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SIMULATION OF INSTATIONARY, INCOMPRESSIBLE FLOWS

E. BÄNSCH

Abstract. In this article a numerical method for the efficient simulation of in-
stationary, viscous, incompressible flows in 2d and 3d is described. The time-
discretization is based on the fractional step θ-scheme in a variant as an operator
splitting, which was introduced in [3].

1. Introduction

Consider the instationary Navier-Stokes equations in a bounded domain Ω ⊆
Rd, d = 2 or d = 3, with, say, Dirichlet boundary data uD fulfilling

∫
∂Ω uD · ν = 0.

That is we are looking for a pair (u, p) fulfilling

(1.1)

∂tu + u · ∇u −
1

Re
∆u + ∇p = f in R+ × Ω,

divu = 0 in R+ × Ω,

u = uD on R+ × ∂Ω,

u(0, ·) = u0 in Ω.

where

u : R+ × Ω −→ Rd is the (dimensionless) flow velocity,

p : R+ × Ω −→ R is the (dimensionless) pressure,

Re =
UL

ν
is the Reynolds number,

with L a length scale, U a typical velocity and the kinematic viscosity ν.

For Reynolds numbers above a certain critical value (1.1) may be viewed as a

complex dynamical system. A typical behavior of the solution to (1.1) with respect

to the Reynolds number Re is the following, see for instance [10], [13]. Consider

a situation which is stationary and virtually 2d with respect to the geometry and

data, e.g. the situation depicted in Figure 1.

Received January 14, 1998.
1980 Mathematics Subject Classification (1991 Revision). Primary 35Q30, 65M60, 76D05.
Key words and phrases. Navier–Stokes equations, CFD, viscous incompressible flow, numer-

ical solution, finite element method.



102 E. BÄNSCH

Figure 1. Model geometry, 2d clip into the 3d geometry.

Then usually for low Reynolds numbers, i.e. very viscous, laminar flows, one

gets a 2d stationary solution. Increasing Re causes instability of the 2d solution

and one gets a 3d solution. Further increase of Re results in a 3d time-dependent

flow, the well known von-Karman vortex shedding, typically with a more complex

temporal spectral distribution for higher Re. From a certain even higher value of

Re one would expect turbulence, see Figure 2. This behavior is quite typical and

may be expected in various other examples, see [7].
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Figure 2. Behavior of the solution with respect to Re.

In many physical situations the transition from stationary to oscillatory and

2d to 3d is quite important. In particular the numerical determination of corre-

sponding critical Reynolds numbers, where the transition takes place, as well as

(temporal and spatial) frequencies and patterns of the solution are of great inter-

est in applications. It turns out that commonly used simple time-discretization

schemes like implicit Euler are often too dissipative to capture such features, see

[10]. Thus the time discretization of (1.1) is quite crucial for an accurate Navier-

Stokes solver.

Further major numerical problems arise due to:
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• The incompressibility condition. Depending on the concrete situation this

problem may be the most crucial and CPU-time consuming part of a

Navier-Stokes solver.

• The strong nonlinearity. Most interesting phenomena in flow simulation

result from strong nonlinear effects.

• The strong coupling of the unknowns in (1.1) by the solenoidal condition

divu = 0 as well as by the nonlinear term u · ∇u.

• Stability versus accuracy. As already outlined we need a scheme, which is

accurate to capture interesting phenomena (in time as well as in space),

on the other hand the scheme has to have good stability properties.

Thus the requirements for a “good” Navier–Stokes solver are:

• stable, accurate, “efficient” time discretization,

• accurate spatial discretization,

• efficient solution of the fully discrete problems.

By “efficient” time discretization we mean that the resulting discretized systems

should allow for an efficient solution technique.

We meet these requirements by using a solver which in an earlier version is

described in [1] and has proved to be quite efficient in the range of moderate

Reynolds numbers, see [13]. It is based on the techniques introduced in [3]. The

time discretization is a variant of the so-called fractional step θ-scheme and for the

spatial discretization we use the Taylor–Hood element on unstructured simplicial

grids in 2d and 3d, i.e. piecewise quadratics for the velocity and piecewise linears

for the pressure.

