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ON COMPLETE MEASURABILITY OF

MULTIFUNCTIONS DEFINED ON PRODUCT SPACES

G. KWIECIŃSKA and W. ŚLȨZAK

1. Introduction

In the present note we occupy ourselves with the cases in which we can say that

a multifunction of two variables is jointly measurable. In particular we generalize

onto the case of multifunctions the Theorems 2 and 3 from paper [6, pp. 150–151].

We start with the concept of “measurable space with negligibles” which is intended

as a common generalization of the two principal examples: (S,M(S),N (S)), where

(S,M(S), µ), is a measurable space and N (S) is the σ-ideal of µ-measure zero

subsets of S and (S,B(S), I(S)), where (S, T (S)) is a topological space, B(S) is

the σ-algebra of subsets of S with the Baire property and I(S) is the σ-ideal of

meager subsets of S.

2. Preliminaries

Definition 1 ([1, Definition 1]). A measurable space with negligibles is a triple

(S,M(S),J (S)) where S is a set,M(S) is a σ-algebra of subsets of S and J (S) ⊂
P(S) is a σ-ideal of the Boolean algebra P(S) generated by J (S) ∩M(S).

Such space (S,M(S),J (S)) is said to be complete if J (S) ⊂M(S).

If (S,M(S),J (S))is an arbitrary measurable space with negligibles, we can

determine its completion (S,M̂(S),J (S)) by putting:

M̂(S) =
{
H ⊂ S : there exist twoM(S)-measurable sets A and B such

that A ⊂ H ⊂ B and A \B ∈ J (S)
}
.

Let (X,M(X),J (X)) and (Y,M(Y ),J (Y )) be two measurable spaces with

negligibles. Let M(X) ⊗M(Y ) be the σ-algebra generated by M(X) ×M(Y )

and let J (X) ⊗ J (Y ) denotes the σ-ideal generated by all the sets of the form
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X × J and I × Y where I ∈ J (X) and J ∈ J (Y ). Let the product X × Y be

endowed with the σ-ideal J (X ⊗ Y ), including J (X)⊗J (Y ), with the following

“Fubini’s property”:

For any set A ∈ M̂(X ⊗ Y ) the following implications hold:

{x ∈ X : Ax /∈ J (Y )} ∈ J (X) =⇒ A ∈ J (X ⊗ Y ) and(1)

{y ∈ Y : Ay /∈ J (X)} ∈ J (Y ) =⇒ A ∈ J (X ⊗ Y ),(2)

where Ax = {y ∈ Y : (x, y) ∈ A} and Ay = {x ∈ X : (x, y) ∈ A} denote the

x-section of A and y-section of A respectively and M̂(X ⊗ Y ) denotes J (X ⊗ Y )-

completion of M(X)⊗M(Y ).

3. The Abstract Baire Category Concepts

Following [8] a pair (S, C(S)), where C(S) ⊂ P(S) is a family of subsets of S,

is called a category base, if the nonempty sets in C(S), called regions, satisfy the

following axioms:

C.1. Every point of S belongs to some region, i.e. S =
⋃
{A : A ∈ C(S)}.

C.2. Let A be a region and let D(S) be any nonempty family of disjoint regions

which has cardinality less than the cardinality of C(S).

(a) If A ∩ (
⋃
{D : D ∈ D(S)}) contains a region, then there is a region

D0 ∈ D(S) such that A ∩D0 contains a region.

(b) If A∩(
⋃
{D : D ∈ D(S)}) contains no region then there is a region B ⊂ A

which is disjoint from every region in D(S).

Notice (see [9]) that parts (a) and (b) of C.2 can be rewritten in the following

form:

(c) If A ∩ B contains no region for each B ∈ C(S) then there is a subregion

of A which is disjoint from
⋃
D(S).

A set E is singular if every region contains a subregion which is disjoint from E.

A countable union of singular sets is called a meager set. A set which is not meager

set is called an abundant set. The family of all singular sets forms an ideal and

the family JC(S) of all meager sets forms a σ-ideal.

A set E is meager (resp. abundant) in a region A if E ∩ A is a meager (resp.

abundant) set.

