ON THE MULTIPLICITY OF $\left(X^{a}-Y^{b}, X^{c}-Y^{d}\right)$

E. BOĎA and D. ORSZÁGHOVÁ

Abstract

In this paper an explicite formula for the computation of the multiplicity of ideal $\left(X^{a}-Y^{b}, X^{c}-Y^{d}\right)$ is given.

Let $K[X, Y]$ be a polynomial ring over a field $K, A=K[X, Y]_{(X, Y)}$ be a local ring with the maximal ideal $M=(X, Y) \cdot A$. For an M-primary ideal Q in A we denote by $P(n):=\ell\left(A / Q^{n+1}\right)$ the Hilbert-Samuel function, where $\ell\left(A / Q^{n+1}\right)$ is the length of A-module A / Q^{n+1}. The function $P(n)$ is for $n \gg 0$ a polynomial in n of degree 2 which can be written as $P(n)=e_{0}(Q) \frac{n^{2}}{2}+e_{1}(Q) n+e_{2}(Q)$. The coefficient $e_{0}(Q)$ is called the multiplicity of Q. It is well-known, that $e_{0}(Q)$ is a positive integer (for more details see $[\mathbf{3}]$).

In this short note we give a formula for the computation of the multiplicity for certain class of M-primary ideals in A. It is a third article of the series beginning with $[\mathbf{1}],[\mathbf{2}]$. Our main result is the following theorem.

Theorem. Let $Q=\left(X^{a}-Y^{b}, X^{c}-Y^{d}\right) \cdot A$ be a M-primary ideal in $A=$ $K[X, Y]_{(X, Y)}$ (a, b, c, d are positive integers). Then

$$
e_{0}(Q)=\min \{a d, b c\}
$$

To prove the Theorem we need the following lemma.
Lemma. Let $Q=\left(X^{a}-Y^{b}, X^{c}-Y^{d}\right) \cdot A$ be a M-primary ideal in the local ring $A=K[X, Y]_{(X, Y)}$ (a, b, c, d are positive integers $)$.
(a) if $b \leq a$ and $c \leq d$ then $e_{0}(Q, A)=b c$.
(b) if $a \leq b$ and $d \leq c$ then $e_{0}(Q, A)=a d$.

Proof. See [4, Lemma 3.1].
Proof of the Theorem. On the ground of Lemma the only case to prove is $b<a$ and $d<c$. Let $b c=\min \{a d, b c\}$, t.m. $\frac{b}{d}<\frac{a}{c}$. Note, that the conditions of Theorem imply $a d \neq b c$. Let $\left[\frac{b}{d}\right]$ indicates the integer part of $\frac{b}{d}$.

[^0]Let now $k:=\left[\frac{b}{d}\right]<\left[\frac{a}{c}\right]$. Then we have

$$
k \leq \frac{b}{d}<k+1<\cdots<k+\rho \leq \frac{a}{c}<k+\rho+1, \quad \rho \in N, \quad \rho>0
$$

For $k c<a$ and $k d \leq b$, we can write

$$
\begin{aligned}
Q= & \left(X^{k c} \cdot X^{a-k c}-Y^{k d} \cdot Y^{b-k d}, X^{c}-Y^{d}\right) \\
= & \left(X^{k c} \cdot X^{a-k c}-X^{k c} \cdot Y^{b-k d}, X^{c}-Y^{d}\right) \\
& \text { because } X^{k c} \equiv Y^{k d}(\bmod Q) \\
= & \left(X^{k c} \cdot\left(X^{a-k c}-X^{b-k d}\right), X^{c}-Y^{d}\right)
\end{aligned}
$$

and therefore

$$
\begin{aligned}
e_{0}(Q) & =e_{0}\left(X^{k c}, X^{c}-Y^{d}\right)+e_{0}\left(X^{c}-Y^{d}, X^{a-k c}-Y^{b-k d}\right) \\
& =k c d+e_{0}\left(X^{c}-X^{a-k c} \cdot Y^{d-(b-k d)}, X^{a-k c}-Y^{b-k d}\right) \\
& =k c d+e_{0}\left(X^{c}, Y^{b-k d}\right)
\end{aligned}
$$

since $\left(X^{c} \cdot\left(1-X^{a-k c-c} \cdot Y^{d-(b-k d)}\right), X^{a-k c}-Y^{b-k d}\right)=\left(X^{c}, X^{a-k c}-Y^{b-k d}\right)=$ $\left(X^{c}, Y^{b-k d}\right)$ in A. So we have $e_{0}(Q)=k c d+c(b-k d)=b c$. This completes the proof if $\left[\frac{b}{d}\right]<\left[\frac{a}{c}\right]$.

