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A NOTE ON MIXING PROPERTIES

OF INVERTIBLE EXTENSIONS

G. MORRIS and T. WARD

Abstract. The natural invertible extension T̃ of an Nd-action T has been studied
by Lacroix. He showed that T̃ may fail to be mixing even if T is mixing for d ≥ 2.
We extend this observation by showing that if T is mixing on (k+ 1) sets then T̃ is
in general mixing on no more than k sets, simply because Nd has a corner. Several
examples are constructed when d = 2: (i) a mixing T for which T̃ (n,m) has an
identity factor whenever n ·m < 0; (ii) a mixing T for which T̃ is rigid but T̃ (n,m)

is mixing for all (n,m) 6= (0, 0); (iii) a T mixing on 3 sets for which T̃ is not mixing
on 3 sets.

1. Invertible Extensions

Let T be a measure-preserving Nd-action on the probability space (X,B, µ).

Such an action may be thought of as the natural shift-action on the space{
(xn) ∈ XN

d

| xn = Tnx0 ∀ n ∈ Nd
}

;

the projection π0 onto the zero coordinate shows that T is isomorphic to the shift

action, so we identify them. The natural invertible extension of T is constructed

in [3], and may be thought of as the natural shift action T̃ on

X̃ =
{

(xn) ∈ XZ
d

| xn+m = Tnxm ∀ m ∈ Zd,n ∈ Nd
}
.

For any sets F ⊂ Zd, G ⊂ Nd let π̃F : X̃ → XF , πG : X → XG denote the

projections. The set X̃ is a probability space with σ-algebra B̃ and measure µ̃

defined as follows. The σ-algebra B̃ is the smallest one containing all sets of the

form

Am,C =
{

(xn) ∈ X̃ | xm ∈ C
}

for m ∈ Zd and C ∈ B, and µ̃ is defined via the Daniell-Kolmogorov consistency

theorem (see [1, Theorem 1, Chapter IV.6]) from the requirement that µ̃ (Am,C) =
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µ(C). Notice that for {m1, . . . ,ms} ⊂ Zd and sets C1, . . . , Cs ∈ B, if ` ∈ Nd has

`+ mj ∈ Nd for all j, then

µ̃
(
{(xn) ∈ X̃ | xmj ∈ Cj for j = 1, . . . , s}

)
and

µ
(
T−(`+m1)(C1) ∩ · · · ∩ T−(`+ms)(Cs)

)
coincide. We shall use the following notation: if B̃ ⊂ X̃ is measurable with respect

to π̃−1
Nd (B) then let B = πNd(B̃) ⊂ X. Let T̃+ = T̃ |Nd be the Nd-action obtained

by restricting the invertible extension to Nd ⊂ Zd. The projection π̃Nd : X̃ →
XN

d

realizes T as a factor of T̃+. If the generators of the original Nd-action are

invertible, then π̃Nd is an isomorphism.

Definition. The Nd-action T is mixing on (k + 1) sets if for any A0, A1, . . . ,

Ak ∈ B,

(1) µ
(
A0 ∩ T

−n1A1 ∩ · · · ∩ T
−nkAk

)
−→ µ(A0) . . . µ(Ak)

as ni →∞, ni−nj →∞ for i 6= j. Here→∞ means leaving finite subsets of Nd,
and ni−nj →∞ means that if ni + ` = nj + m for `,m ∈ Nd then ` or m→∞.

If k = 1 then mixing on (k + 1) sets is called mixing. A Zd-action T is said to

be mixing on (k+ 1) sets if (1) holds with the vectors nj now allowed to lie in Zd.
Lacroix [3] has shown, inter alia, that T mixing does not imply that T̃ will be

mixing, with an example in which T̃n has an identity factor for some n ∈ Zd\Nd.
We extend this by proving the following theorem and illustrating it with several

examples in d = 2, including one in which T is mixing but T̃n has an identity

factor for every n ∈ Z2\
(
N2 ∪ −N2

)
.

