − τ) > 0,

which is impossible.

In the other case, it suffices to let ϕ̃ε = max(ϕ̃(θ) + εθ, 0), ε > 0.

For θ < 0, we have

ϕ̃ε(θ) = ϕ̃(t) + εθ < ϕ̃ (θ) ≤ ϕ̃ (0) = ϕ̃ε (0) if ϕ̃(θ) + εθ ≥ 0,

and ϕ̃ε(θ) = 0 < ϕ̃ (0) = ϕ̃ε (0) otherwise.

So, for all θ, we have ϕ̃ε(θ) < ϕ̃ε (0). By letting ε → 0, the same conclusion can

be drawn. �
Remark 1. In the proof of Proposition 2, ϕ ∈ Γ is taken non constant since

for ϕ constant everything is clear.

Proposition 3. Let X (t) be the fundamental solution associated with the ini-

tial condition X0 of the retarded differential equation (3)

X0 (θ) =

{
0 si − τ ≤ θ < 0,

1 si θ = 0 .

Then Xt satisfies

(5) Xt ≥ 0, and Xt (θ) ≤ eλ2θXt (0) for t > 0.

Proof. Let V (t) = e−λ2tX (t). So, we have to prove that Vt solution of the

differential equation

(6)

{
V̇ (t) = −λ2 (V (t)− V (t− τ)) ,

V0 = X0,

satisfies

Vt ≥ 0 and Vt (θ) ≤ Vt (0) for t > 0.

Indeed, for t ∈ [0, τ [ we have: V̇ (t) = −λ2V (t). This implies V (t) = e−λ2tV (0) =

e−λ2t. So, V (t) is positive and increasing and finally, Vt (θ) ≤ Vt (0) for all θ :

−τ ≤ θ ≤ 0.

If t = τ , then Vτ is in Γ0 which concludes that Vt is positive increasing for all

t ≥ τ . �
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Proposition 4. Under hypothesis (H), the solution x (t) of the retarded dif-

ferential equation {
ẋ(t) = −a x(t− τ) + f(t),

x0 = 0,

is positive, if f is locally integrable positive.

Proof. Because that X and f are positive and from the constant variation

formula, we conclude that x (t) =
∫ t

0
X(t− s)f(s) ds is positive. �

Remark 2. It is clear that if in the last proposition f is negative, then the

solution x (t) is also negative.

Proposition 5. If ϕ ∈ Γ and f is non negative, locally integrable, then the

solution x(t) of retarded differential equation{
ẋ(t) = −a x(t− τ) + f(t),

x0 = ϕ,

verifies xt ∈ Γ for all t ≥ 0.

Proof. From [6], the solution x(t) satisfies:

xt = T (t)ϕ+

∫ t

0

Xt−sf(s) ds

where T (t) is the semi-group associated to the linear retarded differential equation

(4) and X(·) is the fundamental solution.

It is clear, from Proposition 2 that T (t)ϕ ∈ Γ. Moreover, since Xt verifies (5)

and f is positive, then
∫ t

0
Xt−sf(s) ds verifies (5). We finally, conclude that xt ∈ Γ

for all t ≥ 0. �

Having accomplished this preliminary step, we can now return to equation (2).

Proposition 6. We assume that ϕ ∈ Γ. Let x(t) be the solution of (2) with

initial condition ϕ. If t1 is the first zero of x(t), then xt ∈ −Γ for all t1 + τ ≤ t ≤
t1 + σ.

Proof. We can easily see that ẋ(t) ≤ 0 for all t1 ≤ t ≤ t1 + τ and deduce the

proposition for t = t1 + τ .

To complete the proof, we let

y(t) = −x(t+ t1 + τ) and f(t) = g(x(t1 + τ + t− σ)).

This yields {
ẏ(t) = −ay(t− τ) + f(t), t ≥ 0,

y0(θ) = −xt1+τ (θ), − τ ≤ θ ≤ 0,
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It is clear that f(t) ≥ 0 for all 0 ≤ t ≤ σ − τ , so we conclude from Proposition 5,

that yt ∈ Γ for all 0 ≤ t ≤ σ − τ which implies:

xt ∈ −Γ for all t1 + τ ≤ t ≤ t1 + σ. �

In the sequel, we generalize this result to the retarded differential equation (1).

We consider the cone

K =


ϕ ∈ C ([−σ, 0] ,R) : ϕ ≥ 0,

θ 7−→ ϕ(θ) e−λ2θ is nondecreasing on [−σ, 0] ,

ϕ (−σ) = 0


where C([−σ, 0] ,R) is the set of continuous functions defined on [−σ, 0].

We can now state the analogue of Proposition 6.

Proposition 7. Let x(t) be the solution of (1) with initial condition x0 i.e.

x(t) = x0(t) for −σ ≤ t ≤ 0. If x0 ∈ K and t1 is the first value t1 > 0 such that

x(t1) = 0, then x is decreasing on [t1, t1 + τ ] and xt ∈ −K for all t1+τ ≤ t ≤ t1+σ.

Proof. We denote

a(t) ≡


f(x(t− τ))

x(t − τ)
, if x(t− τ) 6= 0,

f ′(0), if x(t− τ) = 0 .

