ON COMPLETE MEASURABILITY OF MULTIFUNCTIONS DEFINED ON PRODUCT SPACES

G. KWIECIŃSKA AND W. ŚLĘZAK

1. INTRODUCTION

In the present note we occupy ourselves with the cases in which we can say that a multifunction of two variables is jointly measurable. In particular we generalize onto the case of multifunctions the Theorems 2 and 3 from paper [6, pp. 150–151]. We start with the concept of "measurable space with negligibles" which is intended as a common generalization of the two principal examples: $(S, \mathcal{M}(S), \mathcal{N}(S))$, where $(S, \mathcal{M}(S), \mu)$, is a measurable space and $\mathcal{N}(S)$ is the σ -ideal of μ -measure zero subsets of S and $(S, \mathcal{B}(S), \mathcal{I}(S))$, where $(S, \mathcal{T}(S))$ is a topological space, $\mathcal{B}(S)$ is the σ -algebra of subsets of S with the Baire property and $\mathcal{I}(S)$ is the σ -ideal of meager subsets of S.

2. Preliminaries

Definition 1 ([1, Definition 1]). A measurable space with negligibles is a triple $(S, \mathcal{M}(S), \mathcal{J}(S))$ where S is a set, $\mathcal{M}(S)$ is a σ -algebra of subsets of S and $\mathcal{J}(S) \subset \mathcal{P}(S)$ is a σ -ideal of the Boolean algebra $\mathcal{P}(S)$ generated by $\mathcal{J}(S) \cap \mathcal{M}(S)$.

Such space $(S, \mathcal{M}(S), \mathcal{J}(S))$ is said to be complete if $\mathcal{J}(S) \subset \mathcal{M}(S)$.

If $(S, \mathcal{M}(S), \mathcal{J}(S))$ is an arbitrary measurable space with negligibles, we can determine its completion $(S, \widehat{\mathcal{M}}(S), \mathcal{J}(S))$ by putting:

$$\mathcal{M}(S) = \{ H \subset S : \text{there exist two } \mathcal{M}(S) \text{-measurable sets } A \text{ and } B \text{ such} \\ \text{that } A \subset H \subset B \text{ and } A \setminus B \in \mathcal{J}(S) \}.$$

Let $(X, \mathcal{M}(X), \mathcal{J}(X))$ and $(Y, \mathcal{M}(Y), \mathcal{J}(Y))$ be two measurable spaces with negligibles. Let $\mathcal{M}(X) \otimes \mathcal{M}(Y)$ be the σ -algebra generated by $\mathcal{M}(X) \times \mathcal{M}(Y)$ and let $\mathcal{J}(X) \otimes \mathcal{J}(Y)$ denotes the σ -ideal generated by all the sets of the form

Received February 10, 1992; revised October 10, 1994.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 54C60; Secondary 28A20, 26B35.

This research was supported by Polish State Committee for Scientific Research under the contract No. 1016/2/91.

 $X \times J$ and $I \times Y$ where $I \in \mathcal{J}(X)$ and $J \in \mathcal{J}(Y)$. Let the product $X \times Y$ be endowed with the σ -ideal $\mathcal{J}(X \otimes Y)$, including $\mathcal{J}(X) \otimes \mathcal{J}(Y)$, with the following "Fubini's property":

For any set $A \in \mathcal{M}(X \otimes Y)$ the following implications hold:

(1)
$$\{x \in X : A_x \notin \mathcal{J}(Y)\} \in \mathcal{J}(X) \implies A \in \mathcal{J}(X \otimes Y) \text{ and }$$

(2) $\{y \in Y : A^y \notin \mathcal{J}(X)\} \in \mathcal{J}(Y) \implies A \in \mathcal{J}(X \otimes Y),$

where $A_x = \{y \in Y : (x, y) \in A\}$ and $A^y = \{x \in X : (x, y) \in A\}$ denote the *x*-section of *A* and *y*-section of *A* respectively and $\hat{M}(X \otimes Y)$ denotes $\mathcal{J}(X \otimes Y)$ completion of $\mathcal{M}(X) \otimes \mathcal{M}(Y)$.

3. The Abstract Baire Category Concepts

Following [8] a pair $(S, \mathcal{C}(S))$, where $\mathcal{C}(S) \subset \mathcal{P}(S)$ is a family of subsets of S, is called a category base, if the nonempty sets in $\mathcal{C}(S)$, called regions, satisfy the following axioms:

C.1. Every point of S belongs to some region, i.e. $S = \bigcup \{A : A \in \mathcal{C}(S)\}.$

C.2. Let A be a region and let $\mathcal{D}(S)$ be any nonempty family of disjoint regions which has cardinality less than the cardinality of $\mathcal{C}(S)$.

