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ORTHOGONAL DECOMPOSITIONS IN HILBERT

C∗–MODULES AND STATIONARY PROCESSES

D. POPOVICI

Abstract. It is obtained a Wold-type decomposition for an adjointable isometry
on a Hilbert C∗-module which is sequentially complete with respect to some locally
convex topology, denoted by s. Particularly self-dual Hilbert C∗-modules satisfy
this condition. Finally, as an application we shall give a new proof of the Wold
decomposition theorem for discrete stationary processes in complete correlated ac-
tions.

1. Introduction

Hilbert modules over a C∗-algebra were introduced by I. Kaplansky in [2], the

variety of applications, emphasized later by the papers of W. L. Paschke [6] and

M. A. Rieffel [9], inciting the interest on these objects.

Today Hilbert C∗-modules represent an important instrument of study in a

general K-theory introduced by Kasparov (to see for example [3]) and called

KK-theory, in the C∗-algebraic approach to quantum group theory (to see [15]),

but also in the study of various prediction problems in correlated actions.

In the development of the prediction theory, at the same time with factorization

theorems by analytic functions (for example, using the Szegö [12] factorization of

a positive scalar function by an analytic scalar function, Kolmogorov [4] give an

elegant solution for the univaried prediction problem), another result, of geometric

type, namely the Wold decomposition theorem, in its various variants, played a

very important role. This decomposition theorem for discrete stationary processes

in complete correlated actions allow us to obtain (in some supplementary Harnack-

type condition) the predictible part of a process, and also the prediction error

operator. We cannot omit here the contribution of H. Wold in [14], and also of

I. Suciu and I. Valuşescu for example in [10], [11] or [13].

In the following we shall approach this last subject in connection with Hilbert

modules. The decomposition theorem for discrete stationary processes in complete

correlated actions mentioned above can be obtained as an application of the main
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result of this paper, a Wold-type decomposition for adjointable isometries on cer-

tain Hilbert C∗-modules (in a class which contains in particular self-dual Hilbert

modules).

2. Notations and Preliminaries

Let A be a C∗-algebra. A pre-Hilbert A-module is a right A-module E (hav-

ing a compatible vector space structure) equipped with a map 〈·, ·〉 : E × E → A

linear in the second variable and having the properties:

(i) 〈x, x〉 ≥ 0, x ∈ E; 〈x, x〉 = 0 if and only if x = 0;

(ii) 〈x, y〉∗ = 〈y, x〉, x, y ∈ E;

(iii) 〈x, ya〉 = 〈x, y〉a, x ∈ E, a ∈ A.

E is said to be a Hilbert A-module if verifies in addition

(iv) E is complete with respect to the norm

‖x‖ := ‖〈x, x〉‖1/2, x ∈ E.

A pre-Hilbert A-module E is said to be self-dual if every continuous A-module

map τ : E → A has the form

τ(x) = 〈y, x〉, x ∈ E,

y ∈ E being fixed.

If A is a von Neumann algebra, the s-topology on E is the locally convex

topology on E generated by the family of seminorms (pφ)φ∈A+
∗
,

pφ(x) =
(
φ(〈x, x〉)

)1/2

, x ∈ E

(we denoted by A+
∗ the set of all positive linear functionals in the predual of A).

If E is self-dual then E is the dual of a Banach space E∗ ([6]), so its closed unit

ball is σ (σ(E,E∗))-compact. Furthermore s contains σ and if xα
σ
→ x then

(1) φ(〈xα, y〉)→ φ(〈x, y〉), φ ∈ A+
∗ , y ∈ E.

We can prove now that (E, s) is quasi-complete and therefore sequentially com-

plete. Indeed, if (xα)α is a bounded s-Cauchy net in E, it is also σ-Cauchy and

therefore σ-convergent to an x ∈ E. For each φ ∈ A+
∗ , (xα)α being Cauchy, con-

verges to an xφ in a Hilbert space Eφ, the completion of E with respect to the

sesquilinear form φ◦〈·, ·〉. Due to (1) xφ = x, φ ∈ A+
∗ and so (xα)α is s-convergent

to x, remark which complete the proof.
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For a pre-Hilbert module collection (Eα)α over a von Neumann algebra A its

ultraweak direct sum (according to [6]) is the pre-Hilbert A-module

+
α∈I

Eα =
{
x = (xα)α∈I ∈

∏
α∈I

Eα

∣∣∣ sup
F

∥∥∥∑
α∈F

〈xα, xα〉
∥∥∥ <∞},

F belonging to the set F of all finite parts of I.