The “corner” 0 ∈ Nd is distinguished because it must (unlike the Zd case)

appear in the expression (1) above. This forces the order of mixing to drop.

Theorem. If the Nd-action T is mixing on (k + 1) sets, then the invertible

extension T̃ is mixing on k sets.

Proof. Assume T is mixing on (k + 1) sets for some k ≥ 1. Let B̃1, . . . , B̃k be

sets measurable with respect to π̃−1
S(N)(B) where S(N) = [−N,N ]d ∩ Zd. Write

N = (N,N, . . . , N). Let m2(n), . . . ,mk(n) be integer vectors with mi(n) → ∞
and mi(n) −mj(n) → ∞ as n → ∞ for each i 6= j. For each n = 1, 2, . . . let

`(n) ∈ Nd be chosen so that `(n) → ∞, nj(n) = mj(n) + `(n) → ∞ as n → ∞,

and nj(n) ∈ Nd for all n.

Notice by construction we have `(n)→∞, nj(n)→∞, `(n)−nj(n)→∞, and

for each i 6= j, nj(n) − ni(n) →∞. It follows that if n is large enough to ensure
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that `(n)−N ∈ Nd, then we have

µ̃
(
B̃1 ∩ T̃

−m2(n)B̃2 ∩ · · · ∩ T̃
−mk(n)B̃k

)
= µ̃

(
T̃−`(n)B̃1 ∩ T̃

−n2(n)B̃2 ∩ · · · ∩ T̃
−nk(n)B̃k

)
= µ̃

(
X̃ ∩ T̃−`(n)B̃1 ∩ T̃

−n2(n)B̃2 ∩ · · · ∩ T̃
−nk(n)B̃k

)
= µ̃

(
X̃ ∩ T̃−(`(n)−N)

(
T̃−NB̃1

)
∩ T̃−(n2(n)−N)

(
T̃−NB̃2

)
∩ . . .

∩ T̃−(nk(n)−N)
(
T̃−NB̃k

))
= µ

(
X ∩ T−(`(n)−N)C1 ∩ T

−(n2(n)−N)C2 ∩ · · · ∩ T
−(nk(n)−N)Ck

)
→ µ(C1) . . . µ(Ck)

= µ̃(T̃−NB̃1) . . . µ̃(T̃−NB̃k) = µ̃(B̃1) . . . µ(B̃k),

where Cj = π̃Nd(T̃−NB̃j) for each j. It follows that T̃ is mixing on k sets. �

2. Examples

Example 1. If X = T, the additive group, and the N2-action T is generated

by T (1,0)x = T (0,1)x = 2x mod 1, then it is clear that T is mixing while T̃ cannot

be mixing since T̃ (1,−1) is the identity map on X̃ = Ẑ[1
2 ].

This example is of course not a faithful action — in [3] a faithful example is

given, generated by the toral endomorphisms dual to the matrices

[
2 0

0 2

]
and[

4 0

0 3

]
.

Example 2. The previous example may be refined to produce a mixing

N2-action T with the property that T̃ (n,m) has an identity factor for every pair

n,m with opposite signs. Let X be the infinite torus TN×TN×. . . . Let Sa : T→ T
denote the map Sa(x) = ax mod 1, and let

S∗ = S2 × S4 × S8 × S16 × . . . ,

and

S∞a = Sa × Sa × Sa × Sa × . . . .

Throughout the indicated correspondence between positions in infinite products

holds. Define the N2-action T by the two generators

T (1,0) = S∗ × S∗ × S∗ × S∗ × . . .
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and

T (0,1) = S∞2 × S
∞
4 × S

∞
8 × S

∞
16 × . . . .

Then T is a mixing N2-action on X: it is enough to check that for any pair of

non-trivial characters χ0, χ1 ∈ X̂ the character χ0 + T̂ (n,m)χ1 is non-trivial for

large (n,m) ∈ N2 and this is clear since each character is finitely supported.