A set E has the abstract Baire property if every region A ∈ C(S) has a subregion

B ⊂ A in which either E or X\E is a meager set. The sets which have the abstract

Baire property form a σ-algebra BC(S), which contains all regions and all meager

sets. Thus the triple (S,BC(S),JC(S)) creates a complete measurable space with

negligibles.

A family A of C(S)-regions with the property that each abundant set is abun-

dant everywhere in at least one regionA inA (i.e. it is abundant in every subregion
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of A) is called a quasi-base. A category base is called separable if it has a countable

quasi-base.

Let (X, C(X)) and (Y, C(Y )) be category bases. It is known that (X × Y,

C(X)× C(Y )) is not necessarily a category base (see Example 2A, p. 110 in [7]).

If (X × Y, C(X) × C(Y )) is a category base, then it is called a product base.

A general theorem concerning the existence of product bases and many examples

are given on pp. 112–114 in [7].

Assume that (X×Y, C(X)×C(Y )) is a product base and (Y, C(Y )) is separable.

Among the properties involving separability there is the following:

(3) If A ∈ BC(X ⊗ Y ) ∧ {x : Ax 6∈ JC(Y )} ∈ JC(X), then A ∈ JC(X ⊗ Y ),

where JC(X ⊗ Y ) means the σ-ideal of meager sets with respect to C(X)× C(Y )

and BC(X ⊗Y ), including BC(X)⊗BC(Y ), the σ-algebra of sets with the abstract

Baire property with respect to C(X)× C(Y ).

4. Main Results

Let S and Z be some sets and let F : S → Z be a multifunction (i.e. F (s) ⊂ Z
for s ∈ S ). Then two counterimages of G ⊂ Z may be defined:

(4) F+(G) = {s ∈ S : F (s) ⊂ G} and F−(G) = {s ∈ S : F (s) ∩G 6= ∅}.

It is clear that

(5) F−(G) = S \ F+(Z \G) and F−(G) = S \ F+(Z \G).

Definition 2. Let (S,M(S)) be e measurable space and let (Z, T (Z)) be a

topological space. We say that a multifunction F : X → Z is lower (upper)

M(S)-measurable if the counterimage F−(G) (F+(G)) is aM(S)-measurable set

for each G ∈ T (Z).

We describe the relationships between lower and upper M(S)-measurability

without any metrizability assumptions in contrast to the corresponding results

from [2].

Proposition 1 (cf. [2, Theorem 3.1, p. 55] in the metric case). Let (S,M(S))

be a measurable space, (Z, T (Z)) a topological space and let F : S → Z be a mul-

tifunction. Then

(i) If (Z, T (Z)) is a perfect space and F is upper M(S)-measurable, then it

is lower M(S)-measurable.

(ii) If (Z, T (Z)) is perfectly normal and F is a compact-valued lower

M(S)-measurable multifunction, then it is upper M(S)-measurable.
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Proof. Part (i) is obvious because we have

(6) F−(G) =
⋃
n∈N

F−(Bn) ∈ M(S),

where Z \Bn ∈ T (Z), whenever G ∈ T (Z).

Let B be a closed subset of Z. By virtue of perfect normality of (Z, T (Z)) there

is a sequence (Gn)n∈N of T (Z)-open sets such that

B =
⋂
n∈N

Gn =
⋂
n∈N

Cl(Gn) and(7)

Gn+1 ⊂ Cl(Gn+1) ⊂ Gn for n = 1, 2, . . . , .(8)

By (7) and (5) we have

(9) F−(B) = S \ F+
( ⋃
n∈N

(Z \Gn)
)

= S \ F+
( ⋃
n∈N

(Z \ Cl(Gn)
)
.

The family {Z \ Cl(Gn) : n ∈ N} forms an open covering of compact subset

F (s) for each fixed s ∈ F+(
⋃
n∈N (Z \ Gn)). By (8) this covering is increasing.

Consequently we have

F (s) ⊂
⋃
n∈N

(Z \Gn) if and only if there exists n(s) ∈ N such that(10)

F (s) ⊂ Z \ Cl(Gn(s) ⊂ Z \Gn(s)+1.