- (a) If $A \cap (\bigcup \{D : D \in \mathcal{D}(S)\})$ contains a region, then there is a region $D_0 \in \mathcal{D}(S)$ such that $A \cap D_0$ contains a region.
- (b) If $A \cap (\bigcup \{D : D \in \mathcal{D}(S)\})$ contains no region then there is a region $B \subset A$ which is disjoint from every region in $\mathcal{D}(S)$.

Notice (see [9]) that parts (a) and (b) of C.2 can be rewritten in the following form:

(c) If $A \cap B$ contains no region for each $B \in \mathcal{C}(S)$ then there is a subregion of A which is disjoint from $\bigcup \mathcal{D}(S)$.

A set E is singular if every region contains a subregion which is disjoint from E. A countable union of singular sets is called a meager set. A set which is not meager set is called an abundant set. The family of all singular sets forms an ideal and the family $\mathcal{J}_{\mathcal{C}}(S)$ of all meager sets forms a σ -ideal.

A set E is meager (resp. abundant) in a region A if $E \cap A$ is a meager (resp. abundant) set.

A set *E* has the abstract Baire property if every region $A \in \mathcal{C}(S)$ has a subregion $B \subset A$ in which either *E* or $X \setminus E$ is a meager set. The sets which have the abstract Baire property form a σ -algebra $\mathcal{B}_{\mathcal{C}}(S)$, which contains all regions and all meager sets. Thus the triple $(S, \mathcal{B}_{\mathcal{C}}(S), \mathcal{J}_{\mathcal{C}}(S))$ creates a complete measurable space with negligibles.

A family \mathcal{A} of $\mathcal{C}(S)$ -regions with the property that each abundant set is abundant everywhere in at least one region A in \mathcal{A} (i.e. it is abundant in every subregion of A) is called a quasi-base. A category base is called separable if it has a countable quasi-base.

Let $(X, \mathcal{C}(X))$ and $(Y, \mathcal{C}(Y))$ be category bases. It is known that $(X \times Y, \mathcal{C}(X) \times \mathcal{C}(Y))$ is not necessarily a category base (see Example 2A, p. 110 in [7]).

If $(X \times Y, \mathcal{C}(X) \times \mathcal{C}(Y))$ is a category base, then it is called a product base. A general theorem concerning the existence of product bases and many examples are given on pp. 112–114 in [7].

Assume that $(X \times Y, \mathcal{C}(X) \times \mathcal{C}(Y))$ is a product base and $(Y, \mathcal{C}(Y))$ is separable. Among the properties involving separability there is the following:

(3) If $A \in \mathcal{B}_{\mathcal{C}}(X \otimes Y) \land \{x : A_x \notin \mathcal{J}_{\mathcal{C}}(Y)\} \in \mathcal{J}_{\mathcal{C}}(X)$, then $A \in \mathcal{J}_{\mathcal{C}}(X \otimes Y)$,

where $\mathcal{J}_{\mathcal{C}}(X \otimes Y)$ means the σ -ideal of meager sets with respect to $\mathcal{C}(X) \times \mathcal{C}(Y)$ and $\mathcal{B}_{\mathcal{C}}(X \otimes Y)$, including $\mathcal{B}_{\mathcal{C}}(X) \otimes \mathcal{B}_{\mathcal{C}}(Y)$, the σ -algebra of sets with the abstract Baire property with respect to $\mathcal{C}(X) \times \mathcal{C}(Y)$.

4. MAIN RESULTS

Let S and Z be some sets and let $F: S \to Z$ be a multifunction (i.e. $F(s) \subset Z$ for $s \in S$). Then two counterimages of $G \subset Z$ may be defined:

(4)
$$F^+(G) = \{s \in S : F(s) \subset G\}$$
 and $F^-(G) = \{s \in S : F(s) \cap G \neq \emptyset\}.$

It is clear that

(5)
$$F^{-}(G) = S \setminus F^{+}(Z \setminus G) \text{ and } F^{-}(G) = S \setminus F^{+}(Z \setminus G).$$

Definition 2. Let $(S, \mathcal{M}(S))$ be a measurable space and let $(Z, \mathcal{T}(Z))$ be a topological space. We say that a multifunction $F: X \to Z$ is lower (upper) $\mathcal{M}(S)$ -measurable if the counterimage $F^{-}(G)$ $(F^{+}(G))$ is a $\mathcal{M}(S)$ -measurable set for each $G \in \mathcal{T}(Z)$.

We describe the relationships between lower and upper $\mathcal{M}(S)$ -measurability without any metrizability assumptions in contrast to the corresponding results from [2].

Proposition 1 (cf. [2, Theorem 3.1, p. 55] in the metric case). Let $(S, \mathcal{M}(S))$ be a measurable space, $(Z, \mathcal{T}(Z))$ a topological space and let $F: S \to Z$ be a multifunction. Then

- (i) If (Z, T(Z)) is a perfect space and F is upper M(S)-measurable, then it is lower M(S)-measurable.
- (ii) If (Z, T(Z)) is perfectly normal and F is a compact-valued lower M(S)-measurable multifunction, then it is upper M(S)-measurable.

