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THE FINITE VOLUME METHOD FOR

AN ELLIPTIC–PARABOLIC EQUATION

R. EYMARD, M. GUTNIC and D. HILHORST

Abstract. In this note we prove the convergence of a finite volume scheme for
the discretization of an elliptic-parabolic problem, namely the nonlinear diffusion
equation c(u)t −∆u = 0, together with Dirichlet boundary conditions and an ini-
tial condition. This is done by means of a priori estimates in L2 and the use of
Kolmogorov’s theorem on relative compactness of subsets of L2.

1. Introduction

In this note we prove the convergence of an implicit finite volume scheme for the

numerical solution of the initial value problem for the elliptic-parabolic equation

(1) c(u)t −∆u = 0 in QT = Ω× (0, T ),

where Ω is a bounded connected open subset of RN with smooth boundary and T

a positive constant, together with the Dirichlet boundary condition

(2) u = uD on ∂Ω× (0, T ),

and the initial condition

(3) c(u(x, 0)) = c(u0(x)) for all x ∈ Ω.

We denote by (P ) the problem given by the equation (1), the boundary condi-

tion (2) and the initial condition (3). We assume that the function c satisfies the

hypothesis

(Hc) c is a continuous nondecreasing function such that c′ ∈ L1
loc(R);

and that the initial condition u0 and the boundary data uD satisfy the hypotheses

(H0) u0 ∈ L∞(Ω) and we define U0 := ‖u0‖L∞(Ω);

(HD) uD is Lipschitz continuous on Ω with Lipschitz constant LD.
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Equation (1) changes type in Ω × R+: it is elliptic in regions where c(u) is

constant and parabolic elsewhere. Since we do not expect the solution to be

smooth, we define a weak solution of Problem (P ) as follows.

Definition 1.1. A function u is a weak solution of Problem (P ) if

(4)



(i) u− uD ∈ L2(0, T ;H1
0(Ω));

(ii) c(u) ∈ L∞(QT );

(iii) u satisfies the integral identity∫ T

0

∫
Ω

{(
c(u(x, t))− c(u0(x))

)
ψt(x, t)−∇u(x, t)∇ψ(x, t)

}
dxdt = 0,

for all ψ ∈ L2(0, T ;H1
0 (Ω)) such that ψt ∈ L∞(QT ) and ψ(., T ) = 0.

It follows from Otto [Ott96] that (P ) has at most one weak solution.

Elliptic-parabolic equations have been studied a lot from the theoretical point

of view. We refer in particular to the articles by van Duijn and Peletier [VDP82],

Hulshof [Hul86], Hulshof and Wolanski [HW88], Alt and Luckhaus [AL83] and

Otto [Ott96]. They prove the existence and the uniqueness of the solution of

boundary value problems for class of equations including (1), as well as regularity

properties of the interface between saturated and unsaturated regions.

For numerical studies we refer to Hornung [Hor78] for the discretization of

the Richards equation by the finite difference method and to Knabner [Kna87]

for its discretization by means of the finite element method. Kelanemer [Kel94]

and Chounet, Hilhorst, Jouron, Kelanemer and Nicolas [CHJKN97] implement a

mixed finite element method and Knabner et al [Knaal97] apply a slighty different

finite volume scheme than the one presented here.

The purpose of this paper is to prove the convergence of a time implicit finite

volume scheme for the discretization of Problem (P ).

Finite volume schemes have first been developed by engineers in order to study

complex coupled physical phenomena where the conservation of extensive quanti-

ties (such as masses, energy, impulsion, . . . ) must be carefully respected by the

approximate solution. Another advantage of such schemes is that a large variety

of meshes can be used. The basic idea is the following : one integrates the par-

tial differential equation in each control volume and then approximates the fluxes

across the volume boundaries.