The rest of this paper is organized as follows. In Section 2 we introduce an

operator splitting by the fractional step θ-scheme. This scheme reduces the Navier–

Stokes system to two Stokes problems and a system of Burgers equations in each

time step. In Sections 3 and 4 we propose methods how to solve these subproblems.

Section 5 deals with the extension to convective energy transport. Some remarks

on implementational aspects are given in Section 6. Finally we conclude the article

by presenting some numerical examples in Section 7.

2. The Fractional θ-scheme

As a model problem we consider formally the linear evolution equation

(2.2)
ut +Au = 0,

u(0) = u0

in a Banach space X. As pointed out above we are looking for a time discretization

which is accurate, say of 2nd order, non-dissipative and A-stable. Commonly used

simple schemes like implicit Euler or Crank–Nicolson method do not seem to be

the method of choice. The implicit Euler method is strongly A-stable but first
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order only and quite dissipative. The Crank–Nicolson scheme is of second order,

non-dissipative but has only weak stability properties. Instead, we consider the

so-called fractional step θ-scheme, introduced for instance in [3].

For that let θ = 1−
√

2
2 = 0.2928 . . . and α, β ∈ (0, 1), α+ β = 1, α > 1

2 . Split

each time interval [tn, tn+1] into 3 subintervals [tn, tn+ θτ ], [tn + θτ, tn+ (1− θ)τ ],

and [tn + (1− θ)τ, tn+1] with τ = tn+1 − tn, see Figure 3.

t n+θτt n t n+(1− θ)τ t n+τ

Figure 3. Split of [tn, tn + τ ] into 3 subintervals.

The fractional θ-scheme is defined by: For n > 0 find un+θ, un+1−θ, un+1 such

that u0 = u0 and

(2.3)

un+θ − un

θτ
+ αAun+θ + βAun = 0

un+1−θ − un+θ

(1− 2θ)τ
+ βAun+1−θ + αAun+θ = 0

un+1 − un+1−θ

θτ
+ αAun+1 + βAun+1−θ = 0

We define the corresponding damping factor ω by

ω(z) =
(1− βθz)2(1− α(1− 2θ)z)

(1 + αθz)2(1 + β(1− 2θ)z)
.

A spectral analysis shows that for A diagonalizable, σ(A) = σp(A) ⊆ {z ∈
C|Re z ≥ 0} the scheme is unconditionally stable and of second order. The as-

ymptotic damping factor fulfills supz∈R+
|ω(z)| ≤ 1 and limz→∞ |ω(z)| =

β

α
< 1

if α > 1
2 . Furthermore we have |ω(iτ)| ≈ 1, that means the scheme is nearly

non-dissipative. Moreover if we choose α = (1 − 2θ)/(1 − θ) = 0.5857 . . . then

all implicit operators in (2.3) are identical. See also [3], [9] for a more detailed

discussion. In [9] one can also find a rigorous analysis of the fractional θ-scheme

for a class of nonlinear operators in a Hilbert space.

In [3] a variant of the fractional θ-scheme is proposed as an operator splitting

for the Navier–Stokes equations (1.1):

For n > 0 find un+θ, un+1−θ, un+1 and pn+θ, pn+1 such that

(2.4)



un+θ − un

θτ
−

α

Re
4un+θ + ∇pn+θ = fn+θ +

β

Re
4un

−
(
un · ∇

)
un in Ω,

divun+θ = 0 in Ω,

un+θ = un+θ
D on ∂Ω.
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(2.5)


un+1−θ − un+θ

(1− 2θ)τ
−

β

Re
4un+1−θ +

(
un+1−θ · ∇

)
un+1−θ

= fn+1−θ +
α

Re
4un+θ − ∇pn+θ in Ω,

un+1−θ = un+1−θ
D on ∂Ω.

(2.6)



un+1 − un+1−θ

θτ
−

α

Re
4un+1 + ∇pn+1 = fn+1

+
β

Re
4un+1−θ −

(
un+1−θ · ∇

)
un+1−θ in Ω,

divun+1 = 0 in Ω,

un+1 = un+1
D on ∂Ω.