A submodule E0 of a Hilbert module E over a C∗-algebra A is called comple-

mentable if there exits a submodule E1 such that E = E0 +E1 and 〈E0, E1〉 = 0.

We use the notation E = E0 ⊕E1.

If E and F are Hilbert A-modules a map T : E → F is called adjointable if

there exists T ∗ : F → E such that

〈Tx, y〉 = 〈x, T ∗y〉, x ∈ E, y ∈ F.

Denote by LA(E,F ) (LA(E) if E = F ) the set of all these maps. For T in

LA(E,F ) we shall use the notation [E,F, T ] (respectively [E, T ] if E = F ). Every

adjointable operator is a bounded A-module map. In some additional conditions

on E the converse is also true:

Proposition 2.1. If E is self-dual then every bounded A-module map is ad-

jointable.

An A-module map U : E → F is called unitary if it is isometric and surjective.

Using the terminology from [7] an isometry [E, V ] is called a shift if

E =
∞⊕
n=0

V nL

:=
{
x =

∞∑
n=0

V nln

∣∣∣ ln ∈ L and
∑
n

〈ln, ln〉 converges in norm in A
}
,

where L = kerV ∗.

The following result gives a necessary and sufficient condition on a Hilbert

module adjointable isometry in order to admit a Wold-type decomposition.

Theorem 2.2 ([7]). An isometry [E, V ] admits a unique decomposition of the

form E = E0 ⊕E1 where:

• E0, E1 reduces V ;

• V |E0 is a unitary operator;

• V |E1 is a shift

if and only if

(〈V ∗nx, V ∗nx〉)n converges in norm in A for all x ∈ E.
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3. s-Shifts and Unitary Operators

For the sake of completeness we shall give now other proofs for the results

obtained by E. C. Lance in [5] regarding the characterizations of unitary operators

and adjointable isometries on Hilbert C∗-modules.

Lemma 3.1. Let A be a C∗-algebra, E,F be two Hilbert A-modules and

V : E → F be an isometric A-module map. Then

〈V x, V y〉F = 〈x, y〉E , x, y ∈ E.

Proof. Firstly let us observe that V E ⊂ F is a closed submodule. The operator

V0 : E → V E, V0x := V x, x ∈ E

is bijective and, in addition, V −1
0 is a bounded A-module map. Using the charac-

terization in [6] of bounded A-module maps T : E → F by

〈Tx, Tx〉F ≤ ‖T‖
2〈x, x〉E , x ∈ E,

we can write

〈x, x〉E = 〈V −1
0 V x, V −1

0 V x〉E ≤ ‖V
−1

0 ‖
2〈V x, V x〉V E = 〈V x, V x〉F .

Applying the same inequality for T = V we obtain

〈V x, V x〉F ≤ 〈x, x〉E

which leads, using the polarization identity, to the conclusion. �

Starting with this lemma, result which represents, in fact, the main part in the

proofs given by E. C. Lance we can enunciate:

Proposition 3.2. Let A,E, F be as in the previous lemma and U : E → F be

an A-module map. Then U is a unitary operator (that is isometric and surjective)

if and only if U ∈ LA(E,F ), U∗U = IE and UU∗ = IF .

Proposition 3.3. With A,E, F as above we consider V : E → F a linear map.

Then are equivalent:

(i) V is an isometric A-module map with complentable range;

(ii) V ∈ LA(E,F ) and V ∗V = IE .

In the following we suppose that A is a von Neumann algebra if it is not oth-

erwise specified.
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Definition 3.4. Let E be a Hilbert A-module. A map S : E → E is called

an s-shift if there exists a Hilbert A-module F such that S and SF are unitary

equivalent (we denoted by SF the operator SF :
∞

+
n=0

F →
∞

+
n=0

F, SF (x0, x1, . . . ) =

(0, x0, x1, . . . )).

We deduce some remarks from this definition.

Remark 3.5.

• Since S and SF are unitary equivalent (that is S = U∗SFU , [E,
∞

+
n=0

F,U ]

being unitary), S is an adjointable isometry on E.