Applying (10) we infer that

(11) F+
( ⋃
n∈N

(Z \Gn)
)

=
⋃
n∈N

F+(Z \Gn).

So (9) completes the argument and proof is finished. �

Proposition 2. Let (S,M(S)) be a measurable space and let (Z, T (Z) be a

second countable Hausdorff space. Let F1, F2 : S → Z be two compact-valued lower

M(S)-measurable multifunctions. Then

(12) {s ∈ S : F1(s) 6= F2(s)} ∈ M(S).

Proof. Observe that

F1(s) 6= F2(s) if and only if there exists z ∈ Z such that(13)

z ∈ F1(s)÷ F2(s), where ÷ denotes the symmetric difference.
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Let z0 ∈ F1(s) and z0 /∈ F2(s). For each z ∈ F2(s) let U(z) and V (z) denote

open sets with the property:

(14) z ∈ U(z) and z0 ∈ V (z) and U(z) ∩ V (z) = ∅.

The family {U(z) : z ∈ F2(s)} forms an open covering of the compact set F2(s).

Thus

(15) there exists n ∈ N and {z1, z2, . . . , zn} ⊂ Z such that F2(s) ⊂
n⋃
i=1

U(zi).

Moreover

(16)
⋂n

i=1
V (zi) ∩

⋃n

i=1
U(zi) = ∅.

There is a basic open set V in Y such that:

(17) z0 ∈ V ⊂ V (z1) ∩ V (z2) ∩ · · · ∩ V (zn).

From the fact that z0 ∈ F1(s) ∩ V we infer that:

(18) s ∈ F1
−(V ) and s ∈ S \ F2

−(V ) = F2
+(Z \ V ).

Consequently,

(19) s ∈ F1
−(V ) ∩ F2

+(Z \ V ) ∈ M(S).

If on the contrary, z0 ∈ F2(s) \ F1(s), then symmetrically

s ∈ F2
−(V ) ∩ F1

+(Z \ V ) ∈M(S)

for chosen in a suitable manner basic open set V ⊂ Z.

Thus, if {V1, V2, . . . } create a countable basis of Z, we have{
s ∈ S : F1(s) 6= F2(s)

}
=
⋃

i∈N
[(F1

−(Vi) ∩ F2
+(Z \ Vi))(20)

∪ (F2
−(Vi) ∩ F1

−(Z \ Vi))] ∈ M(S)

completing the proof. �

Let as remark that:

the equality (20) holds also in the case when F1 and F2(21)

are closed-valued and Z is regular and second countable.
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Let (S,M(S),J (S)) be a measurable space with negligibles and let M̂(S) be

the J (S)-completion ofM(S). Let Z be a topological space and let B0(Z) denotes

the Borel σ-algebra of the space Z.

We define the following “projection property”:

If A ∈ M(S)⊗ B0(Z), then(22)

ΠS(A) = {s ∈ S : there exists z ∈ Z such that (s, z) ∈ A}∈ M̂(S).

Among examples of spaces fulfilling “projection property” (22) are complete

measure spaces (S,M(S), µ) ( see [1, 6B(f)]) and the (S,B0(S),J (S)), where

S is an arbitrary topological space (see [1, 7C, p. 67]). Such spaces are proto-

decomposable in the meaning of Definition 1B(h), in [1], and thus, by [1, 1D(b)(iii)

and 1H, p. 10], their completions have σ-algebras closed under Souslin’s operation,

which in turn insures (22). Note that the notion of proto-decomposability of mea-

surable spaces with negligibles were offered by D. H. Fremlin as a generalization

of the localization principle of Banach, which also applies to the most important

measure spaces. An abstract measurable space with negligibles (S,M(S),J (S))

which is also ω1-saturated, that means:

If for every A ⊂M(S) card A = ω1, then there exist two sets(23)

A ∈ A and B ∈ A such that A 6= B and A ∩B 6∈ J (S),

is also known to be proto-decomposable and thus its completion (S,M̂(S),J (S))

has the required property (22).

