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A FUJITA–TYPE THEOREM FOR THE LAPLACE EQUATION

WITH A DYNAMICAL BOUNDARY CONDITION

H. AMANN and M. FILA

Abstract. We find a critical exponent for global existence of positive solutions of
the Laplace equation on a half-space with a dynamical boundary condition.

1. Introduction

Given a nonempty open subset X of Rm we denote by BUC(X) the Banach

space of all bounded and uniformly continuous functions on X, endowed with the

supremum norm ‖·‖∞. We also put BUC+(X) :=
{
u ∈ BUC(X) ; u(x) ≥ 0 for

x ∈ X
}

. Moreover, Hn := Rn−1 × (0,∞) is the open upper half-space in Rn, and

its boundary ∂Hn is identified with Rn−1.

We fix q ∈ (1,∞) and consider the following system:

(1.1)

∆u = 0

∂tu− ∂nu = uq

u(·, 0) = ϕ

in Hn × (0,∞) ,

on ∂Hn × (0,∞) ,

on ∂Hn ,

where ∆ = ∂2
1 + · · ·+ ∂2

n is the Laplacian with respect to x = (x′, xn) ∈ Rn−1 × R.

By a solution of (1.1) on [0, T ) we mean a function

(1.2) u ∈ C
(
[0, T ), BUC+(Hn)

)
∩ C1

(
(0, T ), BUC(Hn)

)
such that u(t) ∈ C2(Hn) ∩ C1(H̄n) for t > 0, and u satisfies (1.1) point-wise, where

u(x, t) := u(t)(x). Note that this requires ϕ to belong to BUC+(Rn−1). Of course,

each solution, being harmonic, is analytic in Hn for 0 < t < T .

A function u ∈ C
(
[0, Tϕ), BUC+(Hn)

)
is a maximal solution of (1.1) if u is a

solution on [0, Tϕ) and [0, Tϕ) is a maximal interval with this property. If Tϕ =∞
and u is a solution on [0,∞) then u is a global solution of (1.1).

The following theorem is the main result of this paper:
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Theorem. Problem (1.1) possesses for each ϕ ∈ BUC+(Rn−1) a unique max-

imal solution uϕ. If Tϕ <∞ then uϕ ‘blows up’, that is,

lim
t→Tϕ

‖uϕ(t)‖∞ =∞ .

If q ≤ n
/

(n− 1) then every nonzero maximal solution blows up in finite time (that

is, Tϕ <∞). If q > n
/

(n− 1) then there are solutions that exist globally as well

as solutions that blow up in finite time.

Observe, in particular, that each nonzero maximal solution blows up in finite

time if n = 1.

Intuitively, the above result can be explained as follows: If ϕ ∈ L1 ∩BUC+ then

the solution of the linear problem

(1.3)

∆u = 0

∂tu− ∂nu = 0

u(·, 0) = ϕ

in Hn × (0,∞) ,

on ∂Hn × (0,∞) ,

on ∂Hn ,

is global and decays with rate t1−n, as will be shown in Section 2. On the other

hand, each solution of the ordinary differential equation u̇ = uq blows up in finite

time with rate (T − t)1/(1−q), where T := T
(
u(0), q

)
. Therefore the solution q

( = n
/

(n− 1)) of equation n− 1 = 1
/

(q − 1) can be expected to be a critical ex-

ponent for global existence.

Let us mention here that problem (1.1) possesses positive stationary states iff

q ≥ n
/

(n− 2) (cf. [H], [CSF], [CCFS]).

In the case of bounded domains, problems analogous to (1.1) have been studied

recently in [E1–3], [K], [FQ], for example. References to earlier work can be found

in [E1].

Beginning with the classical paper by Fujita [F], blow-up results of the above

type have been established for many classes of parabolic problems (see [L] for

a survey, and [DFL], [EL], [FL], [FLU], [GL1–2], [HY1–3], [KO], [LQ], [MS],

[MY], and [S] for some more recent results). ‘Fujita-type theorems’ are also known

for nonlinear Schrödinger and wave equations (also cf. [L] and the references given

therein). The interest in our (model) problem stems from the fact that system (1.1)

is equivalent to an evolution equation of the form

(1.4) u̇+Au = uq , t > 0 , u(0) = ϕ

in BUC(Rn−1), where A is a pseudodifferential operator of degree 1 (see Section 2).