Equation (1) is a simplified form of the Richards equation which is very basic

in environmental sciences for computing the liquid pressure in aquifers and the

velocity of groundwater flow. The finite volume method is one of the most popular

method among the engineers performing computations in hydrology. Therefore it

is of crucial importance to be able to present convergence proofs for precisely this

method.
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In Section 2, we introduce the finite volume scheme and define the approximate

Problems (Ph,k). Then we prove the existence and uniqueness of the solution uh,k
of Problem (Ph,k).

In Section 3, we derive a priori estimates. First we obtain an L∞(QT )-bound for

c(uh,k) and present an estimate on uh,k in a discrete norm corresponding to a norm

in L2(0, T ; H1(Ω)). This yields an estimate on differences of space translates of

uh,k. Next we introduce the auxiliary function W (s) =

∫ s

0

min(c′(z), 1) dz which

we also rewrite as W (s) = F(c(s)), where F is strictly increasing and continuous.

We estimate differences of space and time translates of W (uh,k), which imply that

the sequence {W (uh,k)} is relatively compact in L2(QT ). A basic ingredient that

we use to obtain these estimates is a discrete form of the Poincaré’s inequality.

From these estimates, we deduce in Section 4 the existence of a subsequence

of {uh,k} which converges to a function u ∈ L2(0, T ;H1(Ω)) weakly in L2(QT )

and such that {c(uh,k)} converges to a function χ strongly in L2(QT ). Finally, we

prove that χ = c(u) and that u is the unique weak solution of Problem (P ).

For other articles about the convergence of the finite volume method for elliptic

or parabolic equations, we refer to Baughman and Walkington [BW93], Herbin

[Her95] and Eymard, Gallouët, Hilhorst and Näıt Slimane [EGHNS96].

For the complete proofs of the results which we present here, we refer to [Gut98]

and to [EGHb] where we consider the complete Richards equation which also

involves a convection term. There we will suppose the Lipschitz continuity of the

function c.

Acknowledgement. The authors are greatly indebted to Professor J. Kačur

for his very constructive remarks about the regularity of the nonlinear function c.

2. The Finite Volume Scheme

In this section, we construct approximate solutions of Problem (P ). To that

purpose, we introduce a time implicit discretization and a finite volume scheme

for the discretization in space. Let T be a mesh of Ω. The elements of T will

be called control volumes in what follows. For any (p, q) ∈ T 2 with p 6= q, we

denote by epq = p∩q their common interface; it is included in a hyperplane of RN ,

which does not intersect p nor q. Then m(epq) denotes the measure of epq for

the Lebesgue measure of the hyperplane, and ~npq denotes the unit vector normal

to epq, oriented from p to q. The set of boundary control volumes is denoted by

∂T =
{
p ∈ T ,meas(∂p ∩ ∂Ω) 6= 0

}
and for all p ∈ ∂T , we denote by ep the

intersection of the boundary of p and the boundary of Ω, i.e. ep = ∂p ∩ ∂Ω.

We denote by E the set of pairs of adjacent control volumes together with the

set of pairs (p, ep) for all p ∈ ∂T , that is E = {(p, q) ∈ T 2, p 6= q,m(epq) 6=
0} ∪ {(p, ep), p ∈ ∂T }.
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For all p ∈ T \ ∂T , N(p) = {q ∈ T , (p, q) ∈ E} denotes the set of neighbors of

p and for all p ∈ ∂T , N(p) = {q ∈ T , (p, q) ∈ E} ∪ {∂p ∩ ∂Ω} denotes the set of

neighbors of p including the common boundary of p and Ω.

Furthermore, for all p ∈ T , we denote by m(p) the measure of p in RN .

We use the notation

(5) h = max
p∈T

δ(p)

where δ(p) denotes the diameter of p, and suppose that there exists a family of

points xp ∈ Ω such that

(HT )

xp ∈ p for all p ∈ T ,

xq − xp
|xq − xp|

= ~npq for all (p, q) ∈ T 2.

We denote by dpq = |xq − xq| and define the transmissivity by Tpq =
m(epq)
dpq

.