Proposition 3. Let (S,M(S),J (S)) be a measurable space with negligibles

and Z let be a separable metrizable space. Assume that property (22) holds.Let

for n ∈ N Fn : S → Z be a sequence of closed-valued lower M(S)-measurable

multifunctions. Then multifunction F : S → Z given by formula:

(24) F (s) =
(⋂

n∈N
Fn

)
(s) =

⋂
n∈N

Fn(s)

is upper M̂(S)-measurable.

Proof. Define functions fn : S × Z → R as follows:

(25) fn(s, z) = dist(z, Fn(s)) for (s, z) ∈ S × Z,

where (denoting by d a metric on Z) dist(z,B) = inf{d(z, b) : b ∈ B}.
Then observe, that the graph of Fn is the kernel of fn:

GrFn = {(s, z) ∈ S × Z : z ∈ F (s)} = fn
−1(0).
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All the sections (fn)
z
, z ∈ Z, are M(S)-measurable and all the sections (fn)s,

s ∈ S, are continuous on Z. Thus, by virtue of the known theorem (see e.g.

Theorem 2, p. 65 in [5]) fn isM(S)⊗B0(Z)-measurable, so that, by (26) we have:

(27) GrFn ∈ M(S)⊗ B0(Z).

Hence

(28) Gr F = Gr
(⋂

n∈N
Fn

)
=
⋂

n∈N
(Gr Fn) ∈ M(S)⊗ B0(Z).

Let B ∈ B0(Z) be a closed subset of Z. By virtue of (22) we obtain

(29) F−(B) = ΠS(GrF ∩ (S ×B)) ∈ M̂(S)

as a projection of the intersection of two M(S) ⊗ B0(Z)-measurable subsets of

S × Z, which finishes the proof. �

In context of Proposition 3 let us remark that there is an example (see Exam-

ple 2, p. 166 in [3]) showing, that the intersection of two lowerM(S)-measurable

multifunctions F1 and F2 with closed values may fail to be lowerM(S)-measurable,

even if Z is Polish, S is the unit interval endowed with the Borel σ-algebra and

dom (F1 ∩ F2) = {s ∈ S : F1 ∩ F2 6= ∅} = S.

Definition 3. Let (S, T (S)) and (Z, T (Z)) be two topological spaces and

F : S → Z let be a multifunction. F is called lower semicontinuous at a point

s0 ∈ S when for each U ∈ T (Z) we have:

If F (s0) ∩ U 6= ∅, then there exists a set G ∈ T (S) such that(30)

s0 ∈ G and F (s) ∩ U 6= ∅ for each s ∈ G.

Dualy, F is called upper semicontinuous at a point s0 ∈ S when for each

U ∈ T (Z) we have:

If F (s0) ⊂ U , then there exists a set G ∈ T (S) such that(31)

s0 ∈ G and F (s) ⊂ U for each s ∈ G.

F is lower (resp. upper) semicontinuous if it is lower (resp. upper) semicontin-

uous at each point s0 ∈ S.

Let U(s0) denotes a filterbase of open neighborhoods of the point s0 ∈ S. The

grill of U(s0), denoted here by U ′′(s0), is defined as follows:

(32) U ′′(s0) =
{
A(s0) ⊂ S : A(s0) ∩ U 6= ∅ for each U ∈ U(s0)

}
.
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Observe that:

(33) If A ∈ U ′′(s0), then s0 ∈ Cl(A).

Following [4] we define the upper and lower limit of a multifunction F : S → Z

as follows:

p-Lim sup
s→s0

F (s) =
⋂

U∈U(s0)
Cl
(⋃

s∈U
F (s)

)
,(34)

p-Lim inf
s→s0

F (s) =
⋂

A∈U”(s0)
Cl
(⋃

s∈A
F (s)

)
.(35)

Our multifunction F is lower semicontinuous at s0 ∈ S if and only if F (s0) ⊂
p-Lim inf s→s0 F (s). If the space Z is regular, F has closed values and it is contin-

uous at s0 ∈ S (that means it is simultaneously lower and upper semicontinuous),

then

(36) p-Lim inf
s→s0

F (s) = F (s0) = p-Lim sup
s→s0

F (s).