• Identifying F with {(x, 0, . . . ) | x ∈ F} we can consider L = U∗F , relation

which permits to observe that SnL = U∗SnFF , n ∈N. Because

〈SnL,L〉 = 〈U∗SnFF,U
∗F 〉 = 〈SnFF, F 〉 = 0, n > 0

L is wandering for S (that is 〈SnL, SmL〉 = 0, m,n ∈ N, m 6= n).

Lemma 3.6. Let E be a pre-Hilbert A-module, (Eα)α∈I a parwise orthogonal

family of submodules in E and (xα)α∈I ∈
∏
α∈I

Eα. If (xα)α∈I is s-summable then

sup
F∈F
‖
∑
α∈F
〈xα, xα〉‖ <∞.

Proof. Denote by x = s- lim
F∈F

∑
α∈F

xα. Because for each φ ∈ A+
∗ , φ(

∑
α∈F
〈xα, xα〉)

F∈F
−→ φ(〈x, x〉) the uniform boundedness principle applyied to the family (TF )F∈F ,

TF : A∗ → C, TF (φ) =
∑
α∈F

φ(〈xα, xα〉), φ ∈ A∗

shows that the net (‖TF‖)F∈F is bounded. The conclusion follows because

‖TF ‖2 = ‖
∑
α∈F
〈xα, xα〉‖, F ∈ F . �

Definition 3.7. Let E be a pre-Hilbert A-module and (Eα)α∈I a family of

parwise orthogonal submodules of E. We call the direct s-sum of the submodules

Eα, α ∈ I the set

+
α∈I

Eα :=
{
x = s- lim

F∈F

∑
α∈F

xα

∣∣∣ xα ∈ Eα (α ∈ I) and (xα)α∈I is s-summable
}
.

Remark 3.8.

• Because the map (E, s) 3 x 7→ xa ∈ (E, s), a ∈ A fixed, is continuous it can

be easily proved that +
α∈I

Eα is an A-submodule of E. Furthermore, if x ∈ +
α∈I

Eα
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and φ ∈ A+
∗ then

∣∣∣[φ(
∑
α∈F

〈xα, xα〉)
]1/2
− [φ(〈x, x〉)]1/2

∣∣∣ =
∣∣∣pφ(

∑
α∈F

xα)− pφ(x)
∣∣∣

≤ pφ(
∑
α∈F

xα − x)
F∈F
−→ 0

and consequently
( ∑
α∈F
〈xα, xα〉

)
F∈F

ultraweakly converges to 〈x, x〉. Using the

polarization identity we can assert the same about the convergence of the net( ∑
α∈F
〈xα, yα〉

)
F∈F

to 〈x, y〉 for all x, y ∈ +
α∈I

Eα.

• (xn)n ∈
∞

+
m=0

F if and only if (xn)n = s- lim
m→∞

m∑
k=0

(0, . . . , xk, 0, . . . ).

Indeed, for all φ ∈ A+
∗ and k ∈N,

φ(〈(x0, . . . , xk, 0, . . . )− (xn)n, (x0, . . . , xk, 0, . . . )− (xn)n〉)

= φ
( k∑
p=0

〈xp, xp〉 − 〈(xn)n, (xn)n〉
)
k→∞
−→ 0 ([6]).

We used here that

〈(x0, . . . , xk, 0, . . . ), (xn)n〉 =
k∑
p=0

〈xp, xp〉,

which is a true relation because (〈x0, x0〉+· · ·+〈xk, xk〉+〈0, xk+1〉+· · ·+〈0, xm〉)m
ultraweakly converges to (〈(x0, . . . , xk, 0, . . . ), (xn)n〉 and is a constant equal to
k∑
p=0
〈xp, xp〉.

The converse is an immediate consequence of Lemma 3.6.

Proposition 3.9. Let E be a Hilbert A-module and S : E → E an isometric

A-module map. If S is an s-shift then there exists a closed A-submodule L of E

wandering for S such that

E =
∞

+
n=0

SnL.