If p ∈ ∂T and q = ep, we define

(6) Tpq = Tp,ep =
m(ep)

dp,ep
,

where dp,ep =
∣∣xep − xp∣∣ and xep is a point of ep. We remark that Hypothesis

(HT ) means that epq and the segment [xp, xq] are orthogonal.

The time implicit finite volume scheme is defined by the following equations in

which k > 0 denotes the time step.

(i) The initial condition for the scheme is given by

(7) u0
p =

1

m(p)

∫
p

u0(x) dx,

for all p ∈ T ;

(ii) The discrete equation

(8) m(p)
c(un+1

p )− c(unp )

k
−

∑
q∈N(p)

Tpq (un+1
q − un+1

p ) = 0,

for all p ∈ T , n ∈ {0, . . . , [T/k]}. The discrete Dirichlet condition is defined in

the following way. For all p ∈ ∂T and for q = ep = ∂p ∩ ∂Ω, we set

(9) un+1
ep = uDep = uD(xep),

where xep is a point of ep.
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We remark that one cannot use an explicit finite volume scheme to solve the

Richards equation since c can be constant on an interval of R+ so it has no

inverse function.

This numerical scheme (7) and (8) allows to build an approximate solution,

uh,k : Ω× R+ 7→ R given for all p ∈ T and all n ∈ {0, . . . , [T/k]} by

(10) uh,k(x, t) = un+1
p , for all x ∈ p, for all t ∈ (nk, (n+ 1)k].

Since we have to deal with the inhomogeneous Dirichlet boundary condition

u = uD on ∂Ω× (0, T ], we are led to consider the new unknown function

(11) vh,k = uh,k − u
D
h ,

where

(12) uDh (x) =

{
uDp := uD(xp) if x ∈ p,

uDep := uD(xep) if x ∈ ep.

Therefore

(13) vh,k(x) =

{
vnp = unp − u

D
p if x ∈ p,

vnep = 0 if x ∈ ep.

With these notations (8) can be rewritten as

(14) m(p)
c(un+1

p )− c(unp )

k
−
∑

q∈N(p)

Tpq (vn+1
q − vn+1

p )−
∑

q∈N(p)

Tpq (uDq −u
D
p ) = 0,

for all p ∈ T and n ∈ {0, . . . , [T/k]}. Next we state some estimates which uDh
satisfies.

Lemma 2.1. The function uDh satisfies the L2-estimate

(15)
∥∥uDh ∥∥L2(Ω)

=
∑
p∈T

m(p) (uDp )2 ≤ m(Ω)
∥∥uD∥∥2

C(Ω)
,

as well as the “discrete H1-estimate”

(16)
∑

(p,q)∈E

Tpq (uDq − u
D
p )2 ≤ Cm(Ω).

The discrete problem (Ph,k) is given by initial condition (7), boundary condition

(9) or (13) and either the discrete equation (8) or the discrete equation (14).
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Theorem 2.2. Suppose that the hypotheses (Hc), (H0), (HD) and (HT ) are

satisfied. There exists a unique solution of the discrete problem (Ph,k).

Proof. In order to prove the uniqueness of the solution of Problem (Ph,k), we

write the equations for two solutions {un+1
1p }, {u

n+1
2p }, p ∈ T , n ∈ {0, . . . , [T/k]},

multiply the difference of the equations for un+1
1p and un+1

2p by k (un+1
1p −u

n+1
2p ) and

sum on p ∈ T .

Next we prove the existence of the solution of Problem (Ph,k). To that end, we

consider a sequence of smooth nondecreasing functions cε such that cε converges

to c uniformly on R as ε ↓ 0 and we denote by Lε the Lipschitz constant of cε. To

begin with we prove the existence of a unique solution of the problem

(17) m(p)
cε(u

ε
p)− c(u

n
p )

k
−

∑
q∈N(p)

Tpq (uεq − u
ε
p) = 0.