Proof. Part (i) is obvious because we have

(6)
$$F^{-}(G) = \bigcup_{n \in N} F^{-}(B_n) \in \mathcal{M}(S),$$

where $Z \setminus B_n \in \mathcal{T}(Z)$, whenever $G \in \mathcal{T}(Z)$.

Let B be a closed subset of Z. By virtue of perfect normality of $(Z, \mathcal{T}(Z))$ there is a sequence $(G_n)_{n \in \mathbb{N}}$ of $\mathcal{T}(Z)$ -open sets such that

(7)
$$B = \bigcap_{n \in N} G_n = \bigcap_{n \in N} Cl(G_n) \quad \text{and} \quad$$

(8)
$$G_{n+1} \subset Cl(G_{n+1}) \subset G_n \quad \text{for } n = 1, 2, \dots,$$

By (7) and (5) we have

(9)
$$F^{-}(B) = S \setminus F^{+}\left(\bigcup_{n \in N} (Z \setminus G_{n})\right) = S \setminus F^{+}\left(\bigcup_{n \in N} (Z \setminus Cl(G_{n}))\right).$$

The family $\{Z \setminus Cl(G_n) : n \in N\}$ forms an open covering of compact subset F(s) for each fixed $s \in F^+(\bigcup_{n \in N} (Z \setminus G_n))$. By (8) this covering is increasing. Consequently we have

(10)
$$F(s) \subset \bigcup_{n \in N} (Z \setminus G_n) \text{ if and only if there exists } n(s) \in N \text{ such that}$$
$$F(s) \subset Z \setminus Cl(G_{n(s)} \subset Z \setminus G_{n(s)+1}.$$

Applying (10) we infer that

(11)
$$F^+\left(\bigcup_{n\in N} (Z\setminus G_n)\right) = \bigcup_{n\in N} F^+(Z\setminus G_n).$$

So (9) completes the argument and proof is finished.

Proposition 2. Let $(S, \mathcal{M}(S))$ be a measurable space and let $(Z, \mathcal{T}(Z))$ be a second countable Hausdorff space. Let $F_1, F_2: S \to Z$ be two compact-valued lower $\mathcal{M}(S)$ -measurable multifunctions. Then

(12)
$$\{s \in S : F_1(s) \neq F_2(s)\} \in \mathcal{M}(S).$$

Proof. Observe that

(13) $F_1(s) \neq F_2(s)$ if and only if there exists $z \in Z$ such that $z \in F_1(s) \div F_2(s)$, where \div denotes the symmetric difference.

Let $z_0 \in F_1(s)$ and $z_0 \notin F_2(s)$. For each $z \in F_2(s)$ let U(z) and V(z) denote open sets with the property:

(14)
$$z \in U(z) \text{ and } z_0 \in V(z) \text{ and } U(z) \cap V(z) = \emptyset.$$

The family $\{U(z) : z \in F_2(s)\}$ forms an open covering of the compact set $F_2(s)$. Thus

(15) there exists
$$n \in N$$
 and $\{z_1, z_2, \dots, z_n\} \subset Z$ such that $F_2(s) \subset \bigcup_{i=1}^n U(z_i)$.

Moreover

(16)
$$\bigcap_{i=1}^{n} V(z_i) \cap \bigcup_{i=1}^{n} U(z_i) = \emptyset.$$

There is a basic open set V in Y such that:

(17)
$$z_0 \in V \subset V(z_1) \cap V(z_2) \cap \cdots \cap V(z_n).$$

From the fact that $z_0 \in F_1(s) \cap V$ we infer that:

(18)
$$s \in F_1^-(V)$$
 and $s \in S \setminus F_2^-(V) = F_2^+(Z \setminus V).$

Consequently,

(19)
$$s \in F_1^{-}(V) \cap F_2^{+}(Z \setminus V) \in \mathcal{M}(S)$$

If on the contrary, $z_0 \in F_2(s) \setminus F_1(s)$, then symmetrically

$$s \in F_2^-(V) \cap F_1^+(Z \setminus V) \in \mathcal{M}(S)$$

for chosen in a suitable manner basic open set $V \subset Z$.

Thus, if $\{V_1, V_2, \dots\}$ create a countable basis of Z, we have

(20)
$$\{s \in S : F_1(s) \neq F_2(s)\} = \bigcup_{i \in N} [(F_1^-(V_i) \cap F_2^+(Z \setminus V_i)) \cup (F_2^-(V_i) \cap F_1^-(Z \setminus V_i))] \in \mathcal{M}(S)$$

completing the proof.

Let as remark that:

(21) the equality (20) holds also in the case when
$$F_1$$
 and F_2 are closed-valued and Z is regular and second countable.

