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FATTENING IN TWO DIMENSIONS OBTAINED WITH A

NONSYMMETRIC ANISOTROPY: NUMERICAL SIMULATIONS

M. PAOLINI

Abstract. In this paper we present a few numerical simulations of a nonsymmetric
anisotropic evolution by mean curvature which leads to the so-called fattening of
the interface. The numerical simulations are based on a diffused interface approxi-
mation via a bistable reaction-diffusion equation which is then discretized by means
of finite elements in space and forward differences in time. An adaptive strategy,

together with the use of a dynamic mesh, is used to take advantage of the local
behaviour of the equation at hand.

However, this particular choice of anisotropy, with a large ratio between the
maximal and minimal surface energy, seems to be highly critical for the type of
approximation presented here, leading to very expensive computations in terms of
CPU time.

1. Introduction

Evolution of surfaces by their local mean curvature has been extensively studied

by many authors ([3], [11], [15], [18], [21], [22], [23]).

The definition in terms of viscosity solutions of some degenerate parabolic equa-

tion, studied in [11], [15], [29], provides a generalization of the classical law which

allows to continue the evolution past singularities in a unique way. In this approach

the evolving surface is recovered as the zero level-set of an evolving function defined

over the whole space. However, a nasty kind of singularity can appear, consisting

in the so-called fattening of the interface, i.e. the zero level-set develops, just

after the singularization time, an interior. In such situation, other generalized

approaches, such as that proposed by Brakke in [9], lead to nonuniqueness of the

evolution. In practical terms, we are in an unstable situation: small perturbations

in the initial datum lead to completely different evolutions.

Determination of which initial data can lead to fattening is thus an important

issue, which has been investigated e.g. in [4], [5], [25]; numerical simulations of

fattening based on a diffused interface approximation can be found in [16].

It turns out that under pure mean curvature flow V = −κ, an initial regular,

compact, embedded curve in R2 can never develop fattening. The very interest-

ing example provided by Angenent, Chopp and Ilmanen in [4], show that in R3
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fattening of a nice initial surface is indeed (quite probably) possible, although the

construction is not at all simple.

It is possible, however, to construct examples of fattening even in two dimen-

sions if we generalize to some extent the pure law of motion V = −κ. For example,

by the addition of a forcing term we can construct a simple example consisting

of two evolving circles [6]. The effect of boundary conditions can also lead to

fattening in an example proposed by Giga and presented (numerical simulations)

in [16].

The purpose of this paper is to present some numerical simulation of anisotro-

pic motion by mean curvature which, for a particularly selected initial curve,

should lead to fattening. A theoretical proof of such behaviour is not yet published

(to our knowledge), although it should not be difficult by using the same compar-

ison arguments of [6]. For this example we chose a nonsymmetric anisotropy,

which has the effect of leading to an evolution law which is not invariant under

change of orientation of the surface; in this respect our example is very similar to

that presented in [6].

Anisotropic motion by mean curvature is introduced in [8] as

(1.1) v = −κφnφ,

where v denotes the velocity vector, κφ and nφ are the anisotropic counterparts of

the mean curvature κ and the unit normal ν respectively. Concerning anisotropic

motion by mean curvature we also refer to [2], [13], [17], [19], [20], [31], [32]. In

this paper we shall basically stick to the notations of [8], where motion by mean

curvature is derived starting from an anisotropic version of surface energy, with

density given by a given function φo(ν), ν being the unit normal vector to the

oriented surface. Anisotropic motion by mean curvature is then basically obtained

as a gradient flow for such surface energy.

Our numerical simulations are based on a preliminar approximation of the

sharp interface problem with a diffused interface version [1], where an ap-

proximation parameter ε > 0 appears, which plays the role of thickness of the

diffused interface. For pure motion by mean curvature one obtains the well known

Allen-Cahn equation

(1.2) ε2∂tuε − ε
2∆uε + ψ(uε) = 0

where ψ = 1
2Ψ′ is the derivative of a double well potential with equal depths, the

typical choice being Ψ(t) := (1− t2)2.

Convergence of the Allen-Cahn equation (1.2) to evolution by mean curvature

has been studied by many authors, see e.g. [10], [12], [14], [24], [26].

