A NOTE ON MIXING PROPERTIES OF INVERTIBLE EXTENSIONS

Abstract

G. MORRIS and T. WARD

Abstract. The natural invertible extension \tilde{T} of an \mathbb{N}^{d}-action T has been studied by Lacroix. He showed that \tilde{T} may fail to be mixing even if T is mixing for $d \geq 2$. We extend this observation by showing that if T is mixing on $(k+1)$ sets then $\overline{\tilde{T}}$ is in general mixing on no more than k sets, simply because \mathbb{N}^{d} has a corner. Several examples are constructed when $d=2$: (i) a mixing T for which $\tilde{T}^{(n, m)}$ has an identity factor whenever $n \cdot m<0$; (ii) a mixing T for which \tilde{T} is rigid but $\tilde{T}^{(n, m)}$ is mixing for all $(n, m) \neq(0,0)$; (iii) a T mixing on 3 sets for which \tilde{T} is not mixing on 3 sets.

1. Invertible Extensions

Let T be a measure-preserving \mathbb{N}^{d}-action on the probability space (X, \mathcal{B}, μ). Such an action may be thought of as the natural shift-action on the space

$$
\left\{\left(x_{\mathbf{n}}\right) \in X^{\mathbb{N}^{d}} \mid x_{\mathbf{n}}=T^{\mathbf{n}} x_{0} \forall \mathbf{n} \in \mathbb{N}^{d}\right\}
$$

the projection π_{0} onto the zero coordinate shows that T is isomorphic to the shift action, so we identify them. The natural invertible extension of T is constructed in [3], and may be thought of as the natural shift action \tilde{T} on

$$
\tilde{X}=\left\{\left(x_{\mathbf{n}}\right) \in X^{\mathbb{Z}^{d}} \mid x_{\mathbf{n}+\mathbf{m}}=T^{\mathbf{n}} x_{\mathbf{m}} \forall \mathbf{m} \in \mathbb{Z}^{d}, \mathbf{n} \in \mathbb{N}^{d}\right\}
$$

For any sets $F \subset \mathbb{Z}^{d}, G \subset \mathbb{N}^{d}$ let $\tilde{\pi}_{F}: \tilde{X} \rightarrow X^{F}, \pi_{G}: X \rightarrow X^{G}$ denote the projections. The set \tilde{X} is a probability space with σ-algebra $\tilde{\mathcal{B}}$ and measure $\tilde{\mu}$ defined as follows. The σ-algebra $\tilde{\mathcal{B}}$ is the smallest one containing all sets of the form

$$
A_{\mathbf{m}, C}=\left\{\left(x_{\mathbf{n}}\right) \in \tilde{X} \mid x_{\mathbf{m}} \in C\right\}
$$

for $\mathbf{m} \in \mathbb{Z}^{d}$ and $C \in \mathcal{B}$, and $\tilde{\mu}$ is defined via the Daniell-Kolmogorov consistency theorem (see [1, Theorem 1, Chapter IV.6]) from the requirement that $\tilde{\mu}\left(A_{\mathbf{m}, C}\right)=$

[^0]$\mu(C)$. Notice that for $\left\{\mathbf{m}_{1}, \ldots, \mathbf{m}_{s}\right\} \subset \mathbb{Z}^{d}$ and sets $C_{1}, \ldots, C_{s} \in \mathcal{B}$, if $\ell \in \mathbb{N}^{d}$ has $\ell+\mathbf{m}_{j} \in \mathbb{N}^{d}$ for all j, then
$$
\tilde{\mu}\left(\left\{\left(x_{\mathbf{n}}\right) \in \tilde{X} \mid x_{\mathbf{m}_{j}} \in C_{j} \text { for } j=1, \ldots, s\right\}\right)
$$
and
$$
\mu\left(T^{-\left(\ell+\mathbf{m}_{1}\right)}\left(C_{1}\right) \cap \cdots \cap T^{-\left(\ell+\mathbf{m}_{s}\right)}\left(C_{s}\right)\right)
$$
coincide. We shall use the following notation: if $\tilde{B} \subset \tilde{X}$ is measurable with respect to $\tilde{\pi}_{\mathbb{N} d}^{-1}(\mathcal{B})$ then let $B=\pi_{\mathbb{N}^{d}}(\tilde{B}) \subset X$. Let $\tilde{T}_{+}=\left.\tilde{T}\right|_{\mathbb{N}^{d}}$ be the \mathbb{N}^{d}-action obtained by restricting the invertible extension to $\mathbb{N}^{d} \subset \mathbb{Z}^{d}$. The projection $\tilde{\pi}_{\mathbb{N}^{d}}: \tilde{X} \rightarrow$ $X^{\mathbb{N}^{d}}$ realizes T as a factor of \tilde{T}_{+}. If the generators of the original \mathbb{N}^{d}-action are invertible, then $\tilde{\pi}_{\mathbb{N}^{d}}$ is an isomorphism.