By (2.4)—(2.6) two major numerical difficulties of the Navier–Stokes equations,

the treatment of the solenoidal condition and the nonlinearity, are decoupled. In

(2.4) and (2.6) one has to solve a linear, selfadjoint Stokes system, the nonlinear-

ity is treated explicitly. (2.5) is a Burgers like system of equations, the divergence

free condition is dropped and the pressure gradient is taken from the previous

time step. Thus by this operator splitting one reduces the Navier–Stokes equa-

tions to two considerably simpler subproblems. In [4], [6] conditionally stability

and convergence for a fully discrete scheme is shown, in [9] the unconditionally

stability and a (suboptimal) error estimate is stated for semi-discretization in time

and the linear case. Our numerical experience is the following: Let Re ≤ Re∗ with

Re∗ ≈ 103 − 104 depending on the concrete problem. Then there exist h∗ and τ∗
such that the scheme (2.4)—(2.6) is stable if h ≤ h∗ and τ ≤ τ∗. Here h∗ = h∗(x),

h = h(x) denote functions describing the local mesh sizes for given triangulations.

3. Solution of the Stokes problem

The Stokes subproblems (2.4), (2.6) may be written in the form (dropping

subscripts for simplicity)

(3.7)

(
A(γ)B

BT 0

)(
u

p

)
=

(
f̃

0

)
,

where A(γ) := Id− γ4, γ :=
θτα

Re
and B := ∇, BT = −div and some right-hand

side f̃ . This system is equivalent to the Schur complement equation

(3.8) T (γ)p := BTA−1(γ)Bp = BTA−1(γ)f̃

together with

A(γ) = f̃ −Bp.
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Now for fixed γ > 0 the Schur complement operator T (γ)

T (γ) : L2(Ω)/R → L2(Ω)/R

is selfadjoint, positive definite and onto. Using a stable pair of finite element spaces

Vh, Wh — for instance the Taylor–Hood element, see [5] — for the approxima-

tion of velocity and pressure respectively, i.e. Vh, Wh fulfill the Babuška-Brezzi

condition uniformly in h, the above properties for T (γ) translate to Th,

Th(γ) : Wh →Wh,

the discretized Schur complement operator, being symmetric, positive definite and

having a bounded condition number independently of h. Thus a conjugate gradient

method to solve (3.8) seems to be an optimal solver. However, for Re → ∞ or

τ → 0, that is γ → 0, the Schur complement degenerates and the condition number

of Th blows up. We expect a growth of

cond (Th(γ)) = O

(
1

h2 + γ

)
in case of a quasi-uniform grid with mesh size h. Therefore we use a preconditioner

S proposed in [3] given by

S : L2(Ω)/R → L2(Ω)/R

Sp := γp+ ϕp

where ϕp is the unique solution of

−∆ϕp = p in Ω,

∂νϕp = 0 on ∂Ω,∫
Ω

ϕp = 0.

By Fourier analysis it is easy to see that S is the formal inverse of T in the case

Ω = Rd.
Solving (3.8) by a CG with this preconditioner we get iteration numbers which

are bounded independently of γ and h in practice. Note that the evaluation of

S in the discrete case is inexpensive, since it involves only the inversion of a

scalar Poisson problem. Furthermore the solution of this problem is sought in the

pressure space Wh which is usually much smaller than the velocity space Vh.
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4. Solution of the Nonlinear Problem

To solve the nonlinear subproblem (2.5) we us a preconditioned GMRES

method. Let us sketch the basic ideas of this method, see also for instance [8],

[12].

For N ∈ N, M ∈ RN×N regular, b ∈ RN consider the following linear problem

in RN : Find x ∈ RN such that

Mx = b.

For a given k ∈ N and an initial guess x0 ∈ RN the GMRES algorithm determines

an approximate solution x̃ ∈ RN by

(4.9) x̃ = arg min
z∈K
‖S(b−M(x0 + z))‖RN

with the Krylov space K := span{Sr0, SMr0, . . . SM
k−1r0}, r0 := S(b −Mx0)

the initial residual, ‖ · ‖RN the Eucledian norm and S ∈ RN×N a suitable precon-

ditioner.