Furthermore, if (E, s) is sequentially complete the converse also holds.
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Proof. For the first part it is sufficient to prove that E =
∞
+
n=0

SnL, where

L = U∗F (we used the notations and results in the Remark 3.5). Indeed

E = U∗
∞
+
n=0

F

=
{
U∗(xn)n | (xn)n = s- lim

m→∞

m∑
k=0

(0, . . . , xk, 0, . . . )
}

=
{
x ∈ E | x = s- lim

m→∞

m∑
k=0

U∗(0, . . . , xk, 0, . . . )
}

=
{
x ∈ E | x = s- lim

m→∞

m∑
k=0

Sklk

}
=
∞

+
n=0

SnL,

the last equality, more precisely the inclusion from left to right (the other one

being obvious), being obtained due to the relations

φ(〈
∑
k∈F

xk − x,
∑
k∈F

xk − x〉)

= φ(〈
n∑
k=0

xk − x,
n∑
k=0

xk − x〉) − φ(〈
∑

k∈F\{0,···n}

xk,
∑

k∈F\{0,···n}

xk〉)

and

φ(〈
∑

k∈F\{0,···n}

xk,
∑

k∈F\{0,···n}

xk〉) ≤ φ(〈
m∑

k=n+1

xk,

m∑
k=n+1

xk〉),

with x ∈ E, xk ∈ SkL, k = 0, n, n ∈ N, F ∈ F : {0, . . . , n} ⊂ F , m = maxF .

For the converse let L be a closed A-submodule, wandering for S with the

property E =
∞

+
n=0

SnL. We build U : E →
∞

+
n=0

L, U(x) = U(s- lim
n→∞

n∑
k=0

Sklk) =

(ln)n, x ∈ E and ln ∈ L, n ∈ N. We used here that if x ∈
∞

+
n=0

SnL, x is defined by

an s-summable family (Snln)n∈N namely x = s- lim
F∈F

∑
k∈F

Sklk. So we can deduce

that x = s- lim
n→∞

n∑
k=0

Sklk also. The facts that the definition is correct and U is

isometric can be obtained from Lemma 3.6 and the following relations

〈Ux,Ux〉 = 〈(ln)n, (ln)n〉 = lim
n→∞

n∑
k=0

〈lk, lk〉 = lim
n→∞

〈 n∑
k=0

Sklk,

n∑
k=0

Sklk
〉

= 〈x, x〉
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(the symbol lim above indicates the ultraweak convergence, the last equality being

a consequence of the first part in Remarks 3.8). Using the sequential completeness

of (E, s) we can easily prove the surjectivity of U . Therefore, with the results in

Proposition 3.2, S = U∗SFU , that is S is an s-shift. �

4. The Wold-Type Decomposition

As we stated before A will denote a von Neumann algebra unless otherwise

specified.

Let E be a Hilbert A-module and [E, V ] an isometry. As we detailedly proved

in [7], for each n ∈N,

E = L⊕ V L⊕ · · · ⊕ V nL⊕ V n+1E, where L = kerV ∗.

So each x ∈ E can be written as

(2) x =
n∑
k=0

V klk + V n+1zn+1,

{lk}nk=0 ⊂ L, zn+1 ∈ E being given by the formulas

lk = (IE − V V
∗)V ∗kx, zn+1 = V n+1V ∗n+1x, n ∈ N.

Before we enunciate the main theorem of this section let us give a definition.

Definition 4.1. [E, V ] admits a Wold-type decomposition if there exist

two submodules E0, E1 ⊂ E such that

(i) E = E0 ⊕E1;

(ii) E0 (and consequently E1) reduces V ;

(iii) V |E0 is a unitary operator and V |E1 is an s-shift.

Theorem 4.2. Suppose that (E, s) is sequentially complete. Then the isometry

[E, V ] admits a Wold-type decomposition. This decomposition is unique.

Proof. For x ∈ E and xn =
∑n
k=0 V

k(IE − V V ∗)V ∗kx we obtain, due to (2),

the equality

(3) x = xn + V n+1V ∗(n+1)x, n ∈N.

Let us observe that (V nV ∗nx)n is an s-Cauchy sequence. Indeed, because

(〈V ∗nx, V ∗nx〉)n is a decreasing sequence of positive elements there exists an ele-

ment a ∈ A such that

φ(〈V ∗nx, V ∗nx〉)
n→∞
−→ φ(a), for all φ ∈ A+

∗
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(every functional φ ∈ A+
∗ being normal). Consequently

(4) φ(〈V ∗nx, V ∗nx〉 − 〈V ∗mx, V ∗mx〉)
m,n
−→ 0 .