Let now $k:=\left[\frac{b}{d}\right]=\left[\frac{a}{c}\right]$. Then we have

$$
k \leq \frac{b}{d}<\frac{a}{c}<k+1
$$

and from this follows

$$
\begin{array}{ll}
a=k c+p, & 0<p<c \\
b=k d+q, & 0 \leq q<d
\end{array}
$$

Then as above $e_{0}(Q)=e_{0}\left(X^{k c}\left(X^{a-k c}-Y^{b-k d}\right), X^{c}-Y^{d}\right)=e_{0}\left(X^{k c}, Y^{d}\right)=b c$ if $q=0$. Let $q \neq 0$. Then $e_{0}(Q)=k c d+e_{0}\left(Q_{1}\right)$, where $Q_{1}=\left(X^{p}-Y^{q}, X^{c}-Y^{d}\right)$. We denote the integer part of $\frac{c}{p}$ as k_{1}. From $k_{1}=\left[\frac{c}{p}\right]$ follows $k_{1} \leq \frac{c}{p}<\frac{d}{q}$ so there exist p_{1}, q_{1} such that

$$
\begin{array}{ll}
c=k_{1} p+p_{1}, & 0 \leq p_{1}<p \\
d=k_{1} q+q_{1}, & 0<q_{1}
\end{array}
$$

If $\left(k_{1}+1\right) \cdot q \leq d$, then

$$
\begin{aligned}
Q_{1} & =\left(X^{p}-Y^{q}, X^{c}-Y^{\left(k_{1}+1\right) q} \cdot Y^{d-\left(k_{1}+1\right) q}\right) \\
& =\left(X^{p}-Y^{q}, X^{c}\left(1-X^{\left(k_{1}+1\right) p-c} \cdot Y^{d-\left(k_{1}+1\right) q}\right)\right)
\end{aligned}
$$

while $X^{\left(k_{1}+1\right) p} \equiv Y^{\left(k_{1}+1\right) q}(\bmod Q)_{1}$

$$
=\left(X^{c}, X^{p}-Y^{q}\right) \text { in } A
$$

Then $e_{0}(Q)=k c d+c q=b c$.
Let now $\left(k_{1}+1\right) q>d$. Then we have

$$
\begin{array}{ll}
c=k_{1} p+p_{1}, & 0 \leq p_{1}<p \\
d=k_{1} q+q_{1}, & 0<q_{1}<q
\end{array}
$$

Then

$$
\begin{aligned}
Q_{1} & =\left(X^{p}-Y^{q}, X^{k_{1} p+p_{1}}-Y^{k_{1} q+q_{1}}\right) \\
& =\left(X^{p}-Y^{q}, X^{k_{1} p} \cdot X^{p_{1}}-Y^{k_{1} q} \cdot Y^{q_{1}}\right)
\end{aligned}
$$

because $X^{k_{1} p} \equiv Y^{k_{1} q}\left(\bmod Q_{1}\right)$

$$
=\left(X^{p}-Y^{q}, X^{k_{1} p}\left(X^{p_{1}}-Y^{q_{1}}\right)\right)
$$

and hence $e_{0}(Q)=k c d+e_{0}\left(X^{p}-Y^{q}, X^{k_{1} p}\right)+e_{0}\left(X^{p}-Y^{q}, X^{p_{1}}-Y^{q_{1}}\right)=k c d+$ $k_{1} p q+e_{0}\left(Q_{2}\right)$ with $Q_{2}=\left(X^{p}-Y^{q}, X^{p_{1}}-Y^{q_{1}}\right)$.

We continue our algorithm.
Let k_{2} denotes the integer part of $\frac{q}{q_{1}}$, i.e. $k_{2} q_{1} \leq q$, but $\left(k_{2}+1\right) q_{1}>q$. Then there are integers p_{2}, q_{2} such that

$$
\begin{array}{ll}
p=k_{2} p_{1}+p_{2}, & 0<p_{2} \\
q=k_{2} q_{1}+q_{2}, & 0 \leq q_{2}<q_{1} .
\end{array}
$$

If $\left(k_{2}+1\right) p_{1} \leq p$, then

$$
\begin{aligned}
Q_{2} & =\left(X^{\left(k_{2}+1\right) p_{1}} \cdot X^{p-\left(k_{2}+1\right) p_{1}}-Y^{q}, X^{p_{1}}-Y^{q_{1}}\right) \\
& =\left(Y^{\left(k_{2}+1\right) q_{1}} \cdot X^{p-\left(k_{2}+1\right) p_{1}}-Y^{q}, X^{p_{1}}-Y^{q_{1}}\right) \\
& =\left(Y^{q}\left(Y^{\left(k_{2}+1\right) q_{1}-q} \cdot X^{p-\left(k_{2}+1\right) p_{1}}-1\right), X^{p_{1}}-Y^{q_{1}}\right) \\
& =\left(X^{q}, X^{p_{1}}-Y^{q_{1}}\right) \text { in } A .
\end{aligned}
$$