Let $(S, \mathcal{M}(S), \mathcal{J}(S))$ be a measurable space with negligibles and let $\widehat{\mathcal{M}}(S)$ be the $\mathcal{J}(S)$ -completion of $\mathcal{M}(S)$. Let Z be a topological space and let $\mathcal{B}_0(Z)$ denotes the Borel σ -algebra of the space Z.

We define the following "projection property":

(22) If
$$A \in \mathcal{M}(S) \otimes \mathcal{B}_0(Z)$$
, then
 $\Pi_S(A) = \{s \in S : \text{there exists } z \in Z \text{ such that } (s, z) \in A\} \in \widehat{\mathcal{M}}(S).$

Among examples of spaces fulfilling "projection property" (22) are complete measure spaces $(S, \mathcal{M}(S), \mu)$ (see [1, 6B(f)]) and the $(S, \mathcal{B}_0(S), \mathcal{J}(S))$, where S is an arbitrary topological space (see [1, 7C, p. 67]). Such spaces are protodecomposable in the meaning of Definition 1B(h), in [1], and thus, by [1, 1D(b)(iii) and 1H, p. 10], their completions have σ -algebras closed under Souslin's operation, which in turn insures (22). Note that the notion of proto-decomposability of measurable spaces with negligibles were offered by D. H. Fremlin as a generalization of the localization principle of Banach, which also applies to the most important measure spaces. An abstract measurable space with negligibles $(S, \mathcal{M}(S), \mathcal{J}(S))$ which is also ω_1 -saturated, that means:

(23) If for every
$$\mathcal{A} \subset \mathcal{M}(S)$$
 card $\mathcal{A} = \omega_1$, then there exist two sets $A \in \mathcal{A}$ and $B \in \mathcal{A}$ such that $A \neq B$ and $A \cap B \notin \mathcal{J}(S)$,

is also known to be proto-decomposable and thus its completion $(S, \widehat{\mathcal{M}}(S), \mathcal{J}(S))$ has the required property (22).

Proposition 3. Let $(S, \mathcal{M}(S), \mathcal{J}(S))$ be a measurable space with negligibles and Z let be a separable metrizable space. Assume that property (22) holds.Let for $n \in N$ $F_n: S \to Z$ be a sequence of closed-valued lower $\mathcal{M}(S)$ -measurable multifunctions. Then multifunction $F: S \to Z$ given by formula:

(24)
$$F(s) = \left(\bigcap_{n \in N} F_n\right)(s) = \bigcap_{n \in N} F_n(s)$$

is upper $\widehat{\mathcal{M}}(S)$ -measurable.

Proof. Define functions $f_n: S \times Z \to R$ as follows:

(25)
$$f_n(s,z) = \operatorname{dist}(z, F_n(s)) \text{ for } (s,z) \in S \times Z,$$

where (denoting by d a metric on Z) $dist(z, B) = inf\{d(z, b) : b \in B\}$. Then observe, that the graph of F_n is the kernel of f_n :

Gr
$$F_n = \{(s, z) \in S \times Z : z \in F(s)\} = f_n^{-1}(0).$$

298

All the sections $(f_n)^z$, $z \in Z$, are $\mathcal{M}(S)$ -measurable and all the sections $(f_n)_s$, $s \in S$, are continuous on Z. Thus, by virtue of the known theorem (see e.g. Theorem 2, p. 65 in [5]) f_n is $\mathcal{M}(S) \otimes \mathcal{B}_0(Z)$ -measurable, so that, by (26) we have:

(27)
$$\operatorname{Gr} F_n \in \mathcal{M}(S) \otimes \mathcal{B}_0(Z).$$

Hence

(28) Gr
$$F = Gr\left(\bigcap_{n \in N} F_n\right) = \bigcap_{n \in N} (Gr F_n) \in \mathcal{M}(S) \otimes \mathcal{B}_0(Z).$$

Let $B \in \mathcal{B}_0(Z)$ be a closed subset of Z. By virtue of (22) we obtain

(29)
$$F^{-}(B) = \Pi_{S}(GrF \cap (S \times B)) \in \mathcal{M}(S)$$

as a projection of the intersection of two $\mathcal{M}(S) \otimes \mathcal{B}_0(Z)$ -measurable subsets of $S \times Z$, which finishes the proof.

In context of Proposition 3 let us remark that there is an example (see Example 2, p. 166 in [3]) showing, that the intersection of two lower $\mathcal{M}(S)$ -measurable multifunctions F_1 and F_2 with closed values may fail to be lower $\mathcal{M}(S)$ -measurable, even if Z is Polish, S is the unit interval endowed with the Borel σ -algebra and dom $(F_1 \cap F_2) = \{s \in S : F_1 \cap F_2 \neq \emptyset\} = S$.