Definition. The \mathbb{N}^{d}-action T is mixing on $(k+1)$ sets if for any A_{0}, A_{1}, \ldots, $A_{k} \in \mathcal{B}$,

$$
\begin{equation*}
\mu\left(A_{0} \cap T^{-\mathbf{n}_{1}} A_{1} \cap \cdots \cap T^{-\mathbf{n}_{k}} A_{k}\right) \longrightarrow \mu\left(A_{0}\right) \ldots \mu\left(A_{k}\right) \tag{1}
\end{equation*}
$$

as $\mathbf{n}_{i} \rightarrow \infty, \mathbf{n}_{i}-\mathbf{n}_{j} \rightarrow \infty$ for $i \neq j$. Here $\rightarrow \infty$ means leaving finite subsets of \mathbb{N}^{d}, and $\mathbf{n}_{i}-\mathbf{n}_{j} \rightarrow \infty$ means that if $\mathbf{n}_{i}+\boldsymbol{\ell}=\mathbf{n}_{j}+\mathbf{m}$ for $\boldsymbol{\ell}, \mathbf{m} \in \mathbb{N}^{d}$ then $\boldsymbol{\ell}$ or $\mathbf{m} \rightarrow \infty$.

If $k=1$ then mixing on $(k+1)$ sets is called mixing. A \mathbb{Z}^{d}-action T is said to be mixing on $(k+1)$ sets if (1) holds with the vectors \mathbf{n}_{j} now allowed to lie in \mathbb{Z}^{d}.

Lacroix [3] has shown, inter alia, that T mixing does not imply that \tilde{T} will be mixing, with an example in which $\tilde{T}^{\mathbf{n}}$ has an identity factor for some $\mathbf{n} \in \mathbb{Z}^{d} \backslash \mathbb{N}^{d}$. We extend this by proving the following theorem and illustrating it with several examples in $d=2$, including one in which T is mixing but $\tilde{T}^{\mathbf{n}}$ has an identity factor for every $\mathbf{n} \in \mathbb{Z}^{2} \backslash\left(\mathbb{N}^{2} \cup-\mathbb{N}^{2}\right)$.

The "corner" $0 \in \mathbb{N}^{d}$ is distinguished because it must (unlike the \mathbb{Z}^{d} case) appear in the expression (1) above. This forces the order of mixing to drop.

Theorem. If the \mathbb{N}^{d}-action T is mixing on $(k+1)$ sets, then the invertible extension \tilde{T} is mixing on k sets.

Proof. Assume T is mixing on $(k+1)$ sets for some $k \geq 1$. Let $\tilde{B}_{1}, \ldots, \tilde{B}_{k}$ be sets measurable with respect to $\tilde{\pi}_{S(N)}^{-1}(\mathcal{B})$ where $S(N)=[-N, N]^{d} \cap \mathbb{Z}^{d}$. Write $\mathbf{N}=(N, N, \ldots, N)$. Let $\mathbf{m}_{2}(n), \ldots, \mathbf{m}_{k}(n)$ be integer vectors with $\mathbf{m}_{i}(n) \rightarrow \infty$ and $\mathbf{m}_{i}(n)-\mathbf{m}_{j}(n) \rightarrow \infty$ as $n \rightarrow \infty$ for each $i \neq j$. For each $n=1,2, \ldots$ let $\boldsymbol{\ell}(n) \in \mathbb{N}^{d}$ be chosen so that $\boldsymbol{\ell}(n) \rightarrow \infty, \mathbf{n}_{j}(n)=\mathbf{m}_{j}(n)+\boldsymbol{\ell}(n) \rightarrow \infty$ as $n \rightarrow \infty$, and $\mathbf{n}_{j}(n) \in \mathbb{N}^{d}$ for all n.