Thus the Theorem is a Fujita-type result for a new class of equations.
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2. Preliminaries

The case n = 1 is trivial. Therefore we assume henceforth that n ≥ 2 and study

(1.1) by means of a ‘variation-of-constants formula’, which we establish now.

We denote by û = Fu the (partial) Fourier transform with respect to x′ ∈ Rn−1

(in the space S′(Rn−1) of temperate distributions). Then the first equation in

(1.3) yields

∂2
nû(·, xn, t)− |ξ

′|2 û(·, xn, t) = 0 , xn, t > 0 .

Hence

(2.1) û(·, xn, t) = û(·, 0, t)e−xn |ξ
′| ,

and we infer from the second equation in (1.3) that

∂tû(·, 0, t) + |ξ′| û(·, 0, t) = 0 , t > 0 .

Thus û(·, 0, t) = e−t |ξ
′|ϕ̂ for t ≥ 0, and it follows from (2.1) that

(2.2) û(·, xn, t) = e−(xn+t) |ξ′|ϕ̂ , xn > 0 , t > 0 .

Put Λ(x′) :=
(
1 + |x′|2

)1/2
for x′ ∈ Rn−1 and cn := ‖Λ−n‖−1

1 , where ‖·‖r is the

norm in Lr := Lr(Rn−1) for 1 ≤ r ≤ ∞, and let

(2.3) pτ (x′) := τ1−ncnΛ−n(x′/τ) , τ > 0 , x′ ∈ Rn−1 .

Then { pτ ; τ > 0 } is the (n− 1)-dimensional Poisson kernel, and we deduce from

(2.2), by taking the inverse Fourier transform, that

(2.4) u(·, xn, t) = pxn+t ∗ ϕ =: P (xn + t)ϕ , xn ≥ 0 , t > 0 ,

denoting by
{
P (τ) ; τ ≥ 0

}
the Poisson convolution semigroup on Rn−1. It is

well-known that
{
P (τ) ; τ ≥ 0

}
is a strongly continuous analytic semigroup of

contractions on BUC(Rn−1) whose negative infinitesimal generator equals the

BUC(Rn−1)-realization of A := F−1 |ξ′| F . By invoking standard properties of

this semigroup (e.g., [A]) it is not difficult to see that u, as given by (2.4), is a

global solution of (1.3) and the only one (in our class of solutions satisfying (1.2)).

Note that (2.3) and (2.4) also imply that if ϕ ∈ L1 ∩BUC+ then

‖u(t)‖∞ = O(t1−n) , t→∞ ,

and it is easily seen that this decay rate is exact.

Let γ be the trace operator for ∂Hn, that is, γw(x′) := w(x′, 0) for w ∈ C(H̄n).

Then an obvious modification of the above considerations also shows that u is a
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solution of (1.1) on [0, T ) iff v := γu is a solution of (1.4) on [0, T ). In fact, if v is

a solution of (1.4) on [0, T ) then

(2.5) u(·, xn, t) := P (xn)v(t) , xn ≥ 0 , t ≥ 0 ,

is its unique harmonic extension over Hn × [0, T ) such that u(·, ·, t) is bounded

on Hn for 0 < t < T .

As usual, we associate with (1.4) the Volterra integral equation

(2.6) v(t) = P (t)ϕ+

∫ t

0

P (t− τ)vq(t) dτ , t ≥ 0 ,

in BUC(Rn−1). Standard arguments guarantee that it possesses a unique maximal

solution

(2.7) vϕ ∈ C
(
[0, Tϕ), BUC+(Rn−1)

)
and that

(2.8) lim
t→Tϕ

‖vϕ(t)‖∞ =∞

if Tϕ <∞. Thus vϕ is a mild solution of (1.4). Using Besov spaces and regularity

properties of the Poisson semigroup in these spaces it can be shown that vϕ is a

classical solution of (1.4), that is, vϕ(t) ∈ dom(A) for t ∈ (0, Tϕ) and Avϕ belongs

to C
(
(0, Tϕ), BUC+(Rn−1)

)
, and vϕ satisfies (1.4) on [0, T ) in the point-wise sense.