Furthermore, for m,n ∈N, m < n,

〈V nV ∗nx− VmV ∗mx, V nV ∗nx− V mV ∗mx〉 = 〈V ∗mx, V ∗mx〉 − 〈V ∗nx, V ∗nx〉

which, due to (4), permits us to conclude that (V nV ∗nx)n is s-Cauchy. Since

(E, s) is sequentially complete there exists xu = s- lim
n→∞

V nV ∗nx. By passing to

limit in (3) it obtains the decomposition

x = xu + xs, xu = s- lim
n→∞

V nV ∗nx, xs = s- lim
n→∞

n∑
k=0

V klk ∈
∞
+
n=0

V nL.

Since, for n ∈ N fixed, V nE is s-closed and, for m ≥ n, V mV ∗mx ∈ V nE we

obtain that xu ∈
⋂
n≥0

V nE. Furthermore, if x ∈
∞

+
n=0

V nL and y ∈
⋂
n≥0

V nE then

〈x, y〉 =
〈
s- lim
n→∞

n∑
k=0

V klk, y
〉

= 0

because for each n ∈ N, 〈V nln, y〉 = 0. Using the notations E0 =
⋂
n≥0

V nE and

E1 =
∞

+
n=0

V nL it obtains the decomposition we are looking for, that is E = E0⊕E1.

It is immediate that E0, E1 reduce V , V |E0 is a unitary operator, and V |E1 is an

s-shift.

For the uniqueness let us suppose that these exist other two submodules E′0,

E′1 ⊂ E with the properties (i)-(iii) in Definition 4.1. Since V |E′0 is unitary, each

x ∈ E′0 has the form x = V nV ∗nx, n ∈ N and so x ∈
⋂
n≥0

V nE = E0, that is

E′0 ⊂ E0. Now if x ∈ E then the decomposition E = E′0⊕E
′
1 allows to assert that

x = x′u + x′s, with x′u ∈ E
′
0 ⊂ E0 ⊂ V E, and x′s = s- lim

n→∞

n∑
k=0

V kl′k ∈ L
′ + V E,

where L′ = ker(V ∗|E′1) ⊂ L. Hence E = L′ ⊕ V E, that is L = L′, E1 = E′1 and

E0 = E′0. �

Because, for a self-dual Hilbert module E, (E, s) is sequentially complete as we

have already stated in the second section of this paper we can formulate

Corollary 4.3. Let E be a self-dual Hilbert A-module. Every isometry [E, V ]

admits a unique Wold-type decomposition.
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Remark 4.4.

• As we saw in [7], E0 = {x ∈ E | 〈x, x〉 = 〈V ∗nx, V ∗nx〉, n ∈N}. Furthermore

E1 = {x ∈ E | V ∗nx
s
−→ 0}. Indeed, let x ∈ E. Then x = xn + V n+1V ∗(n+1)x ∈

E1 if and only if V n+1V ∗(n+1)x
s
−→ 0.

• If, in addition, (〈V ∗nx, V ∗nx〉)n converges in norm in A for all x ∈ E then

the Wold-type decomposition obtained above coincides with the decomposition in

Theorem 2.2. In this case

∞⊕
n=0

V nL =
∞
+
n=0

V nL, where L = kerV ∗.

• An isometry [E, V ] is an s-shift if and only if V ∗nx
s
−→ 0, for all x ∈ E.

Indeed, if [E, V ] is an s-shift and x ∈ E then

〈V ∗nx, V ∗nx〉 =
〈
V ∗n

(
s- lim
m→∞

m∑
k=0

V klk
)
, V ∗n

(
s- lim
m→∞

m∑
k=0

V klk
)〉

=
〈
s- lim
m→∞

m∑
k=0

V kln+k, s- lim
m→∞

m∑
k=0

V kln+k

〉
which, by the first part of the Remarks 3.8, is the ultraweak limit of the se-

quence (
∑m
k=0〈ln+k, ln+k〉)m. If a ∈ A is the least upper bound of the sequence

(
∑n
k=0〈lk, lk〉)n, then φ (

∑n
k=0〈lk, lk〉)

n→∞
−→ φ(a) for every φ ∈ A+

∗ , and the con-

clusion follows.

Conversely, if V ∗nx
s
−→ 0, for every x ∈ E relation (3) shows that E =

∞
+
n=0

V nL.

The sequential completeness of (E, s) and Proposition 3.9 prove that V is s-shift.

Definition 4.5. Let E be a Hilbert A-module. An isometry [E, V ] is called

completely non-unitary (c.n.u.) if the restriction to every submodule F reduc-

ing for V is not a unitary operator (excepting the case F = {0}).