Definition 3. Let $(S, \mathcal{T}(S))$ and $(Z, \mathcal{T}(Z))$ be two topological spaces and $F: S \to Z$ let be a multifunction. F is called lower semicontinuous at a point $s_0 \in S$ when for each $U \in \mathcal{T}(Z)$ we have:

(30) If $F(s_0) \cap U \neq \emptyset$, then there exists a set $G \in \mathcal{T}(S)$ such that $s_0 \in G$ and $F(s) \cap U \neq \emptyset$ for each $s \in G$.

Dualy, F is called upper semicontinuous at a point $s_0 \in S$ when for each $U \in \mathcal{T}(Z)$ we have:

(31) If $F(s_0) \subset U$, then there exists a set $G \in \mathcal{T}(S)$ such that $s_0 \in G$ and $F(s) \subset U$ for each $s \in G$.

F is lower (resp. upper) semicontinuous if it is lower (resp. upper) semicontinuous at each point $s_0 \in S$.

Let $\mathcal{U}(s_0)$ denotes a filterbase of open neighborhoods of the point $s_0 \in S$. The grill of $\mathcal{U}(s_0)$, denoted here by $\mathcal{U}''(s_0)$, is defined as follows:

(32)
$$\mathcal{U}''(s_0) = \{ A(s_0) \subset S : A(s_0) \cap U \neq \emptyset \text{ for each } U \in \mathcal{U}(s_0) \}.$$

Observe that:

(33) If
$$A \in \mathcal{U}''(s_0)$$
, then $s_0 \in Cl(A)$.

Following [4] we define the upper and lower limit of a multifunction $F \colon S \to Z$ as follows:

(34)
$$p-\underset{s \to s_0}{\text{Lim}} \sup F(s) = \bigcap_{U \in \mathcal{U}(s_0)} Cl\Bigl(\bigcup_{s \in U} F(s)\Bigr),$$

(35)
$$p-\liminf_{s \to s_0} F(s) = \bigcap_{A \in \mathcal{U}^{"}(s_0)} Cl\Bigl(\bigcup_{s \in A} F(s)\Bigr).$$

Our multifunction F is lower semicontinuous at $s_0 \in S$ if and only if $F(s_0) \subset$ p-Lim inf $_{s \to s_0} F(s)$. If the space Z is regular, F has closed values and it is continuous at $s_0 \in S$ (that means it is simultaneously lower and upper semicontinuous), then

(36)
$$p-\liminf_{s \to s_0} F(s) = F(s_0) = p-\limsup_{s \to s_0} F(s).$$

Let \mathcal{B} be a basis for S. Let us replace $\mathcal{U}''(s_0)$ in (35) by equality:

(37)
$$\mathcal{U}''(s_0) \cap \mathcal{B} = \{ U \in \mathcal{B} : s_0 \in Cl(U) \}$$

and denote the resulting operation by q-Liminf. We have:

At each continuity point s_0 of F we have also

(39)
$$\operatorname{q-Lim}_{s \to s_0} F(s) = F(s_0) = \operatorname{p-Lim}_{s \to s_0} F(s).$$

Thus the set $\{s_0 \in S : q\text{-Liminf}_{s \to s_0} F(s) \neq p\text{-Limsup}_{s \to s_0} F(s)\}$ is contained in the set D(F) of all discontinuity points of F.

Propositon 4. Let $(X, \mathcal{M}(X))$ be a measurable space, $(Y, \mathcal{T}(Y))$ a second countable topological space and let $(Z, \mathcal{T}(Z))$ be a second countable perfectly normal topological space. Let $F: X \times Y \to Z$ be a closed-valued multifunction with lower $\mathcal{M}(X)$)-measurable all sections F^y , $y \in Y$. Denote by $\mathcal{J}(X \otimes Y)$ a σ -ideal in $X \times Y$ including $\mathcal{J}(X) \otimes \mathcal{J}(Y)$ such that (22) holds. Let P be a countable dense subset of Y. Then multifunction $G_*: X \times Y \to Z$ defined by formula:

(40)
$$G_*(x,y) = \operatorname{q-Lim}_{t \to y \land t \in P} (F_x)(t)$$

300

is upper $\widehat{\mathcal{M}}(X \otimes Y)$ -measurable, where $\widehat{\mathcal{M}}(X \otimes Y)$ denotes $\mathcal{J}(X \otimes Y)$ -completion of $\mathcal{M}(X) \otimes \mathcal{B}_0(Y)$.