In fact, it can be shown that

(2.9) vϕ ∈ C
1
(
(0, Tϕ), BUC(Rn−1)

)
∩C

(
(0, Tϕ), BUC2(Rn−1)

)
,

where u ∈ BUC2 iff ∂αu ∈ BUC for |α| ≤ 2. Since we do not need these regularity

results for the blow-up considerations we refrain from giving details and refer the

interested reader to [A].

Note that (2.7) and (2.9) imply that uϕ, as defined by (2.5) with v replaced

by vϕ, is the unique maximal solution of (1.1). Moreover, (2.8) shows that the

supremum norm of uϕ(t) over Hn blows up as t→ T , provided Tϕ is finite. Also

note that uϕ is characterized by being the unique maximal solution of the integral

equation

u(·, xn, t) = P (xn + t)ϕ+

∫ t

0

P (xn + t− τ)uq(·, 0, τ) dτ , xn > 0 , t ≥ 0 ,

in BUC(Hn), as follows from the semigroup property of P .

The above considerations prove the existence and uniqueness assertion of the

Theorem and also the fact that uϕ blows up if Tϕ is finite. It should be mentioned

that uniqueness is lost if we drop the condition that uϕ(t) be bounded on Hn for

0 ≤ t < Tϕ. Indeed, if ϕ is a positive constant and g is any C1-function of one

variable satisfying g(0) = ϕ and ġ(t) ≥ gq(t) for 0 ≤ t < T , then

u(x, t) :=
(
ġ(t)− gq(t)

)
xn + g(t) , (x, t) ∈ Hn × [0, T ) ,

is a solution of (1.1).
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3. Blow-Up and Global Existence

Thanks to the observations in Section 2 it suffices to study the blow-up be-

havior of the unique maximal solution of integral equation (2.6) in the Banach

space E := BUC(Rn−1). Note that E is ordered by the positive cone E+ :=

BUC+(Rn−1) and that
{
P (t) ; t ≥ 0

}
is a positivity preserving semigroup on E.

For abbreviation we write (2.6) in the form

(3.1) u(t) = P (t)ϕ+ P ∗ f(u)(t) , t ≥ 0 ,

where f(u) := uq. Then we prove the following comparison principle:

Lemma 1. Let v be a solution of (3.1) on [0, T ] and suppose that w ∈
C
(
[0, T ], E+

)
satisfies

(3.2) w(t) ≥ P (t)ψ + P ∗ f(w)(t) , 0 ≤ t ≤ T ,

for some ψ ∈ E+. Then ψ ≥ ϕ implies w ≥ v .

Proof. Suppose that δ ∈ (0, T ] and aj ∈ C
(
[0, δ], E+

)
for j = 0, 1 with a0 ≥ a1.

Also suppose that uj ∈ C
(
[0, δ], E+

)
satisfies uj = aj + P ∗ f(uj) on [0, δ] and that

uj = limk→∞ ukj in C
(
[0, δ], E+

)
, where the sequence (ukj )k∈N is obtained by the

iteration scheme u0
j := aj and uk+1

j := aj + P ∗ f(ukj ) for k ∈ N and j = 0, 1. Then

a0 ≥ a1, the positivity of P , and the fact that f is increasing imply by induction

that uk0 ≥ u
k
1 for k ∈ N. Hence u0 ≥ u1.

From (3.2) we infer the existence of b ∈ C
(
[0, T ], E+

)
such that

w = b+ P (·)ψ + P ∗ f(w)

on [0, T ]. Thus

a0 := b+ P (·)ψ ≥ P (·)ϕ =: a1

and u0 := w and u1 := v satisfy uj = aj + P ∗ f(uj) on [0, T ]. Since f is locally