The minimization in (4.9) is based on finding an orthonormal basis of the space

K. Usually the dimension k of the Krylov space K is chosen small and several

restarts of GMRES are performed using the last iterate as initial value for the new

start until the desired accuracy is achieved.

The nonlinear system of equations (2.5) may be written as

(4.10) Au + N(u)u := γ1u − γ2∆u + u · ∇u = f̃

with N(v)w = v ·∇w and γ1 := ((1− 2θ)τ)−1, γ2 := β
Re and f̃ the right-hand side

of (2.5). A variational formulation and discretization of (4.10) leads to a problem

in RN , N = dimVh the dimension of the discrete velocity space, of the form

(4.11) Ahuh + Nh(uh)uh = f̃h,

where uh ∈ RN is the vector of nodal values of the discrete solution in Vh. In

order to apply the GMRES algorithm to (4.11) we freeze the nonlinearity Nh(·)
and update it at every restart. That is, in the p-th restart of GMRES we define

M := Ah + Nh(up−1
h ),

where up−1
h is the (p-1)-th iterate and we set the initial guess uph,0 := up−1

h . It

turns out that for transient flows a simple diagonal scaling as preconditioner S

is sufficient. Moreover the dimension k of the Krylov space may be chosen quite

small and the convergence of the method is rather fast, that means the number

of restarts is small. Typical values for k are in the range of 10 − 25, the number

of restarts usually lie between 4− 10, even when the dimension N of the velocity

space Vh is of the order 105.
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5. Convective Energy Transport

In many applications heat transport by the flow field plays an important role.

This transport is expressed by an advection-diffusion equation:

∂tϑ + u · ∇ϑ −
1

RePr
∆ϑ = 0 in Ω,

with ϑ the dimensionless temperature and Pr the Prandtl number, which describes

the relative influence of diffusive and convective transport. Of course, the above

equation has to be closed by initial and boundary conditions, the latter ones for

example of Dirichlet or Neumann type.

The influence of the temperature on the flow can often be modeled by the so

called Boussinesq approximation. This model assumes the density to be constant

except for the buoyancy terms. The momentum equation then reads:

∂tu + u · ∇u −
1

Re
∆u + ∇p = −

Gr

Re2
ϑ ~g

where ~g denotes the direction of gravity and Gr the Grashof number, which de-

scribes the relative importance of the buoyancy forces with respect to the viscous

forces.

In order to incorporate this model into the numerical scheme we propose a

simple semi-implicit time-discretization: For n > 0 find un+θ, un+1−θ, un+1 and

pn+θ, pn+1, as well as ϑn+1 such that

un+θ − un

θτ
− α

Re
4un+θ + ∇pn+θ = β

Re
4un −

(
un · ∇

)
un

− Gr
Re2

ϑn ~g in Ω,

divun+θ = 0 in Ω,

un+θ = un+θ
D on ∂Ω.

un+1−θ − un+θ

(1− 2θ)τ
− β

Re4u
n+1−θ +

(
un+1−θ · ∇

)
un+1−θ

= α
Re4u

n+θ − ∇pn+θ − Gr
Re2 ϑ

n ~g in Ω,

un+1−θ = un+1−θ
D on ∂Ω.

un+1 − un+1−θ

θτ
− α

Re
4un+1 + ∇pn+1 = β

Re
4un+1−θ −

(
un+1−θ · ∇

)
un+1−θ

− Gr
Re2

ϑn ~g in Ω,

divun+1 = 0 in Ω,

un+1 = un+1
D on ∂Ω.
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and
ϑn+1 − θn

τ
+ un+1 · ∇ϑn+1 −

1

RePr
∆ϑn+1 = 0

+ boundary conditions.

This means we compute the new velocity and pressure with the buoyancy term

given by the temperature from the previous time step and then determine the tem-

perature on the new time step by using the new velocity. By this weak coupling

the structure of the momentum equation is the same as for problem (1.1). Never-

theless, if one poses Dirichlet boundary condition for the velocity u, numerically

this simple semi-implicit scheme is stable.