Proof. Let \mathcal{B} denotes a countable base of Y. We have

(41)
$$G_*(x,y) = \bigcap_{U \in \mathcal{B} \land y \in Cl(U)} Cl\Bigl(\bigcup_{t \in U \cap P} F(x,t)\Bigr).$$

Define for each $U \in \mathcal{B}$ a multifunction H_U by formula:

(42)
$$H_U(x,y) = \bigcup_{t \in U \cap P} F(x,t) \subset Z_t$$

and observe that for $V \in \mathcal{T}(Z)$ we have:

(43)
$$H_U^{-}(V) = \left\{ (x, y) : \text{there is } t \in U \cap P \text{ such that } F(x, t) \cap V \neq \emptyset \right\}$$
$$= \bigcup_{t \in U \cap P} (\{x \in X : F(x, t) \cap V \neq \emptyset\} \times Y)$$
$$= \bigcup_{t \in U \cap P} ((F^t)^{-}(V) \times Y) \in \mathcal{M}(X) \otimes \mathcal{B}_0(Y)$$

since $U \cap P$ is countable and F^t are lower $\mathcal{M}(X)$ -measurable. So by the well known fact (see [2, Prop. 2.6, p. 55]) multifunction $\overline{H}_U: X \times Y \to Z$ defined by equality:

(44)
$$\overline{H}_U(x,y) = Cl(H_U(x,y))$$

is also $\mathcal{M}(X) \otimes \mathcal{B}_0(Y)$ -measurable.

Observe that

(45)
$$G_*(x,y) = \bigcap \{ \overline{H}_U(x,y) : U \in \mathcal{B} \land y \in Cl(U) \}.$$

Define multifunction $G_U \colon X \times Y \to Z$ by formula:

$$G_U(x,y) = \begin{cases} \overline{H}_U(x,y) & \text{if } y \in Cl(U), \\ \mathbf{Z} & \text{if } y \notin Cl(U) \end{cases}$$

and observe that

(46)
$$G_U^-(V) = H_U^-(V) \cap (X \times Cl(U)) \cup (X \times (Y \setminus Cl(U)) \in \mathcal{M}(X) \otimes \mathcal{B}_0(Y).$$

We have

(47)
$$G_*(x,y) = \bigcap_{U \in \mathcal{B}} G_U(x,y).$$

By virtue of Proposition 3 multifunction G_* is upper $\widehat{\mathcal{M}}(X \otimes Y)$ -measurable (according to Proposition 1 it is also lower $\widehat{\mathcal{M}}(X \otimes Y)$ -measurable) and the proof is finished.

Proposition 5. Let X, Y, Z, P and F be the same as in Proposition 4. Define multifunction $G^* \colon X \times Y \to Z$ as follows:

(48)
$$G^*(x,y) = \operatorname{p-Lim}_{t \to y \land t \in P} (F_x)(t)$$

Then multifunction G^* is upper $\widehat{\mathcal{M}}(X \otimes Y)$ -measurable.

Proof. The proof of this proposition is very similar to the preceding one. \Box

We are now in position to state and prove our main theorem, serving as a unification and generalization in several aspects of Theorems 2 on p. 150 and 3 on p. 151 from famous paper [6].

Theorem 1. Let $(X, \mathcal{M}(X), \mathcal{J}(X))$ be a measurable space with negligibles, $(Y, \mathcal{T}(Y))$ a second countable topological space and $(Z, \mathcal{T}(Z))$ a second countable perfectly normal topological space. Let $\mathcal{J}(Y) \subset \mathcal{B}_0(Y)$ be a Borel σ -ideal in Ysuch that there exists a σ -ideal $\mathcal{J}(X \otimes Y)$ including $\mathcal{J}(X) \otimes \mathcal{J}(Y)$ fulfilling (1) and (22). Assume that $F: X \times Y \to Z$ is a closed valued multifunction with the following three properties:

- (i) All the sections F^y , $y \in Y$, are lower $\widehat{\mathcal{M}}(X)$ -measurable.
- (ii) For all $x \in X$ the set $D(F_x)$ of discontinuity points of the section F_x is $\mathcal{J}(Y)$ -negligible.
- (iii) For all $(x, y) \in X \times Y$ the inclusions

(49)
$$G_*(x,y) \subset F(x,y) \subset G^*(x,y)$$

hold, where G_* and G^* are multifunctions constructed from F according to (40) and (48) by using some fixed countable dense subset $P \subset Y$, the existence of which we assume. Then F is lower measurable with respect to the $\mathcal{J}(X \otimes Y)$ -completion of $\mathcal{M}(X) \otimes \mathcal{B}_0(Y)$.

Proof. Let us consider the set:

(50)
$$A = \{(x, y) : G_*(x, y) \neq G^*(x, y)\}$$

Both multifunction G_* and G^* are upper $\widehat{\mathcal{M}}(X \otimes Y)$ -measurable by virtue of Propositions 4 and 5 respectively. Therefore by the remark (21) (Z being perfectly normal is also regular) we infer that $A \in \widehat{\mathcal{M}}(X \otimes Y)$. Observe that by the assumption (ii) all x-sections of the set A are $\mathcal{J}(Y)$ -negligibles:

(51)
$$A_x = \{y \in Y : G_*(x,y) \neq G^*(x,y)\} \subset D(F_x) \in \mathcal{J}(Y).$$

Consequently we have

(52)
$$\{x \in X : A_x \notin \mathcal{J}(Y)\} = \emptyset \in \mathcal{J}(X)\},\$$

which, by using (1), insures the appartenancy of A to the $\mathcal{J}(X \otimes Y)$. The double inclusion (49) entrains, by transitivity, implication:

(53) If
$$G_*(x,y) = G^*(x,y)$$
, then $G_*(x,y) = F(x,y)$,

which, in tour, guarantees the $\mathcal{J}(X \otimes Y)$ -negligibility of A_1 :

(54)
$$A_1 = \{(x,y) : G_*(x,y) \neq F(x,y)\} \subset A \in \mathcal{J}(X \otimes Y).$$

Next, let U be an arbitrary open subset of Z. G_* is upper $\widehat{\mathcal{M}}(X \otimes Y)$ -measurable and thus, by Proposition 1 it is also lower $\widehat{\mathcal{M}}(X \otimes Y)$ -measurable. So that we have:

(55)
$$G_*^{-}(U) = (B \setminus A_2) \cup A_3 \in \widehat{\mathcal{M}}(X \otimes Y)$$

for some $B \in \mathcal{M}(X) \otimes \mathcal{B}_0(Y)$ and $A_2, A_3 \in \mathcal{J}(X \otimes Y)$.

Next let us remark that by (53) and (54):

$$F^{-}(U) = (F^{-}(U) \cap (X \times Y \setminus A_1)) \cup (F^{-}(U) \cap A_1)$$
$$= (G_*^{-}(U) \cap (X \times Y \setminus A_1)) \cup A_4 = (B \setminus A_5) \cup A_4,$$

where $A_4 = F^-(U) \cap A_1, A_5 = A_1 \cup [A_2 \cap (X \times Y \setminus A_1)].$

All the sets A_i , i = 1, 2, ..., 5, are $\mathcal{J}(X \otimes Y)$ -negligibles members of $\widehat{\mathcal{M}}(X \otimes Y)$. Therefore F is lower measurable with respect to the $\mathcal{J}(X \otimes Y)$ completion of $\mathcal{M}(X) \otimes \mathcal{B}_0(Y)$ and if it is moreover compact-valued also upper $\widehat{\mathcal{M}}(X \otimes Y)$ -measurable. The proof of theorem is finished.

The same proof works in the case of multifunctions defined on product category base $(X \times Y, \mathcal{C}(X) \times \mathcal{C}(Y))$ (cf. [7]), where $(Y, \mathcal{C}(Y))$ is a separable category base. We use (3) instead of (1), we take as P a subset obtained by selecting a point from each member of countable quasi-base of Y, and we generalize the notion of continuity by taking in all Definitions 3 the set all members of this quasi-base containing $y_0 \in Y$ instead of the filter base $\mathcal{U}(y_0)$. The thesis of Proposition 3 holds in the presence of proto-decomposability of product space $X \times Y$ endowed with the σ -algebra of sets with the abstract Baire property. This version seems to be new even in the single-valued case of real functions defined on the product of category bases.

Question 1. Let $(Y, \mathcal{T}(Y), \mathcal{S}(Y), \mathcal{M}(Y), \mathcal{J}(Y))$ be a bitopological space which is simultaneously a measurable space with negligibles $\mathcal{J}(Y)$.

Two topologies $\mathcal{T}(Y)$ and $\mathcal{S}(Y)$ are assumed to be related modulo σ -ideal $\mathcal{J}(Y)$ namely the symmetric difference $Cl_{\mathcal{T}}(A) \div Cl_{\mathcal{S}}(A)$ is $\mathcal{J}(Y)$ -negligible for each subset $A \subset Y$. From Th. 2 in [10] it follows that for each multifunction $H: Y \to Z$ (where Z is a second countable Hausdorff space) which is at every point $y \in Y$ either $\mathcal{T}(Y)$ -continuous or $\mathcal{S}(Y)$ -continuous the set $\mathcal{T} \cap \mathcal{S}$ - $D(H) \in \mathcal{J}(Y)$. Under what conditions imposed on $\mathcal{T}(Y)$ and $\mathcal{S}(Y)$ we have

(56)
$$\mathcal{T} \cap \mathcal{S}\operatorname{-q-Lim}_{t \to y \land t \in P} H(t) \subset H(y) \subset \mathcal{T} \cap \mathcal{S}\operatorname{-p-Lim}_{t \to y \land t \in P} H(t)?$$

Let $(X, \mathcal{M}(X), \mathcal{J}(X))$ be a (complete) measurable space with negligibles. Under what conditions a multifunction $F: X \times Y \to Z$, whose all x-sections are at each $y \in Y$ either $\mathcal{T}(Y)$ -continuous or $\mathcal{S}(Y)$ -continuous and all y-section are $\widehat{\mathcal{M}}(X)$ -measurable, is $\widehat{\mathcal{M}}(X \otimes Y)$ -measurable. Evidently $(Y, \mathcal{T}(Y) \cap \mathcal{S}(Y))$ is assumed to be second countable Baire space and $\mathcal{M}(Y)$ is related with the $\mathcal{T}(Y) \cap$ $\mathcal{S}(Y)$ -Borel σ -algebra $\mathcal{B}_0(Y, \mathcal{T}(Y) \cap \mathcal{S}(Y))$. Is the condition \mathcal{T} -Lim $H(y) \subset H(y) \subset$ \mathcal{S} -Lim H(y) sufficient for the double inclusion (56)?