Notice by construction we have $\boldsymbol{\ell}(n) \rightarrow \infty, \mathbf{n}_{j}(n) \rightarrow \infty, \boldsymbol{\ell}(n)-\mathbf{n}_{j}(n) \rightarrow \infty$, and for each $i \neq j, \mathbf{n}_{j}(n)-\mathbf{n}_{i}(n) \rightarrow \infty$. It follows that if n is large enough to ensure
that $\ell(n)-\mathbf{N} \in \mathbb{N}^{d}$, then we have

$$
\begin{aligned}
\tilde{\mu} & \left(\tilde{B}_{1} \cap \tilde{T}^{-\mathbf{m}_{2}(n)} \tilde{B}_{2} \cap \cdots \cap \tilde{T}^{-\mathbf{m}_{k}(n)} \tilde{B}_{k}\right) \\
& =\tilde{\mu}\left(\tilde{T}^{-\ell(n)} \tilde{B}_{1} \cap \tilde{T}^{-\mathbf{n}_{2}(n)} \tilde{B}_{2} \cap \cdots \cap \tilde{T}^{-\mathbf{n}_{k}(n)} \tilde{B}_{k}\right) \\
& =\tilde{\mu}\left(\tilde{X} \cap \tilde{T}^{-\ell(n)} \tilde{B}_{1} \cap \tilde{T}^{-\mathbf{n}_{2}(n)} \tilde{B}_{2} \cap \cdots \cap \tilde{T}^{-\mathbf{n}_{k}(n)} \tilde{B}_{k}\right) \\
& =\tilde{\mu}\left(\tilde{X} \cap \tilde{T}^{-(\ell(n)-\mathbf{N})}\left(\tilde{T}^{-\mathbf{N}} \tilde{B}_{1}\right) \cap \tilde{T}^{-\left(\mathbf{n}_{2}(n)-\mathbf{N}\right)}\left(\tilde{T}^{-\mathbf{N}} \tilde{B}_{2}\right) \cap \ldots\right. \\
& \left.\quad \cap \tilde{T}^{-\left(\mathbf{n}_{k}(n)-\mathbf{N}\right)}\left(\tilde{T}^{-\mathbf{N}} \tilde{B}_{k}\right)\right) \\
& =\mu\left(X \cap T^{-(\ell(n)-\mathbf{N})} C_{1} \cap T^{-\left(\mathbf{n}_{2}(n)-\mathbf{N}\right)} C_{2} \cap \cdots \cap T^{-\left(\mathbf{n}_{k}(n)-\mathbf{N}\right)} C_{k}\right) \\
& \rightarrow \mu\left(C_{1}\right) \ldots \mu\left(C_{k}\right) \\
& =\tilde{\mu}\left(\tilde{T}^{-\mathbf{N}} \tilde{B}_{1}\right) \ldots \tilde{\mu}\left(\tilde{T}^{-\mathbf{N}} \tilde{B}_{k}\right)=\tilde{\mu}\left(\tilde{B}_{1}\right) \ldots \mu\left(\tilde{B}_{k}\right),
\end{aligned}
$$

where $C_{j}=\tilde{\pi}_{\mathbb{N}^{d}}\left(\tilde{T}^{-\mathbf{N}} \tilde{B}_{j}\right)$ for each j. It follows that \tilde{T} is mixing on k sets.

2. Examples

Example 1. If $X=\mathbb{T}$, the additive group, and the \mathbb{N}^{2}-action T is generated by $T^{(1,0)} x=T^{(0,1)} x=2 x \bmod 1$, then it is clear that T is mixing while \tilde{T} cannot be mixing since $\tilde{T}^{(1,-1)}$ is the identity map on $\tilde{X}=\widehat{\mathbb{Z}\left[\frac{1}{2}\right]}$.

This example is of course not a faithful action - in [3] a faithful example is given, generated by the toral endomorphisms dual to the matrices $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$ and $\left[\begin{array}{ll}4 & 0 \\ 0 & 3\end{array}\right]$.