Let B be a basis for S. Let us replace U ′′(s0) in (35) by equality:

(37) U ′′(s0) ∩ B = {U ∈ B : s0 ∈ Cl(U)}

and denote the resulting operation by q-Lim inf . We have:

(38) p-Lim inf ⊂ q-Lim inf ⊂ p-Lim sup .

At each continuity point s0 of F we have also

(39) q-Lim inf
s→s0

F (s) = F (s0) = p-Lim sup
s→s0

F (s).

Thus the set {s0 ∈ S : q-Lim inf s→s0 F (s) 6= p-Lim sup s→s0 F (s)} is contained

in the set D(F ) of all discontinuity points of F .

Propositon 4. Let (X,M(X)) be a measurable space, (Y, T (Y )) a second

countable topological space and let (Z, T (Z)) be a second countable perfectly nor-

mal topological space. Let F : X × Y → Z be a closed-valued multifunction with

lower M(X))-measurable all sections F y, y ∈ Y .Denote by J (X⊗Y ) a σ-ideal in

X × Y including J (X)⊗ J (Y ) such that (22) holds. Let P be a countable dense

subset of Y . Then multifunction G∗ : X × Y → Z defined by formula:

(40) G∗(x, y) = q-Lim inf
t→y∧t∈P

(Fx)(t)
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is upper M̂(X ⊗ Y )-measurable, where M̂(X ⊗ Y ) denotes J (X ⊗ Y )-completion

of M(X)⊗ B0(Y ).

Proof. Let B denotes a countable base of Y . We have

(41) G∗(x, y) =
⋂

U∈B∧y∈Cl(U)
Cl
(⋃

t∈U∩P
F (x, t)

)
.

Define for each U ∈ B a multifunction HU by formula:

(42) HU (x, y) =
⋃

t∈U∩P
F (x, t) ⊂ Z,

and observe that for V ∈ T (Z) we have:

HU
−(V ) =

{
(x, y) : there is t ∈ U ∩ P such that F (x, t) ∩ V 6= ∅

}
(43)

=
⋃

t∈U∩P
({x ∈ X : F (x, t) ∩ V 6= ∅} × Y )

=
⋃

t∈U∩P
((F t)

−
(V )× Y ) ∈M(X)⊗ B0(Y )

since U ∩ P is countable and F t are lower M(X)-measurable. So by the well

known fact (see [2, Prop. 2.6, p. 55]) multifunction HU : X × Y → Z defined by

equality:

(44) HU(x, y) = Cl(HU (x, y))

is also M(X)⊗ B0(Y )-measurable.

Observe that

(45) G∗(x, y) =
⋂
{HU (x, y) : U ∈ B ∧ y ∈ Cl(U)}.

Define multifunction GU : X × Y → Z by formula:

GU (x, y) =

{
HU (x, y) if y ∈ Cl(U),

Z if y 6∈ Cl(U)

and observe that

(46) GU
−(V ) = HU

−(V ) ∩ (X × Cl(U)) ∪ (X × (Y \ Cl(U)) ∈ M(X)⊗ B0(Y ).

We have

(47) G∗(x, y) =
⋂

U∈B
GU (x, y).

By virtue of Proposition 3 multifunction G∗ is upper M̂(X ⊗ Y )-measurable

(according to Proposition 1 it is also lower M̂(X ⊗ Y )-measurable) and the proof

is finished. �
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Proposition 5. Let X, Y , Z, P and F be the same as in Proposition 4. Define

multifunction G∗ : X × Y → Z as follows:

(48) G∗(x, y) = p-Lim sup
t→y∧t∈P

(Fx)(t).

Then multifunction G∗ is upper M̂(X ⊗ Y )-measurable.

Proof. The proof of this proposition is very similar to the preceding one. �

We are now in position to state and prove our main theorem, serving as a

unification and generalization in several aspects of Theorems 2 on p. 150 and 3 on

p. 151 from famous paper [6].