The anisotropic counterpart of (1.2) is introduced in [8] as

(1.3) ε2∂tuε − ε
2 divT o(∇uε) + ψ(uε) = 0
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where the nonlinear transformation T o is defined via

T o(ξ) := φo(ξ)∇ξφ
o(ξ)

and φo is extended to non-unit vectors by positive one-homogeneity. A discretized

version of (1.3) is discussed in [30], together with some numerical examples of

anisotropic evolution. Such approach is also followed here; we also make use of

the dynamic mesh method described in [28] with a density function for the

graded mesh which concentrates the degrees of freedom near the location where

the singularity will develop (which is known in advance).

This papers is organized as follows. In Section 2 we introduce the nonsymmetric

anisotropy of our example and some basic notation; in Section 3 we present our

fattening example; in Section 4 we show the results of a few numerical simulations,

and finally draw some conclusions in Section 5.

2. Anisotropy Definition and Notations

We stick to the notation of [8]. The Finsler metric is defined by

φo(x, ξ) = φo(ξ) := |ξ|ψ(θ), with ψ(θ) := 1−A sin θ

where 0 ≤ A < 1 is a given parameter, and θ is the argument of the vector ξ,

defined via ξ = |ξ|(cos θ, sin θ)t. This Finsler metric can also be written in a more

convenient way as

(2.1) φo(ξ) = |ξ| −Aξ2

where ξ2 is the second component of the vector ξ = (ξ1, ξ2)t.

It is useful to define the two monotone transformations So : R2 \ {0} → ∂Wφ

and T o : R2 → R2 (the latter is the duality operator mapping the Frank diagram

Fφ onto the Wulff shape Wφ)

So(ξ) :=∇ξφ
o(ξ) =

ξ

|ξ|
−Ae2

T o(ξ) :=φo(ξ)So(ξ),

where e2 is the second element of the canonical basis: e2 = (0, 1)t.

For any ξ ∈ R2 \ {0} we have |So(ξ) + Ae2| = 1, so that we conclude that Wφ

is a circle of radius 1 centered at (0,−A)t, i.e. Wφ = B1 −Ae2, where B1 denotes

the unit circle

(2.2) B1 = {x ∈ R2 : |x| < 1}.

On the contrary, Fφ = {ξ ∈ R2 : φo(ξ) < 1} is not a circle, see Figure 2.1.
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Figure 2.1. Frank diagram and Wulff shape for A = 0.5 and A = 0.75.

Once we know the shape of Wφ it is relatively easy to compute the Finsler

metric φ (dual of φo), which has to be positively homogeneous of degree 1. After

some computations we get

φ(ξ) =

√
|ξ|2 −A2ξ2

1 +Aξ2

1−A2
.

2.1. Consequences of the Nonsymmetry

The Finsler metric defined in (2.1) is clearly not symmetric. This has some

consequences in the definition of relative curvature and relative motion by mean

curvature. In particular, the evolution of an oriented surface Σ(t), viewed as the

boundary of its interior I(t), does not coincide with the evolution of the same

surface with the opposite orientation (the boundary of R2 \ I(0)).

For this reason, only oriented (with a specified interior) surfaces can be evolved.

In the level set approach it is no longer true that any initial datum having Σ as

zero level surface gives rise to the same evolution, rather, one has to restrict to

initial data having a given sign (e.g. positive) in the interior of the surface.

2.2. Relative Curvature and Evolution

In two dimensions, the relative curvature κφ associated to a generic anisotropy

can be computed as

κφ = κ(ψ + ψθθ)

so that for the particular choice (2.1) of the metric, the relative curvature actually

concides with the euclidean curvature, since ψ + ψθθ = 1. However, the evolution

is not the same as the classical mean curvature flow, since we now have a different

Cahn-Hoffmann vector nφ = T o(νφ), with νφ = ν
φo(ν) .

The fact that the relative curvature coincides with the euclidean curvature is

consistent with the fact that the Wulff shape, which in our case is just a translated

unit circle, always has relative curvature 1 (see [8]).
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Under relative motion by mean curvature, we know that the Wulff shape shrinks

selfsimilarly, with the law of motion

W (t) =
√

1− 2tWφ,

from that, using the translation invariance of the evolution, we can compute the

evolution of the circle Ie := ΛB1, where B1 is defined in (2.2) and Λ > 0, as

Ie(t) =
√

Λ2 − 2tB1 +A
[
Λ−

√
Λ2 − 2t

]
e2.

The circle drifts upwards while shrinking to the point AΛe2 at time t∗e = Λ2

2 .