Corollary 4.6. Let E be a Hilbert A-module and [E, V ] an isometry. If V is

an s-shift then V is c.n.u. Conversely, if (E, s) is sequentially complete and V is

c.n.u. then V is an s-shift.

Proof. Without any difficulty we obtain that V is c.n.u. if and only if⋂
n≥0 V

nE = {0}. If V is an s-shift then V ∗nx
s
−→ 0, for all x ∈ E. If there

exists an A-submodule E′ ⊂ E reducing for V such that V |E′ is a unitary opera-

tor then for each x ∈ E′, 〈x, x〉 = 〈V ∗nx, V ∗nx〉, n ∈ N that is x = 0.

Conversely, we write the Wold-type decomposition corresponding to V . The

unitary part being null it obtains that V is an s-shift. �
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5. Application to Stationary Processes

Let H be a Hilbert space, L(H) the space of all linear and bounded operators

on H, E a right L(H)-module and 〈·, ·〉 : E ×E → L(H) an application.

Definition 5.1. {H, E, 〈·, ·〉} is called the correlated action of L(H) on E

if (E, 〈·, ·〉) is a pre-Hilbert L(H)-module.

Example 5.2. Let K be a Hilbert space. If we define

〈·, ·〉 : L(H,K)× L(H,K)→ L(H), 〈S, T 〉 := S∗T, S, T ∈ L(H,K)

we obtain a correlated action {H,L(H,K), 〈·, ·〉} called the operator model.

Every correlated action can be embedded in a correlated action of the type

presented in the previous example as it results from the following proposition. Its

complete proof can be found for example in [13].

Proposition 5.3. Let {H, E, 〈·, ·〉} be a correlated action. Then there exist a

Hilbert space K and an algebraic embeding

E 3 x
ϕ
7−→ ϕ(x) ∈ L(H,K) with the properties:

(i) 〈x, y〉 = ϕ(x)∗ϕ(y), x, y ∈ E;

(ii) K = {ϕ(x)h | x ∈ E, h ∈ H}.

This decomposition is unique (up to a unitary equivalence).

If the map ϕ from Proposition 5.3 is surjective {H, E, 〈·, ·〉} is called a complete

correlated action.

In the following we shall use only complete correlated actions.

A discrete stationary process is a sequence {fn}n of elements of E with the

property that 〈fn, fm〉 depends only on the difference m − n and not on m or n

separately.

The stationary process {gn}n∈Z is called white noise if 〈gn, gm〉 = 0 for m 6= n.

The stationary process {fn}n contains the white noise {gn}n if:

(i) 〈fn, gm〉 depends only on the difference m−n and is equal to 0 for m > n;

(ii) ϕ(g0)H ⊂
0∨

k=−∞
ϕ(fk)H;

(iii) Re〈fn − gn, gn〉 ≥ 0.

The stationary process {fn}n is called deterministic if it contains no non-null

white noise. {fn}n is called a moving average for the white noise {gn}n if

(i) {fn}n contains {gn}n;

(ii)
∞∨

n=−∞
ϕ(fn)H =

∞∨
n=−∞

ϕ(gn)H.
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Remark 5.4. As we detailedly presented in [8], for every complete correlated

action {H, E, 〈·, ·〉} E is a self-dual Hilbert L(H)-module. Because an s-closed

submodule in a self-dual Hilbert C∗-module is also self-dual, it will be comple-

mentable (the complete proof can be found in [1]). Consequently, if E1 is an

L(H)-submodule in E we can consider the orthogonal projection associated to

E1
s

and denoted by PE1
s .

Proposition 5.5. Let {H, E, 〈·, ·〉} be a complete correlated action and E1 a

L(H)-submodule of E. Then

ϕ(PE1
sx) = PK1ϕ(x), x ∈ E,

where K1 =
∨
x∈E1

ϕ(x)H, and PK1 is the orthogonal projection in K associated

to its closed subspace K1.

Proof. Let x ∈ E. Then x ⊥ E1 if and only if 〈x, y〉 = 0, that is ϕ(x)∗ϕ(y) = 0,

for every y ∈ E1. Because {ϕ(z)h | z ∈ E1, h ∈ H} is dense in K1 we obtain that

ϕ(x)∗|K1 = 0, which is the same with ϕ(x)∗PK1 = [PK1ϕ(x)]∗ = 0. The conclusion

follows using that ϕ−1PK1ϕ is also an orthogonal projection as it is PE1
s . �

The next theorem is called the Wold decomposition theorem for discrete sta-

tionary processes.