Theorem 1. Let (X,M(X),J (X)) be a measurable space with negligibles,

(Y, T (Y )) a second countable topological space and (Z, T (Z)) a second countable

perfectly normal topological space. Let J (Y ) ⊂ B0(Y ) be a Borel σ-ideal in Y

such that there exists a σ-ideal J (X ⊗ Y ) including J (X) ⊗ J (Y ) fulfilling (1)

and (22). Assume that F : X × Y → Z is a closed valued multifunction with the

following three properties:

(i) All the sections F y, y ∈ Y , are lower M̂(X)-measurable.

(ii) For all x ∈ X the set D(Fx) of discontinuity points of the section Fx is

J (Y )-negligible.

(iii) For all (x, y) ∈ X × Y the inclusions

(49) G∗(x, y) ⊂ F (x, y) ⊂ G∗(x, y)

hold, where G∗ and G∗ are multifunctions constructed from F according

to (40) and (48) by using some fixed countable dense subset P ⊂ Y , the

existence of which we assume. Then F is lower measurable with respect

to the J (X ⊗ Y )-completion of M(X)⊗ B0(Y ).

Proof. Let us consider the set:

(50) A = {(x, y) : G∗(x, y) 6= G∗(x, y)}.

Both multifunction G∗ and G∗ are upper M̂(X ⊗ Y )-measurable by virtue

of Propositions 4 and 5 respectively. Therefore by the remark (21) (Z being

perfectly normal is also regular) we infer that A ∈ M̂(X ⊗ Y ). Observe that by

the assumption (ii) all x-sections of the set A are J (Y )-negligibles:

(51) Ax = {y ∈ Y : G∗(x, y) 6= G∗(x, y)} ⊂ D(Fx) ∈ J (Y ).

Consequently we have

(52) {x ∈ X : Ax 6∈ J (Y )} = ∅ ∈ J (X)},
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which, by using (1), insures the appartenancy of A to the J (X ⊗ Y ). The double

inclusion (49) entrains, by transitivity, implication:

(53) If G∗(x, y) = G∗(x, y), then G∗(x, y) = F (x, y),

which, in tour, guarantees the J (X ⊗ Y )-negligibility of A1:

(54) A1 = {(x, y) : G∗(x, y) 6= F (x, y)} ⊂ A ∈ J (X ⊗ Y ).

Next, let U be an arbitrary open subset of Z. G∗ is upper M̂(X⊗Y )-measurable

and thus, by Proposition 1 it is also lower M̂(X⊗Y )-measurable. So that we have:

(55) G∗
−(U) = (B \A2) ∪A3 ∈ M̂(X ⊗ Y )

for some B ∈M(X)⊗ B0(Y ) and A2, A3 ∈ J (X ⊗ Y ).

Next let us remark that by (53) and (54):

F−(U) = (F−(U) ∩ (X × Y \A1)) ∪ (F−(U) ∩A1)

= (G∗
−(U) ∩ (X × Y \A1)) ∪A4 = (B \A5) ∪A4,

where A4 = F−(U) ∩A1, A5 = A1 ∪ [A2 ∩ (X × Y \A1)].

All the sets Ai, i = 1, 2, . . . , 5, are J (X ⊗ Y )-negligibles members of

M̂(X ⊗ Y ). Therefore F is lower measurable with respect to the J (X ⊗ Y )-

completion of M(X) ⊗ B0(Y ) and if it is moreover compact-valued also upper

M̂(X ⊗ Y )-measurable. The proof of theorem is finished. �

The same proof works in the case of multifunctions defined on product category

base (X × Y, C(X)×C(Y )) (cf. [7]), where (Y, C(Y )) is a separable category base.

We use (3) instead of (1), we take as P a subset obtained by selecting a point

from each member of countable quasi-base of Y , and we generalize the notion of

continuity by taking in all Definitions 3 the set all members of this quasi-base

containing y0 ∈ Y instead of the filter base U(y0). The thesis of Proposition 3

holds in the presence of proto-decomposability of product space X × Y endowed

with the σ-algebra of sets with the abstract Baire property. This version seems to

be new even in the single-valued case of real functions defined on the product of

category bases.