We denote by P the number of elements of T . A vector U = (up)p∈T being

given, we define Ũ = (ũp)p∈T as the solution of the linear system

(18) m(p)
cε(up) + Lε(ũp − up)− c(unp )

k
−

∑
q∈N(p)

Tpq (ũq − ũp) = 0.

Note that the matrix involved in the resolution of system (18) is strictly diagonal

dominant so that it has a unique solution.

In order to prove the existence of uεp for all p ∈ T , we define the operator

(19)
T : RP −→ RP

U = (up)p∈T 7−→ Ũ = (ũp)p∈T ,

and the norm

(20) ‖U‖l2 =
(∑
p∈T

m(p)u2
p

)1/2

,

on RP . Next we show that the operator T is a strict contraction from (RP , ‖ ‖l2)

into (RP , ‖ ‖l2). Let U1 = (u1p)p∈T and U2 = (u1p)p∈T be two vectors of RP and

let Ũ1 = TU1 and Ũ2 = TU2. We set

(21)
w̃p = ũ1p − ũ2p,

wp = u1p − u2p,

for all p ∈ T . We subtract equation (18) for U2 from equation (18) for U1 to obtain

(22) m(p)
Lε

k

(
w̃p − wp +

cε(u1p)− cε(u2p)

Lε

)
−

∑
q∈N(p)

Tpq

(
w̃q − w̃p

)
= 0.
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for all p ∈ T . Next we multiply (22) by w̃p and sum the result over p ∈ T . This

yields

(23)

Lε
k

∑
p∈T

m(p) (w̃p)
2−
∑
p∈T

∑
q∈N(p)

Tpq (w̃q − w̃p) w̃p

= Lε
k

∑
p∈T

m(p)wp w̃p
(

1−
1

Lε
Cp
)
,

where

(24) Cp =
cε(u1p)− cε(u2p)

wp
=
cε(u1p)− cε(u2p)

u1p − u2p
.

for all p ∈ T . By the choice of cε, we have that

(25) 0 ≤
1

Lε
Cp ≤ 1.

for all p ∈ T . Also using the discrete Poincaré inequality (cf. [EGHa]) we deduce

from (23) that

(26)

∑
p∈T

m(p) (w̃p)
2

1/2

≤ C

∑
p∈T

m(p) (wp)

1/2

,

where

(27) C =

Lε
k

Lε
k

+ 1
δ2(Ω)

< 1,

and δ(Ω) is the diameter of domain Ω. We substitute (20) and (21) into (26) to

obtain

(28)
∥∥∥Ũ1 − Ũ2

∥∥∥
l2
≤ C ‖U1 − U2‖l2 .

Therefore T is a strict contraction from (RP , ‖ ‖l2) into (RP , ‖ ‖l2) and has a

unique fixed point Uε which satisfies

(29) m(p)
cε(u

ε
p)− c(u

n
p )

k
−

∑
q∈N(p)

Tpq

(
uεq − u

ε
p

)
= 0.

for all p ∈ T . Finally we let ε ↓ 0 and suppose that

(30) −M ≤ c(unp ) ≤M.
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for all p ∈ T . We show that

(31) −M ≤ cε(u
ε
p) ≤M,

and in turn that

(32)
∣∣uεp∣∣ ≤ C = C(h),

for all p ∈ T . Therefore there exists un+1
p and a subsequence uεnp such that

(33) uεnp −→ un+1
p as ε ↓ 0,

where un+1
p satisfies (8). �

The mathematical problem is to study the convergence of {uh,k} to the weak

solution of Problem (P ) as h and k tend to zero.

3. A Priori Estimates

In this section we show that c(uh,k) satisfies a discrete maximum principle and

present an estimate for uh,k in a discrete space analogous to L2(0, T ;H1(Ω)). For

the proofs of these statements we refer to [EGHb] and to [Gut98].

Lemma 3.1. Let uh,k be the solution of Problem (Ph,k), suppose that u0

and uD satisfy hypotheses (Hc), (H0) and (HD) and let M = max
(
‖c(u0)‖L∞(Ω) ,∥∥c(uD)

∥∥
L∞(∂Ω)

)
. Then for all p ∈ T and 0 ≤ n ≤ [T/k], we have that

(34) −M ≤ c(uh,k(x, t)) ≤M for all x ∈ p, t ∈ (nk, (n+ 1)k].