We are now interested in determining the evolution of the complementary of a

circle of radius λ, i.e. Ii := R2 \ λB1, which is easily seen to satisfy

R2 \ Ii(t) =
√
λ2 − 2tB1 −A

[
λ−

√
λ2 − 2t

]
e2,

corresponding to a circle which drifts downward while shrinking to the point

−Aλe2 at time t∗i = λ2

2 .

3. Evolution of a Ring

Given the two values 0 < λ < Λ we consider the set I := ΛB1 \ λB1, and we

denote by I(t) the evolution of I by anisotropic mean curvature, in the sense of

the level-set approach [11], or in the sense of De Giorgi’s barriers [7].

It is clear that the two connected components Σe = Λ∂B1 and Σi = λ∂B1 of

∂I will evolve independently with the laws of motion obtained in Section 2.2, as

long as they do not intersect each other. Based on the ratio r = Λ
λ we face two

possible types of evolution:

1. If r is very large (thick ring), the internal circle will disappear before it

could touch the evolving outer circle; in this case we have no merging of

the two evolving circles and the exact evolution will be Ie(t) ∩ Ii(t) for

0 ≤ t ≤ t∗i ; Ie(t) for t∗i < t ≤ t∗e; the empty set for t > t∗e.

2. If r is sufficiently close to 1, then the two circles will touch at some point

before the smaller one vanishes. This is clear, since they are focusing

at two points which are quite far apart (independently of r). The exact

evolution is known only before the touching time tc(r), and is given by

Ie(t) ∩ Ii(t).

As a consequence, fattening is expected corresponding to some intermediate

value r∗ of r.

Let

ge(t) := (1 +A)
√

Λ2 − 2t−AΛ

gi(t) := (1−A)
√
λ2 − 2t+ Aλ



48 M. PAOLINI

To compute the critical value for r, we shall track the motion of the two points

Pe(t) := (0,−ge(t)) ∈ Σe(t) and Pi(t) := (0,−gi(t)) ∈ Σi(t). They are clearly the

points that minimize the distance between Σe(t) and Σi(t), and the distance itself

is simply given by ge(t)− gi(t). The critical value r∗ is then characterized by the

fact that the two parabulas given by the graphs of ge and gi are tangential to each

other. After a few computations (performed using MuPad) we finally get

r∗ =
4 +A

4−A
.

The critical time and the singularity position assume a particularly simple ex-

pression if we further impose Λ+λ = 2. For such choice we obtain tc = 3
32(4−A2)

and P (t) = (0,− 1
4 (2 + A2)).
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Figure 3.1. Evolution of the ring for A = 0.5 and r = r∗ (critical value),

∂I(t) ∩ {x1 = 0} versus time and critical time t = tc.

In Figure 3.1 we show the exact evolution of ∂Ie∩{x1 = 0} (external curve) and

∂Ii ∩ {x1 = 0} (internal curve) versus time corresponding to the choice A = 0.5,

λ = 1− A/4 = 0.875, Λ = 1 + A/4 = 1.125, i.e. λ + Λ = 2 and r = r∗. The two

evolutions touch at the critical time t = tc = 0.3515625 (vertical dashed line).
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4. Discretization and Numerical Simulations

4.1. Relaxation

The evolution equation (1.1) is first approximated by using a diffused interface

model similar to (1.3), more precisely we consider the following reaction-diffusion

equation

(4.1) εa∂tuε − ε div aT o(∇uε) +
1

aε
ψ(uε) 3 0

where a : R2 → R+ is a given density function which allows to reduce the interfa-

cial width near the location of the singularity. ψ here is the Frechet subdifferential

of the double-well potential defined via

Ψ(t) :=

{
1− t2 if |t| ≤ 1,

+∞ otherwise.

Convergence of such variant of the Allen-Cahn equation to motion by mean cur-

vature is studied in [27] in the case of isotropic mean curvature flow (T o is the

identity).

4.2. Discretization

Following [30] we then discretize (4.1) via piecewise linear finite elements in

space and forward differences in time. The finite element mesh is constructed

based on the same density function a(x) which is used in (4.1) in order to resolve

the singularity formation.

The dynamic mesh strategy described in [28] is then used to obtain the final

numerical code. As an example, in Figures 4.3 and 4.4 we present the dynamic

mesh at t = 0 and t = 0.35 for one of the simulations of our example.