Question 1. Let (Y, T (Y ),S(Y ),M(Y ),J (Y )) be a bitopological space which

is simultaneously a measurable space with negligibles J (Y ).

Two topologies T (Y ) and S(Y ) are assumed to be related modulo σ-ideal J (Y )

namely the symmetric difference ClT (A) ÷ ClS(A) is J (Y )-negligible for each

subset A ⊂ Y . From Th. 2 in [10] it follows that for each multifunction H : Y → Z

(where Z is a second countable Hausdorff space) which is at every point y ∈ Y
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either T (Y )-continuous or S(Y )-continuous the set T ∩ S-D(H) ∈ J (Y ). Under

what conditions imposed on T (Y ) and S(Y ) we have

(56) T ∩ S- q-Lim inf
t→y∧t∈P

H(t) ⊂ H(y) ⊂ T ∩ S- p-Lim sup
t→y∧t∈P

H(t)?

Let (X,M(X),J (X)) be a (complete) measurable space with negligibles. Un-

der what conditions a multifunction F : X × Y → Z, whose all x-sections are

at each y ∈ Y either T (Y )-continuous or S(Y )-continuous and all y-section are

M̂(X)-measurable, is M̂(X ⊗ Y )-measurable. Evidently (Y, T (Y ) ∩ S(Y )) is as-

sumed to be second countable Baire space and M(Y ) is related with the T (Y ) ∩
S(Y )-Borel σ-algebra B0(Y, T (Y )∩S(Y )).Is the condition T −LimH(y) ⊂ H(y) ⊂
S − LimH(y) sufficient for the double inclusion (56)?

In that manner we have the possibility to obtain many applications of Theo-

rem 1, e.g. for multifunctions whose x-sections are monotone in certain generalized

meaning.

Question 2. Let Y be a (finite dimensional) Euclidean space with the scalar

product 〈· | ·〉. Let us consider the unit sphere

(57) S1 =
{
y ∈ Y : ‖y‖ =

√
< y | y > = 1

}
endowed with the metric %(y1, y2) = arccos 〈y1 | y2〉. By an angular region in Y is

called the subset of the form

(58) Ω(y0, V ) = y0 +
{
y ∈ Y :

y

‖y‖
∈ V

}
,

where V ⊂ S1 is a %-open subset of the unit sphere S1 (cf. [11, p. 318]).

A multifunction H : Y → Z, where Z is an arbitrary topological space, is called

lower semicontinuous at y0 ∈ Y from the angular region Ω(y0, V ) if for each open

subset G ⊂ Z such that G ∩ H(y0) 6= ∅ the big inverse image H−(G) contains

Ω(y0, V ) ∩ {y ∈ Y : ‖y − y0‖ < r} for some r > 0.

Analogously, H is called upper semicontinuous at y0 ∈ Y from Ω(y0, V ) if for

each subset G ⊂ Z such that H(y0) ⊂ G the small inverse image H+(G) contains

Ω(y0, V ) ∩ {y ∈ Y : ‖y − y0‖ < r} for some r > 0.

A multifunction H is said to be Ω-lower (resp. upper) semicontinuous on Y , if

for each y ∈ Y there is an angular region Ω(y, V (y)) such that H is lower (resp.

upper) semicontinuous at y from Ω(y, V (y)).

A multifunction simultaneously Ω-lower and Ω-upper semicontinuous is called

Ω-continuous.

Under what conditions a multifunction F : X × Y → Z, where Y is as above,

X is a complete measurable space with negligibles and Z is a second countable per-

fectly normal topological space, with Ω-continuous x-sections and M(X)-measur-

able y-sections is M̂(X ⊗Y )-measurable with respect to the J (X ⊗Y )-completion
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of M(X) ⊗ B0(Y ). The σ-ideal J (X ⊗ Y ) including J (X) ⊗ J (Y ) means here

an σ-ideal fulfilling the conditions of Theorem 1, where J (Y ) is a Borel σ-ideal

in Y , e.g. of subsets of Lebesgue measure zero or of the first category. Is the

finite-dimensionality of Y essential?
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