Lemma 3.2. Suppose that the hypotheses (Hc), (H0), (HD) and (HT ) are

satisfied. There exists a positive constant C such that

(35)

[T/k]∑
n=0

k
∑

(p,q)∈E

Tpq

(
vn+1
q − vn+1

p

)2

≤ C.

One can then apply the discrete Poincaré inequality [EGHa] to deduce the

following result.

Lemma 3.3. Suppose that the hypotheses (Hc), (H0), (HD) and (HT ) are

satisfied. There exists a positive constant C such that

(36) ‖vh,k‖L2(QT ) ≤ C,

and

(37) ‖uh,k‖L2(QT ) ≤ C.

Next we present an estimate on differences of space translates of the approxi-

mate solution. We introduce the function W (s) =

∫ s

0

min(c′(z), 1) dz and derive

estimates on differences of space and time translates of the function W (uh,k) which

imply that the sequence {W (uh,k)} is relatively compact in L2(QT ).
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Lemma 3.4. Suppose that the hypotheses (Hc), (H0), (HD) and (HT ) are

satisfied. There exists a positive constant C such that

(38)

∫
Ωξ×(0,T )

(
uh,k(x+ ξ, t)− uh,k(x, t)

)2

dxdt ≤ |ξ| (|ξ|+ 2h)C,

and

(39)

∫
Ωξ×(0,T )

(
vh,k(x+ ξ, t)− vh,k(x, t)

)2

dxdt ≤ |ξ| (|ξ|+ 2h)C,

for all ξ ∈ RN , where Ωξ = {x ∈ Ω, [x, x+ ξ] ⊂ Ω}.

Next we define the function (cf. [JK95])

(40) W (s) =

∫ s

0

min(c′(z), 1) dz.

In view of Hypothesis (Hc), W is well defined on R and satisfies the following

properties.

Lemma 3.5. Suppose that Hypotheses (Hc) is satisfied. The function W is

nondecreasing and satisfies the inequality

(41) |W (s1)−W (s2)| ≤ min
(
|s1 − s2| , |c(s1)− c(s2)|

)
.

Moreover, there exists a strictly increasing continuous function F such that

(42) W (s) = F(c(s)).

Proof. Let s1 ≤ s2. We have that

(43) W (s2)−W (s1) =

∫ s2

s1

min(c′(z), 1) dz.

In view of Hypotheses (Hc), min(c′(z), 1) ≥ 0. Hence we deduce that

(44) W (s2)−W (s1) ≥ 0,

so that W is nondecreasing. Next we consider |W (s2)−W (s1)| for all s1, s2 ∈ R
and suppose that s1 ≤ s2. Then

(45) |W (s2)−W (s1)| =

∫ s2

s1

min(c′(z), 1) dz.
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On the one hand (45) implies that

(46) |W (s2)−W (s1)| ≤

∫ s2

s1

c′(z) dz = c(s2)− c(s1),

and on the other hand it also implies that

(47) |W (s2)−W (s1)| ≤

∫ s2

s1

dz = s2 − s1.

Following the same argument in the case s2 ≤ s1, we deduce (41). Finally let

s1, s2 ∈ R be such that

(48) c(s1) < c(s2).

Since c is nondecreasing, we have that s1 < s2 so that meas(s1, s2) > 0. We

define the set Es by

(49) Es =
{
z ∈ (s1, s2), c′(z) > 0

}
.

Since c ∈ L1
loc, we have that

(50) c(s2)− c(s1) =

∫ s2

s1

c′(z) dz.

Then if meas(Es) = 0, we deduce that

(51)

∫ s2

s1

c′(z) dz = 0,

and hence c(s1) = c(s2) which contradicts (48). Therefore meas(Es) > 0 and

(52) W (s2)−W (s1) =

∫ s2

s1

min(c′(z), 1) dz > 0.