The introduction of the anisotropy in the dynamic mesh strategy requires

however some attention. The initial datum for (4.1) should now be defined as

u0(x) := γ

(
dφ

εa

)
where γ is, as usual, a solution to the one-dimensional problem −γ′′ + ψ(γ) 3 0,

which for our choice of the bistable potential gives γ(t) = sin(t) for t ∈ (−π/2, π/2),

and dφ is the anisotropic counterpart of the usual signed distance function to the

initial front. For a spatially homogeneous anisotropy, which is the case here, the

anisotropic distance distφ(x, y) between two points x, y ∈ R2 is given by φ(x− y)

where φ is the dual norm to φo (see [8]). Now the signed distance dφ can be

defined as usual in terms of distφ.
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4.3. Numerical simulations

Our numerical simulations are performed with the choiceA = 0.5, λ+Λ = 2, and

λ is the only free parameter, which we let vary in the interval [0.86, 0.87] which

contains the discrete critical value (we recall that the theoretically computed

critical value for the continuous problem is λ∗ = 0.875). We also fix ε = 0.0629956

and h = 0.015. The density function a is of the form

a(x) = σ(|x− xc|)

where xc = (0, 0.5625) and σ(t) = min(1,max(0.1, 2
3 t)).

By enforcing the symmetry of the example, we solve the problem on the domain

Ω := (0, 3)× (−3, 3)

with a reflection condition along the x2 axis. The conditions on the other sides

are irrelevant since the front will never meet them.

We shall present here the results of just two numerical simulations, correspond-

ing to the (discrete) subcritical value λ = 0.86 and the (discrete) supercritical

value t = 0.87.

Figure 4.1. λ = 0.86, t = 0− 0.35 step 0.05.

The results of the simulation for λ = 0.86 are presented in Figures 4.1 and 4.2

where the position of the discrete interface (zero level-set of the discrete solution)

is shown at time intervals of 0.05. The small circle shrinks fast enough to avoid
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Figure 4.2. λ = 0.86, t = 0.35− 0.37 step 0.01.

Figure 4.3. λ = 0.86. Dynamic mesh at t = 0 and some t = 0.35.

Only the boundary triangles of the transition region are depicted.

touching the larger circle and vanishes at some time between 0.36 and 0.37. The

boundary elements of the dynamic mesh at times t = 0 and t = 0.25 is shown in

Figures 4.3 and 4.4.
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Figure 4.4. λ = 0.86. Zoom at t = 0.35.

The discrete interfaces obtained for the supercritical value λ = 0.87 is shown

in Figures 4.5 and 4.6. The two circles touch each other at some time between

0.3 and 0.31. After that time the topology changes into a simply connected shape

which slowly approaches the shape of a shrinking circle.

5. Conclusions

Each of the simulations presented here did require an incredibly long CPU

time (of the order of some days of computation on a Pentium pro 200 processor).

The reason for such long computation times is related to the the thickness of

the transition region for the diffused interface model. By performing a simple

asymptotic expansion for the parabolic equation (4.1) one realizes that the shape

of the solution across the interface is approximately given by

u(x, t) := γ

(
dφ(x, t)

εa

)
.

It is apparent that, for a constant density a, the thickness will be uniform in terms

of the anisotropic distance dφ and correspondingly highly nonuniform in terms

of the euclidean distance: for A = 0.5 the ratio will be 3 between the thickness

corresponding to the normal (0, 1) and to the normal (0,−1). This effect is clear

in Figure 4.3 by looking at the top part of the two transition regions (where a is

constant equal to 1).
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Figure 4.5. λ = 0.87, t = 0.26, 0.28, 0.3, and t = 0.3, 0.31, 0.32.

Figure 4.6. λ = 0.87, t = 0.34− 0.40 step 0.02.

As a consequence the number of triangles across the interface varies of a factor

of 3, which forces the choice of a very small mesh size to have enough triangles

where the transition region is thin.
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We could try to control the mesh size based on the orientation of the interface

in order to keep a constant number of triangles across the interface, or we could

change the density function a according to the orientation in order to balance

the variations in dφ so as to keep the transition width constant. As a result we

shall run into problems whenever the transition regions of interfaces with opposite

orientation intersect each other, which is quite possible and actually happens in

our simulations for supercritical values of λ. In such a situation we shall either

have triangles of very different size coming into contact, or, even worse, create a

jump in space in the density function a.

For such reasons the use of the diffused interface model for this kind of non-

symmetric anisotropy needs to be further investigated in order to become effective.
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