6. Implementational Aspects

The method described in Sections 2–4 to solve problem (1.1) has been imple-

mented in a FORTRAN code. The implementation has the following hierarchical

structure, see Figure 4.

fractional θ−scheme as
    operator splitting

Stokes problem Burgers step

nonlinear
 GMRES

CG for  Schur
 complement 
   operator

FEM structure

(Taylor−Hood element on unstructured
                 simplicial grids)

Figure 4. Structure of the Navier–Stokes solver.

The building blocks of the solver are virtually independent of each other. Thus

an exchange of one or more modules is easy.
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We summarize the main features of this code:

• 2d, 3d and 2.5d (i.e. rotationally symmetric data) solver for transient flow

problems,

• time discretization by fractional step θ-scheme as operator splitting,

• space discretization by Taylor–Hood element (P2 − P1) on unstructured

simplicial grids,

• incorporation of temperature equation in the Boussinesq approximation.

We also mention some functionality of the code which has not been addressed

in this article:

• various boundary conditions (periodic, Neumann type, prescribed

stresses),

• adaptivity in space (see [1]) and time possible,

• treatment of free capillary surfaces, see [2].

7. Numerical Results

Figure 5. Stationary solution for Pr = 6.7 and Ra = 5 · 104; velocity and

isolines of the temperature.

As an example we consider a Bénard convection. We define Ω = (0, 1)× (0, 1),

impose homogeneous Dirichlet conditions for u on ∂Ω and for the temperature ϑ

we set ϑ = 1 on the bottom, ϑ = 0 on the top and ∂νϑ = 0 on the side walls.

Throughout the numerical experiments we set the Prandtl number to be that of

water, Pr = 6.7.

Introducing the Rayleigh number Ra the Grashof number and the Reynolds

number are given by

Gr =
Ra

Pr
, Re =

√
Gr.
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From a certain Rayleigh number Ra∗1 ≈ 2.6·103 the static solution u ≡ 0, ϑ = 1−x2

becomes unstable and one gets a stationary solution with one convection role, see

Figure 5. At a second critical value Ra∗2 ≈ 7.7 · 104 there is a transition to an

oscillatory solution. In Figure 6 four time steps of the oscillatory solution are

shown for Ra = 5 · 105.

Figure 6. Velocity for t1, t2 = t1 + 3.6, t3 = t1 + 16.0 and t4 = t1 + 19.6;

Pr = 6.7, Ra = 5 · 105.

In order to study the time behavior of the system more quantitatively we fix

a point x0 ∈ Ω and we look at the function t 7→ Y (t, x0), where Y is some

dependent variable. For x0 = [0.25, 0.25] and Y = u1, u1 the first component of

u, this function is plotted in Figure 7. The spectral power density function P ,

defined by

P (f) = |H(f)|2
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with f the frequency and H(f) the Fourier transform of Y given by

H(f) =

∫
R

Y (t, x0)e2πiftdt,

clearly shows that in this example with Ra = 5 · 105 and Y = u1 there is one

predominant frequency f = 0.035, see Figure 7 where P (f)/max
f

P (f) is plotted

versus f . Figure 8 shows the result for Ra = 1.5 · 106. In this case the solution is

more involved and no longer periodical.
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Figure 7. u1-component of the velocity at x0 = [0.25, 0.25] vs. time and

spectral power density, Pr = 6.7, Ra = 5 · 105.
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Figure 8. u1-component of the velocity at x0 = [0.25, 0.25] vs. time and

spectral power density, Pr = 6.7, Ra = 1.5 · 106.

In 3D we consider an analogous example as in the 2D case. Ω is now chosen to

be a cylinder of height H = 1 and radius R = 0.5. Again homogeneous Dirichlet

conditions are imposed for u and the temperature fulfills ϑ = 1 on the bottom,

ϑ = 0 on the top and ∂νϑ = 0 on the side walls.

Figures 9–11 show the complex behavior of the solution for Ra = 5 · 105. In

Figure 11 Y is set Y = ϑ.
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Figure 9. Geometry and flow visualization by particle tracing.

Figure 10. Velocity for t1, t2 = t1 + 26.0 and t3 = t1 + 44.0.
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Figure 11. Temperature ϑ at x0 = [0.0, 0.5, 0.25] vs. time and spectral power

density, Pr = 6.7, Ra = 5 · 105.
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