Hence we have proved that c(s1) < c(s2) implies that W (s1) < W (s2) so that

there exists a strictly increasing function F satisfying (42). Moreover (41) yields

(53) |F(c(s1))−F(c(s2))| ≤ |c(s1)− c(s2)| ,

so that F is Lipschitz continuous. �

We deduce the next result from the Lemmas 3.4 and 3.5.



THE FINITE VOLUME METHOD 191

Corollary 3.6. Suppose that the hypotheses (Hc), (H0), (HD) and (HT ) are

satisfied. We have with the same constant C as in Lemma 3.4 that

(54)

∫
Ωξ×(0,T )

(
W (uh,k)(x+ ξ, t)−W (uh,k)(x, t)

)2

dxdt ≤ |ξ| (|ξ|+ 2h)C,

for all ξ ∈ RN , where Ωξ = {x ∈ Ω, [x+ ξ, x] ⊂ Ω}.

We now consider differences of time translates of the function W (uh,k).

Lemma 3.7. Suppose that the hypotheses (Hc), (H0), (HD) and (HT ) are

satisfied. There exists a positive constant C such that

(55)

∫
Ω×(0,T−τ)

(
W (uh,k)(x, t+ τ)−W (uh,k)(x, t)

)2

dxdt ≤ τ C,

for all τ ∈ (0, T ).

Proof. Let τ ∈ (0, T ) and t ∈ (0, T − τ). We set

(56) A(t) =

∫
Ω

(
W (uh,k)(x, t+ τ) −W (uh,k)(x, t)

)2

dxdt.

Substituting (10) yields

(57) A(t) =
∑
p∈T

m(p)
(
W (u[(t+τ)/k]+1

p )−W (u[t/k]+1
p )

)2

.

In view of (41) and since c is nondecreasing we deduce that

(58) A(t) ≤
∑
p∈T

m(p)
(
u[(t+τ)/k]+1
p − u[t/k]+1

p

)(
c(u[(t+τ)/k]+1

p )− c(u[t/k]+1
p )

)
,

which implies that

(59) A(t) ≤
∑
p∈T

(
u[(t+τ)/k]+1
p − u[t/k]+1

p

) ∑
n∈N,

t<nk≤t+τ

m(p)
(
c(un+1

p )− c(unp )
)
.

The proof of Lemma 3.7 then follows as in [EGHb] and [Gut98]. �

4. Convergence

In this section we prove the convergence of the approximate solution to the

weak solution of Problem (P ). To begin with we state a convergence result which

will be useful in what follows.
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Lemma 4.1. Let {um} be such that um converges to u weakly in L2(QT ) and

{W (um)} converges to a limit χ strongly in L2(QT ) and a.e. in QT . Then

(60) χ = W (u) a.e. in QT .

Proof. The proof is similar to that of Alt et Luckhaus [AL83]. �

We are now in a position to present our main result.

Theorem 4.2. Let T be a fixed positive constant and suppose that the hy-

potheses (Hc), (H0), (HD) and (HT ) are satisfied. Then

(i) uh,k converges to u weakly in L2(QT );

(ii) c(uh,k) converges to c(u) strongly in L2(QT ),

as h and k tend to zero, where u is the unique weak solution of Problem (P ).

Proof. Using the estimates (54), (55) and Kolmogorov’s theorem (see Brezis

[Bre83, Theorem IV.25, p. 72]), we deduce that {W (uh,k)} is relatively compact

in L2(QT ). Then in view of the lemmas 3.3, 3.6, 3.7 and 4.1 we deduce the

existence of a subsequence {uhm,km} of {uh,k} and of a function u ∈ L2(QT ) such

that

(61)

{
(i) uhm,km converges to u weakly in L2(QT ),

(ii) W (uhm,km) converges to W (u) strongly in L2(QT ) and a.e. in QT ,

as hm and km tend to zero. In view of the definition of F in Lemma 3.5 we deduce

from (61(ii)) that

(62) F(c(uhm,km)) converges to F(c(u)) a.e. in QT .