Example 2. The previous example may be refined to produce a mixing \mathbb{N}^{2}-action T with the property that $\tilde{T}^{(n, m)}$ has an identity factor for every pair n, m with opposite signs. Let X be the infinite torus $\mathbb{T}^{\mathbb{N}} \times \mathbb{T}^{\mathbb{N}} \times \ldots$ Let $S_{a}: \mathbb{T} \rightarrow \mathbb{T}$ denote the $\operatorname{map} S_{a}(x)=a x \bmod 1$, and let

$$
S^{*}=S_{2} \times S_{4} \times S_{8} \times S_{16} \times \ldots
$$

and

$$
S_{a}^{\infty}=S_{a} \times S_{a} \times S_{a} \times S_{a} \times \ldots
$$

Throughout the indicated correspondence between positions in infinite products holds. Define the \mathbb{N}^{2}-action T by the two generators

$$
T^{(1,0)}=S^{*} \times S^{*} \times S^{*} \times S^{*} \times \ldots
$$

and

$$
T^{(0,1)}=S_{2}^{\infty} \times S_{4}^{\infty} \times S_{8}^{\infty} \times S_{16}^{\infty} \times \ldots
$$

Then T is a mixing \mathbb{N}^{2}-action on X : it is enough to check that for any pair of non-trivial characters $\chi_{0}, \chi_{1} \in \widehat{X}$ the character $\chi_{0}+\widehat{T}^{(n, m)} \chi_{1}$ is non-trivial for large $(n, m) \in \mathbb{N}^{2}$ and this is clear since each character is finitely supported.

The invertible extension \tilde{T} is obtained as follows. Let $\Sigma=\widehat{\mathbb{Z}\left[\frac{1}{2}\right]}$ be the solenoid, and $\tilde{S}_{a}: \Sigma \rightarrow \Sigma$ the endomorphism dual to multiplication by a, invertible if a is a power of 2 . Then the generators of \tilde{T} are simply given by placing tildes on the definition of the generators of T, and they act on $\tilde{X}=\Sigma^{\infty}$. For any pair $(n, m) \in \mathbb{Z}^{2} \backslash\left(\mathbb{N}^{2} \cup-\mathbb{N}^{2}\right)$, the map $\tilde{T}^{(n, m)}$ has a non-trivial identity factor and therefore cannot be mixing: to see this, notice that $\tilde{T}^{(|n|, 0)}$ acts in the $|m|$ th position in each of the indicated factors as $\times 2^{|n m|}$, while $\tilde{T}^{(0,|m|)}$ acts in the $|n|$ th position in the $S_{2|m|}^{\infty}$ factor as $\times 2^{|n m|}$ in each copy of Σ.

Example 3. The opposite extreme to the previous example is given by the Gaussian construction of Ferenci and Kaminski [2]: for numbers $\alpha>0, \beta>0$ with $1, \alpha, \beta$ rationally independent they construct a two-dimensional Gaussian action T with covariance function

$$
R(n, m)=\frac{\sin (2 \pi(n \alpha+m \beta))}{2 \pi(n \alpha+m \beta)}
$$

If $\left(n_{j}, m_{j}\right)$ is a sequence with $n_{j} \alpha+m_{j} \beta \rightarrow 0$ as $j \rightarrow \infty$ then for large j we must have $n_{j} \cdot m_{j}<0$. Along such a sequence $R\left(n_{j}, m_{j}\right) \rightarrow 1$ so the action is rigid, showing that the \mathbb{Z}^{2}-action is not mixing. On the other hand, if $\left(n_{j}, m_{j}\right) \rightarrow \infty$ in \mathbb{N}^{2} or $-\mathbb{N}^{2}$ then it is clear that $R\left(n_{j}, m_{j}\right) \rightarrow 0$ showing that the \mathbb{N}^{2}-action T_{+}is mixing.

For the next example, recall that a finite set F with $(0,0) \in F \subset \mathbb{Z}^{2}$ (or \mathbb{N}^{2}) is a mixing shape for a λ-preserving \mathbb{Z}^{2}-action \tilde{T} (resp. \mathbb{N}^{2}-action T) if

$$
\lim _{k \rightarrow \infty} \lambda\left(\bigcap_{\mathbf{n} \in F} T^{-k \mathbf{n}} B_{\mathbf{n}}\right)=\prod_{\mathbf{n} \in F} \lambda\left(B_{\mathbf{n}}\right)
$$

for all measurable sets $B_{\mathbf{n}}$.
Example 4. Using ideas from algebraic dynamical systems, as described for example in [5], we exhibit an \mathbb{N}^{2}-action T which is mixing on three sets for which the extension \tilde{T} is not mixing on three sets. The example is a modification of Ledrappier's original example, $[\mathbf{4}]$. Let \mathbb{F}_{2} denote the field with two elements, let