Theorem 5.6. Let {fn}n∈Z be a discrete stationary process in the complete

correlated action {H, E, 〈·, ·〉}. There exists a unique decomposition of the form

fn = un + vn, n ∈ Z

where

(a) {un}n is a moving average of the maximal white noise contained in {fn};
(b) {vn}n is a deterministic process;

(c) 〈un, vm〉 = 0, for all m,n ∈ Z.

Proof. Consider Ef∞ and respectively Efn (n ∈ Z), the s-closed L(H)-submo-

dules generated by {fm}m∈Z and respectively {fm}m≤n. We build

Uf : Ef∞ → Ef∞, Uf (fn) = fn+1, n ∈ Z.

The relation〈
Uf
(∑
n

′fnTn
)
, Uf

(∑
m

′fmSm
)〉

=
∑
n,m

′T ∗n〈fn+1, fm+1〉Sm

=
∑
n,m

′T ∗n〈fn, fm〉Sm =
〈∑
n

′fnTn,
∑
m

′fmSm
〉
, Tn, Sm ∈ L(H)
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(the notation
∑′

represents finite sums) shows that Uf is well-defined and isomet-

ric. The surjectivity proves that Uf is a unitary operator.

Because Ef0 is invariant to U∗f we can define the isometry V = U∗f |E
f
0 which,

by Proposition 2.1, is adjointable. Using Corollary 4.3 V admits a Wold-type

decomposition

(5) Ef0 =
∞

+
n=0

V nL⊕
⋂
n≥0

V nEf0 , where L⊕ V Ef0 = Ef0 .

Write the decomposition (5) in an operator form

IEf0
= P +Q, P,Q projections.

Define, for every n ∈ Z,

un = Unf Pf0 and vn = Unf Qf0.

We shall prove in the following that {un}n and {vn}n verify the theorem conclu-

sion.

It is obvious that fn = un + vn, n ∈ Z and because

〈un, um〉 = 〈Unf Pf0, U
m
f Pf0〉 = 〈Un−mf Pf0, Pf0〉

{un}n is a discrete stationary process. Analogously it proves that {vn}n is also a

stationary process.

Furthermore, for m,n ∈ Z,

〈un, vm〉 = 〈Unf Pf0, U
m
f Qf0〉 = 〈Pf0, U

m−n
f Qf0〉 = 0

because (U∗f |E
f
0 )|
⋂
n≥0 V

nEf0 is unitary and so U∗f
(⋂

n≥0 V
nEf0

)
=
⋂
n≥0 V

nEf0 ,

that is Um−nf Qf0 ∈
⋂
n≥0 V

nEf0 . This proves (c).

Let us denote by gn = Unf PLf0, n ∈ Z. We shall prove that {gn}n is the

maximal white noise contained in {fn}n.

Because for example for m > n,

〈gn, gm〉 = 〈PLf0, U
m−n
f PLf0〉 = 〈V m−nPLf0, PLf0〉 = 0,

{gn}n is a white noise. Furthermore {gn}n is contained in {fn}n. Indeed (i) it

obtains by

〈fn, gm〉 = 〈Umf f0, U
n
f PLf0〉 = 〈V n−mf0, PLf0〉 = 0,

for n > m. For (ii) it is sufficient to observe that, for h ∈ H,

ϕ(g0)h = ϕ(PLf0)h = ϕ(f0)h− ϕ(PV Ef0
f0)h

= ϕ(f0)h− ϕ(PEf−1
f0)h = ϕ(f0)h− PKf−1

ϕ(f0)h ∈ Kf0 .
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We used here Proposition 5.5 and the notations Kfn =
∨
k≤n ϕ(fk)H, n ∈ Z. Since

Re〈fn − gn, gn〉 = Re〈Unf f0 − U
n
f PLf0, U

n
f PLf0〉

= Re〈f0 − PLf0, PLf0〉 = 0,

(iii) is also proved.

The maximality, the facts that {un}n is a moving average for {gn}n, {vn}n is a

deterministic process and the uniqueness of the Wold decomposition can be proved

in a way similar to the classic case. �
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