Since F is continuous and strictly increasing on [−M,M ], we deduce that F is

inversible with a continuous inverse. Therefore

(63) c(uhm,km) converges to c(u) a.e. in QT ,

and hence

(64) c(uhm,km) converges to c(u) strongly in L2(QT ).

We then show that u satisfies the integral equality

(65)
−

∫
Ω

c(u0(x))ψ(x, 0) dxdt −

∫ T

0

∫
Ω

c(u(x, t))ψt(x, t) dxdt

−

∫ T

0

∫
Ω

u(x, t) ∆ψ(x, t) dxdt = 0,
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for all ψ ∈ F̃ :=
{
f ∈ C2,1(Ω × [0, T ]), f =

∂f
∂n

= 0 on ∂Ω × [0, T ], f = 0

on Ω×{T}
}

. By the definitions of vh,k and uDh and in view of the Lemmas 2.1 and

we deduce that the sequence {vhm,km} converges to v = u−uD weakly in L2(QT ).

Next we show that v ∈ L2(0, T ;H1
0 (Ω)) and thus that u ∈ L2(0, T ;H1(Ω)). We

define ṽh,k by

(66)
ṽh,k = vh,k a.e. in Ω× [0, T ],

ṽh,k = 0 a.e. in (RN \Ω)× [0, T ].

Therefore {ṽhm,km} converges to ṽ with

(67)
ṽ = v a.e. in Ω× [0, T ],

ṽ = 0 a.e. in (RN \ Ω)× [0, T ].

Then for all ξ ∈ RN , ξ 6= 0 we have in view of Lemma 3.4 that

(68)

∫ T

0

∫
RN

|ṽh,k(x+ ξ, t)− ṽh,k(x, t)|2

|ξ|2
dxdt ≤

|ξ|+ 2h

|ξ|
C,

which in turn implies a similar inequality for the function ṽ. In particular

(69)

∫ T

0

∫
RN

ṽ(x+ ξ, t)− ṽ(x, t)

|ξ|
ϕ(x, t) dxdt

≤

(∫ T

0

∫
RN

|ṽ(x+ ξ, t)− ṽ(x, t)|2

|ξ|2
dxdt

)1/2(∫ T

0

∫
RN

ϕ2(x, t)

)1/2

≤ C ‖ϕ‖L2(RN×(0,T )) ,

which implies that

(70)
∂ṽ

∂xi
∈ L2(RN × (0, T )).

Therefore ṽ ∈ L2(0, T ;H1(RN )). Since also ṽ = 0 a.e. in RN \ Ω, v ∈
L2(0, T ;H1

0 (Ω)) and thus u ∈ L2(0, T ;H1(Ω)) satisfies

(71) u = uD on ∂Ω× (0, T ).

Integrating by parts the integral equation (65), we deduce that u satisfies

(72)

∫ T

0

∫
Ω

{(
c(u(x, t))− c(u0(x))

)
ψt(x, t)−∇u(x, t)∇ψ(x, t)

}
dxdt = 0,

for all ψ ∈ F̃ . Also using the density of F̃ in the set {ψ ∈ L2(0, T ;H1
0(Ω)),

ψt ∈ L∞(QT ), ψ(·, T ) = 0}, we finally deduce that u cöıncides with the unique

weak solution of Problem (P ); in particular the whole sequence {uh,k} converges

to u. �
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haüser, Basel-Boston, 1978, pp. 214–232.

[Hul86] Hulshof J., Elliptic-parabolic problems: the interface, PhD thesis, RijksUniversiteit
of Leiden, 1986.

[HW88] Hulshof J. and Wolanski N., Monotone flows in N-dimensional partially satu-
rated porous media : Lipschitz-continuity of the interface, Arch. Rat. Mech. Anal.
102(4) (1988), 287–305.
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