$$
X=\left\{\mathbf{x} \in \mathbb{F}_{2}^{\mathbb{N}^{2}} \mid x_{(n-1, m+1)}+x_{(n, m)}+x_{(n+1, m)}=0 \forall(n, m) \in \mathbb{N}^{2}\right\}
$$

and define the \mathbb{N}^{2}-action T to be the shift action on X. We claim that T is mixing on three sets. To see this, work in the dual group $\widehat{X}=\mathbb{F}_{2} /\left\langle y+x+x^{2}\right\rangle$, with the \mathbb{N}^{2} action being generated by the endomorphisms dual to multiplication by x and y. The map $f(x, y) \mapsto f\left(x, x+x^{2}\right)$ identifies \widehat{X} with $\mathbb{F}_{2}[x]$, with the generators now being multiplication by x and by $x+x^{2}$. Using Fourier analysis on the group X (see for example [5, Section 27]) it is enough to show that for any $a, b, c \in \mathbb{N}$ and $\epsilon_{a}, \epsilon_{b}, \epsilon_{c} \in \mathbb{F}_{2}$ the equation

$$
\epsilon_{a} x^{a}+\epsilon_{b} x^{n_{1}} y^{m_{1}} x^{b}+\epsilon_{c} x^{n_{2}} y^{m_{2}}=0
$$

for $\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right) \in \mathbb{N}^{2}$ requires that the points $\left(n_{1}, m_{1}\right),\left(n_{2}, m_{2}\right),(0,0)$ cannot be far apart or the coefficients $\epsilon_{a}, \epsilon_{b}, \epsilon_{c}$ are zero. Using the identity $y=x+x^{2}$, the equation becomes

$$
\epsilon_{a} x^{a}+\epsilon_{b}\left(x^{b+n_{1}+m_{1}}+\cdots+x^{b+n_{1}+2 m_{1}}\right)+\epsilon_{c}\left(x^{b+n_{2}+m_{2}}+\cdots+x^{b+n_{2}+2 m_{2}}\right)=0
$$

If $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ are far from the origin then we see that $\epsilon_{a}=0$, and if $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ are far from each other then we see that $\epsilon_{b}=\epsilon_{c}=0$.

The natural extension \tilde{T} has $\{(-1,1),(0,0),(1,0)\}$ as a non-mixing shape since in the group

$$
\tilde{X}=\left\{\mathbf{x} \in \mathbb{F}_{2}^{\mathbb{N}^{2}} \mid x_{(n-1, m+1)}+x_{(n, m)}+x_{(n+1, m)}=0 \forall(n, m) \in \mathbb{Z}^{2}\right\}
$$

the relation $x_{\left(-2^{n}, 2^{n}\right)}=x_{(0,0)}+x_{\left(2^{n}, 0\right)}$ holds for all n.
It is not clear how to construct examples along the lines of Example 4 with the property that T is mixing on k sets while \tilde{T} is not mixing on k sets for each $k \geq 1$: see Remark 28.12 in [5] for what is known.

References

1. Feller W., An Introduction to Probability Theory and its Applications, vol. 2, John Wiley, New York, 1966.
2. Ferenci S. and Kaminski B., Zero entropy and directional Bernoullicity of a Gaussian Z^{2} action, Proc. American Math. Society 123 (1995), 3079-3083.
3. Lacroix Y., Natural extensions and mixing for semi-group actions, Séminaires de Probabilités de Rennes, Publ. Inst. Rech. Math. Rennes, Rennes, 1995, p. 10.
4. Ledrappier F., Un champ markovien peut être d'entropie nulle et mélangeant, Comptes Rendus Acad. Sci. Paris, Ser. A. 287 (1978), 561-562.
5. Schmidt K., Dynamical Systems of Algebraic Origin, Birkhäuser, Basel, 1995.
G. Morris, School of Mathematics, University of East Anglia Norwich NR4 7TJ, U.K., e-mail: g.morris@uea.ac.uk
T. Ward, School of Mathematics, University of East Anglia Norwich NR4 7TJ, U.K., e-mail: t.ward@uea.ac.uk

[^0]: Received March 10, 1997.
 1980 Mathematics Subject Classification (1991 Revision). Primary 28D15.
 The authors gratefully acknowledge support from EPSRC award No. 9570016X, N.S.F. grant No. DMS-94-01093, and the hospitality of the Warwick Mathematics Research Institute.