Lipschitz continuous it is well-known that there exists δ ∈ (0, T ] such that uj can

be obtained on [0, δ] by the above iteration scheme. Hence w | [0, δ] ≥ v | [0, δ] by

the first part of the proof. Since (3.1) is autonomous we can apply this argument

once more with ψ and ϕ replaced by w(δ) and v(δ), respectively, to find that

w | [0, δ1] ≥ v | [0, δ1] for some δ1 ∈ (0, T ]. Then standard arguments guarantee that

w ≥ v as long as both solutions exist, that is, on all of [0, T ]. �

Since the Poisson kernel is positive and satisfies
∫
pt(x

′) dx′ = 1 for t > 0, it

follows from Jensen’s inequality that

P (τ)uq = P (τ)f(u) = pτ ∗ f(u) ≥ f(pτ ∗ u) = (pτ ∗ u)q
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for τ ≥ 0 and u ∈ E+. Thus the proof of Theorem 5 in [W1] implies the existence

of a constant c := c(q) such that

(3.3) t1/(q−1)P (t)ϕ ≤ c , 0 ≤ t < Tϕ , ϕ ∈ E+ .

Using this estimate we can derive the following blow-up result along the lines of

the proof of Theorem 1 in [W2]. For the reader’s convenience we include the

details.

Lemma 2. If q ≤ n
/

(n− 1) then each nonzero solution blows up in finite time.

Proof. Suppose that ϕ ∈ E+\{0} and Tϕ =∞. Thanks to Lemma 1 we can

assume that ϕ ∈ L1. Since tn−1pt → cn point-wise as t→∞, it follows that

(3.4) lim
t→∞

tn−1P (t)ϕ = cn ‖ϕ‖1

point-wise. This contradicts (3.3) if q < n
/

(n− 1).

Suppose that q = n
/

(n− 1). From 1 + |x′ − y′|2 ≤ 2(1 + |x′|2)(1 + |y′|2) we

infer

P (1)ϕ = p1 ∗ ϕ ≥ αp1 ,

where α := 2−n/2 ‖Λ−nϕ‖1. Hence (3.1) implies

uϕ(t+ 1) ≥ P (t+ 1)ϕ = P (t)P (1)ϕ ≥ αP (t)p1 = αpt+1 , t ≥ 0 ,

and

(3.5)

‖uϕ(t+ 1)‖1 ≥
∥∥P ∗ f(uϕ)(t+ 1)

∥∥
1
≥ αq

∫ t+1

0

∥∥P (t+ 1− τ)f(pτ+1)
∥∥

1
dτ

= αq
∫ t+1

0

‖f(pτ+1)‖1 dτ

for t ≥ 0, since ‖P (t)v‖1 = ‖v‖1 for v ∈ E+ by Fubini’s theorem. Note that

‖f(pτ+1)‖1 = (τ + 1)−1cqn ‖Λ
−nq‖1

since q = n
/

(n− 1). From this, together with (3.5) we deduce that

(3.6) lim
t→∞

‖uϕ(t)‖1 =∞ .

On the other hand, (3.3) (with q = n
/

(n− 1)) and (3.4) guarantee the existence of

a constant c such that ‖ϕ‖1 ≤ c for any ϕ ∈ E+ with Tϕ =∞. Thus, in particular,

‖uϕ(t)‖1 ≤ c for t ≥ 0, which contradicts (3.6). �
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Lemma 3. If q > n
/

(n− 1) then there are global solutions.

Proof. Note that α := n− (1− 1/q)−1 > 0. Put c := α1/(q−1)/cn and v(t) :=

ctαpt for t > 0. Then ṗt = −Apt for t > 0 and

v̇(t) = αctα−1pt + ctαṗt = αt−1v(t) −Av(t) , t > 0 .

It is easily verified that αt−1v(t) ≥ f
(
v(t)

)
so that v̇ +Av ≥ f(v) on (0,∞). From

this it follows that w(t) := v(t+ 1) satisfies w(t) ≥ P (t)v(1) + P ∗ f(w)(t) for

t ≥ 0. Now the assertion is a consequence of Lemma 1. �

Lastly, suppose that uϕ is a solution on [0, Tϕ) for some ϕ ∈ E+\{0}. Then it

follows from (3.3) that there exists k0 > 0 such that Tkϕ < Tϕ for k ≥ k0. Hence

there exist solutions that blow up in finite time.
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