In that manner we have the possibility to obtain many applications of Theorem 1, e.g. for multifunctions whose x-sections are monotone in certain generalized meaning.

Question 2. Let Y be a (finite dimensional) Euclidean space with the scalar product $\langle \cdot | \cdot \rangle$. Let us consider the unit sphere

(57)
$$S^{1} = \left\{ y \in Y : ||y|| = \sqrt{\langle y | y \rangle} = 1 \right\}$$

endowed with the metric $\varrho(y_1, y_2) = \arccos \langle y_1 | y_2 \rangle$. By an angular region in Y is called the subset of the form

(58)
$$\Omega(y_0, V) = y_0 + \left\{ y \in Y : \frac{y}{\|y\|} \in V \right\},$$

where $V \subset S^1$ is a ϱ -open subset of the unit sphere S^1 (cf. [11, p. 318]).

A multifunction $H: Y \to Z$, where Z is an arbitrary topological space, is called lower semicontinuous at $y_0 \in Y$ from the angular region $\Omega(y_0, V)$ if for each open subset $G \subset Z$ such that $G \cap H(y_0) \neq \emptyset$ the big inverse image $H^-(G)$ contains $\Omega(y_0, V) \cap \{y \in Y : ||y - y_0|| < r\}$ for some r > 0.

Analogously, H is called upper semicontinuous at $y_0 \in Y$ from $\Omega(y_0, V)$ if for each subset $G \subset Z$ such that $H(y_0) \subset G$ the small inverse image $H^+(G)$ contains $\Omega(y_0, V) \cap \{y \in Y : \|y - y_0\| < r\}$ for some r > 0.

A multifunction H is said to be Ω -lower (resp. upper) semicontinuous on Y, if for each $y \in Y$ there is an angular region $\Omega(y, V(y))$ such that H is lower (resp. upper) semicontinuous at y from $\Omega(y, V(y))$.

A multifunction simultaneously Ω -lower and Ω -upper semicontinuous is called Ω -continuous.

Under what conditions a multifunction $F: X \times Y \to Z$, where Y is as above, X is a complete measurable space with negligibles and Z is a second countable perfectly normal topological space, with Ω -continuous x-sections and $\mathcal{M}(X)$ -measurable y-sections is $\widetilde{\mathcal{M}}(X \otimes Y)$ -measurable with respect to the $\mathcal{J}(X \otimes Y)$ -completion of $\mathcal{M}(X) \otimes \mathcal{B}_0(Y)$. The σ -ideal $\mathcal{J}(X \otimes Y)$ including $\mathcal{J}(X) \otimes \mathcal{J}(Y)$ means here an σ -ideal fulfilling the conditions of Theorem 1, where $\mathcal{J}(Y)$ is a Borel σ -ideal in Y, e.g. of subsets of Lebesgue measure zero or of the first category. Is the finite-dimensionality of Y essential?

References

- Fremlin D. H., Measure additive coverings and measurable selectors, Dissertationes Mathematicae CCLLX (1987), 1–120.
- 2. Himmelberg C. J., Measurable relations, Fund. Math. LXXXVII (1975), 53–72.
- Himmelberg C. J., Parthasaratly T. and Van Vleck F. S., On measurable relations, Fund. Math. CXI (1981), 161–167.
- Jacobs M. Q., Measurable multivalued mappings and Lusin theorem, Trans. AMS 146 (1968), 471–481.
- 5. Kwiecińska G.and Ślęzak W., Zeszyty Naukowe UG.
- Marczewski E. and Ryll-Nardzewski Cz., Sur la measurabilité des fonctions de plusieurs variables, Ann. Soc. Polon. Math. 25 (1952), 145–154.
- 7. Morgan II J. C., On product bases, Pacific J. of Math. 99(1) (1982), 105-126.
- Measurability and the abstract Baire property, Rendiconti del Circolo Mathematico di Palermo XXXIV (1985), 234–244.
- 9. Szymański A. and Detlefsen M., Category bases, (to appear).
- 10. Ślęzak W., On asymmetry of multifunctions, Problemy Matematyczne 12 (1991), 35-43.
- 11. Ursell H. D., Some Methods of Proving Measurability, Fund. Math. XXXII (1939), 311-330.

G. Kwiecińska, Uniwersytet Gdański, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland, e-mail: gkk@ksinet.univ.gda.pl

W. Ślęzak, Wyźsza Szkoła Pedagogiczna, Instutut Matematyki, Weyssenhoffa 11, 85-072 Bydgoszcz, Poland