Then, equation (1) reads

ẋ(t) = −a(t)x(t− τ) − g(x(t− σ)).

Let x0 ∈ K and t1 > 0 be such that x(t1) = 0 and x(t) > 0 ∀ t : 0 < t < t1. For

t1 ≤ t ≤ t1 + τ , we have x(t − τ) ≥ 0 and x(t − σ) ≥ 0, so, f (x (t− τ)) ≥ 0 and

g (x (t− σ)) ≥ 0. This implies

ẋ (t) = −f (x (t− τ))− g (x (t− σ)) ,

≤ 0 .

Thus, x (t) is decreasing on [t1, t1 + τ ].

For t1 + τ ≤ t ≤ t1 + σ, let y(t) = e−λ2tx(t).

So

(7) ẏ(t) = −λ2y(t)− e−λ2τa(t)y(t− τ)− e−λ2tg
(
eλ2(t−σ)y(t− σ)

)
it is clear that ẏ(t) < 0 for all t ∈ [t1, t1 + τ ]. Let us prove that ẏ(t) ≤ 0 for all

t ∈ [t1 + τ, t1 + σ].
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We have

0 < a(t) ≤ a

λ2 = −ae−λ2τ and y ≤ 0

}
⇒

a(t)y(t− τ)e−λ2τ ≥ ae−λ2τy(t− τ) = −λ2y(t− τ),

t1 + τ ≤ t ≤ t1 + 2τ

so,

ẏ(t) ≤ −λ2 (y (t)− y (t− τ))− e−λ2tg
(
eλ2(t−σ)y (t− σ)

)
,

≤ |λ2| (y (t)− y (t− τ)) , t1 + τ ≤ t ≤ t1 + min (σ, 2τ) .

Let z (t) be the solution of the retarded differential equation{
ż (t) = −λ2 (z (t)− z (t− τ))

zt1+τ = yt1+τ .

From the comparison result in [8], we have

y (t) ≤ z (t) .

Since zt1+τ ∈ −Γ0, we deduce from Proposition 2 that z (t) is negative, decreasing.

On the other hand, because λ2 < 0 and t− τ < t1 + τ , we have

−λ2y (t) ≤ −λ2z (t)

and y (t− τ) = z (t− τ) .

This implies

−λ2 (y (t)− y (t− τ)) ≤ −λ2 (z (t)− z (t− τ)) ,

and finally

ẏ(t) ≤ ż (t) ≤ 0 .

Thus y (t) is also negative, decreasing and finally yt\[−τ,0] ∈ −Γ0 for all t ∈
[t1 + τ, t1 + min (σ, 2τ)[ which concludes xt

∣∣
[−τ,0] ∈ −Γ.

We can repeat this derivation for t1 + 2τ ≤ t ≤ t1 + 3τ , . . . , as long as kτ < σ,

and deduce that y (t) is negative decreasing for all t ∈ [t1 + τ, t1 + σ]. In conclu-

sion, we proved that: x is decreasing on [t1, t1 + τ ] while the function e−λ2tx (t) is

decreasing on [t1 + τ, t1 + σ], that is: xt ∈ −K, for all t1 + τ ≤ t ≤ t1 + σ. Which

is the desired conclusion. �

Let us mention the following important consequence of this proposition.



INVARIANT CONES OF SLOWLY OSCILLATING SOLUTIONS 341

Theorem 8. Let x0 ∈ K and let x be the solution of (1) associated with x0.

Then, we have either:

1. x(t) has a finite number of zeros t1 < t2 < · · · < tN such that: tj+1− tj ≥
σ; xtj+σ ∈ ±K for j even, j odd respectively and moreover: x(t) −→ 0

when t 7−→ ∞. Or,

2. x(t) has infinitely many zeros t1 < t2 < · · · < tj < · · · . Any two consecu-

tive zeros tj , tj+1 verify:

tj+1 − tj ≥ σ.

Finally xtj+σ ∈ ±K for j even, j odd respectively.

3. Example

We have encountered in [4], in a second attempt to understand the behavior of

subjects trying to perform a “simple” motor control task, the non linear differential

equation

(8) ẋ (t) = −A1 tanh (x (t− τ))−A2 tanh (x (t− σ))

where A1, A2 are positive constants. The linearized equation of (8) is

ẋ (t) = −A1x (t− τ)−A2x (t− σ) ,

which can be rewriten

(9) ẋ (t) = −x (t− τ̃)− αx (t− σ̃)

where τ̃ = τA1, σ̃ = σA1 and α =
A2

A1
.

t1

t0

Figure 1. Solution x (t) of equation (9) with initial condition x (t) = t + 4
15 for

− 4
15 ≤ t ≤ 0.
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We have chosen values τ̃ =
1

4
<

1

e
, σ =

4

15
and α = 5.59. We compute,

by Euler’s method, the solution of the linear equation (9) with initial condition

x (t) = t−σ for −σ ≤ t ≤ 0. Figure 1 shows that the solution is slowly oscillating.
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N. Yousfi, Faculté des Sciences Ben M’sik, Casablanca, Morocco
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