The invertible extension T̃ is obtained as follows. Let Σ = Ẑ[1
2 ] be the solenoid,

and S̃a : Σ → Σ the endomorphism dual to multiplication by a, invertible if a

is a power of 2. Then the generators of T̃ are simply given by placing tildes on

the definition of the generators of T , and they act on X̃ = Σ∞. For any pair

(n,m) ∈ Z2\
(
N2 ∪ −N2

)
, the map T̃ (n,m) has a non-trivial identity factor and

therefore cannot be mixing: to see this, notice that T̃ (|n|,0) acts in the |m|th
position in each of the indicated factors as ×2|nm|, while T̃ (0,|m|) acts in the |n|th
position in the S∞

2|m|
factor as ×2|nm| in each copy of Σ.

Example 3. The opposite extreme to the previous example is given by the

Gaussian construction of Ferenci and Kaminski [2]: for numbers α > 0, β > 0

with 1, α, β rationally independent they construct a two-dimensional Gaussian

action T with covariance function

R(n,m) =
sin(2π(nα+mβ))

2π(nα+mβ)
.

If (nj ,mj) is a sequence with njα+mjβ → 0 as j →∞ then for large j we must

have nj ·mj < 0. Along such a sequence R(nj ,mj) → 1 so the action is rigid,

showing that the Z2-action is not mixing. On the other hand, if (nj ,mj)→∞ in

N2 or −N2 then it is clear that R(nj ,mj) → 0 showing that the N2-action T+ is

mixing.

For the next example, recall that a finite set F with (0, 0) ∈ F ⊂ Z2 (or N2) is

a mixing shape for a λ-preserving Z2-action T̃ (resp. N2-action T ) if

lim
k→∞

λ

(⋂
n∈F

T−knBn

)
=
∏
n∈F

λ(Bn)

for all measurable sets Bn.

Example 4. Using ideas from algebraic dynamical systems, as described for

example in [5], we exhibit an N2-action T which is mixing on three sets for which

the extension T̃ is not mixing on three sets. The example is a modification of

Ledrappier’s original example, [4]. Let F2 denote the field with two elements, let

X =
{

x ∈ FN
2

2 | x(n−1,m+1) + x(n,m) + x(n+1,m) = 0 ∀ (n,m) ∈ N2
}
,
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and define the N2-action T to be the shift action on X. We claim that T is mixing

on three sets. To see this, work in the dual group X̂ = F2/〈y + x+ x2〉, with the

N2 action being generated by the endomorphisms dual to multiplication by x and

y. The map f(x, y) 7→ f(x, x + x2) identifies X̂ with F2[x], with the generators

now being multiplication by x and by x+x2. Using Fourier analysis on the group

X (see for example [5, Section 27]) it is enough to show that for any a, b, c ∈ N
and εa, εb, εc ∈ F2 the equation

εax
a + εbx

n1ym1xb + εcx
n2ym2 = 0

for (n1,m1), (n2,m2) ∈ N2 requires that the points (n1,m1), (n2,m2), (0, 0) cannot

be far apart or the coefficients εa, εb, εc are zero. Using the identity y = x + x2,

the equation becomes

εax
a + εb(x

b+n1+m1 + · · ·+ xb+n1+2m1) + εc(x
b+n2+m2 + · · ·+ xb+n2+2m2) = 0.

If (n1,m1) and (n2,m2) are far from the origin then we see that εa = 0, and if

(n1,m1) and (n2,m2) are far from each other then we see that εb = εc = 0.

The natural extension T̃ has {(−1, 1), (0, 0), (1, 0)} as a non–mixing shape since

in the group

X̃ =
{

x ∈ FN
2

2 | x(n−1,m+1) + x(n,m) + x(n+1,m) = 0 ∀ (n,m) ∈ Z2
}

the relation x(−2n,2n) = x(0,0) + x(2n,0) holds for all n.

It is not clear how to construct examples along the lines of Example 4 with the

property that T is mixing on k sets while T̃ is not mixing on k sets for each k ≥ 1:

see Remark 28.12 in [5] for what is known.
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