Then $e_{0}(Q)=k c d+k_{1} p q+q p_{1}=b c$.
Let now $\left(k_{2}+1\right) p_{1}>p$. Then we have $p_{2}<p_{1}$,

$$
\begin{aligned}
Q_{2} & =\left(X^{k_{2} p_{1}} \cdot X^{p_{2}}-Y^{k_{2} q_{1}} \cdot Y^{q_{2}}, X^{p_{1}}-Y^{q_{1}}\right) \\
& =\left(X^{k_{2} p_{1}} \cdot\left(X^{p_{2}}-Y^{q_{2}}\right), X^{p_{1}}-Y^{q_{1}}\right)
\end{aligned}
$$

and within

$$
e_{0}(Q)=k c d+k_{1} p q+k_{2} p_{1} q_{1}+e_{0}\left(Q_{3}\right), \quad 0 \leq p_{2}<p_{1} .
$$

with $Q_{3}=\left(X^{p_{2}}-Y^{q_{2}}, X^{p_{1}}-Y^{q_{1}}\right)$.
There are two descending chains of nonnegatives integers

$$
\begin{gathered}
p>p_{1}>p_{2}>\ldots \\
q>q_{1}>q_{2}>\ldots
\end{gathered}
$$

which have to stop after n steps. Note that $p_{2 n} \neq 0$ and $q_{2 n-1} \neq 0$ for all n. Let $q_{2 n}=0$ is the first zero and for all $k<2 n q_{k} \neq 0, p_{k} \neq 0$. Then

$$
\begin{aligned}
e_{0}(Q) & =k c d+k_{1} p q+k_{2} p_{1} q_{1}+k_{3} p_{2} q_{2}+\cdots+k_{2 n} \cdot p_{2 n-1} \cdot q_{2 n-1} \\
& =k c d+q\left(c-p_{1}\right)+p_{1}\left(q-q_{2}\right)+q_{2}\left(p_{1}-p_{3}\right)+\cdots+p_{2 n-1} \cdot\left(q_{2 n-2}-q_{2 n}\right) \\
& =k c d+q c=k c d+c(b-k d)=b c
\end{aligned}
$$

Let consequently $p_{2 n-1}=0\left(p_{k} \neq 0, q_{k} \neq 0\right.$ for all $\left.k<2 n-1\right)$.
Then it holds

$$
\begin{aligned}
e_{0}(Q) & \left.=k c d+k_{1} p q+k_{2} p_{1} q_{1}+k_{3} p_{2} q_{2}+\cdots+k_{2 n-1} \cdot p_{2 n-2} q_{2 n-2}\right) \\
& =k c d+q\left(c-p_{1}\right)+p_{1}\left(q-q_{2}\right)+q_{2}\left(p_{1}-p_{3}\right)+\cdots+q_{2 n-2}\left(p_{2 n-3}-p_{2 n-1}\right) \\
& =k c d+c(b-k d)=b c
\end{aligned}
$$

which completes the proof for $b c$ as a minimum of $\{b c, a d\}$. The proof for the second case $(a d=\min \{a d, b c\})$ is the same as the first one.

References

1. Bod'a E. and Solčan Š., On the multiplicity of $\left(X_{1}^{m}, X_{2}^{m}, X_{1}^{k} Y_{2}^{1}\right)$, Acta Math. Univ. Comenianae LII-LIII (1987), 297-299.
2. Bod'a E., Országhová D. and Solčan Š., On the minimal reduction and multiplicity of $\left(X^{m}, Y^{n}, X^{k} Y^{l}, X^{r} Y^{s}\right)$, Acta Math. Univ. Comenianae LXII (1993), 191-195.
3. Matsumura H., Commutative ring theory, Cambridge Univ. Press, 1986.
4. Pritchard L. F., On the multiplicity of zeros of polynomials over arbitrary finite dimensional k-algebras, Manuscr. math. 36 (1985), 267-292.
E. Bod'a, Department of Geometry, Faculty of Mathematics and Physics, Comenius University, 84215 Bratislava, Slovakia
D. Országhová, Department of Mathematics, Faculty of Economics and Management, Slovak Agricultural University, 94901 Nitra, Slovakia

[^0]: Received November 27, 1997.
 1980 Mathematics Subject Classification (1991 Revision). Primary 13H15; Secondary 13A15.

