SUPERREFLEXIVITY AND J-CONVEXITY OF BANACH SPACES

J. WENZEL

ABSTRACT. A Banach space X is superreflexive if each Banach space Y that is finitely representable in X is reflexive. Superreflexivity is known to be equivalent to J-convexity and to the non-existence of uniformly bounded factorizations of the summation operators S_n through X.

We give a quantitative formulation of this equivalence.

This can in particular be used to find a factorization of S_n through X, given a factorization of S_N through $[L_2, X]$, where N is 'large' compared to n.

1. INTRODUCTION

Much of the significance of the concept of superreflexivity of a Banach space X is due to its many equivalent characterizations, see e.g. Beauzamy [1, Part 4].

Some of these characterizations allow a quantification, that makes also sense in non superreflexive spaces. Here are two examples.

Definition. Given n and $0 < \varepsilon < 1$, we say that a Banach space X is $J(n, \varepsilon)$ -**convex**, if for all elements $z_1, \ldots, z_n \in U_X$ we have

$$\inf_{1 \le k \le n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| < n(1-\varepsilon).$$

We let $J_n(X)$ denote the infimum of all ε , such that X is not $J(n, \varepsilon)$ -convex.

Definition. Given n and $\sigma \geq 1$, we say that a Banach space X factors the summation operator S_n with norm σ , if there exists a factorization $S_n = B_n A_n$ with $A_n: l_1^n \to X$ and $B_n: X \to l_\infty^n$ such that $||A_n|| ||B_n|| = \sigma$.

We let $S_n(X)$ denote the infimum of all σ , such that X factors S_n with norm σ .

Here, the summation operator $S_n \colon l_1^n \to l_\infty^n$ is given by

$$(\xi_k) \mapsto \left(\sum_{h=1}^k \xi_h\right)$$

and U_X denotes the unit ball of the Banach space X.

Received June 20, 1996.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 46B07, 46B10. Key words and phrases. superreflexivity, summation operator, J-convexity. Research supported by German Academic Exchange Service (DAAD).

It is known that a Banach space is superreflexive if and only if it is $J(n, \varepsilon)$ convex for some n and $\varepsilon > 0$, or equivalently, if it does not factor the summation operators with uniformly bounded norm; see James [5, Th. 5, Lem. B], and Schäffer/Sundaresan [9, Th. 2.2].

Using the terminology introduced above, this can be reformulated as follows:

Theorem 1. For a Banach space X the following properties are equivalent:

- (i) X is not superreflexive.
- (ii) For all $n \in \mathbb{N}$ we have $J_n(X) = 0$.
- (iii) There is a constant $\sigma \geq 1$ such that for all $n \in \mathbb{N}$ we have $S_n(X) \leq \sigma$.
- (iv) For all $n \in \mathbb{N}$ we have $S_n(X) = 1$.

There are two conceptually different methods to prove that X is superreflexive if and only if $[L_2, X]$ is. The one is to use Enflo's renorming result [2, Cor. 3], which is not suited to be localized, the other is the use of J-convexity, see Pisier [7, Prop. 1.2]. It turns out that for fixed n

(1)
$$\boldsymbol{J}_n([L_2, X]) \leq \boldsymbol{J}_n(X) \leq 2n^2 \boldsymbol{J}_n([L_2, X]);$$

see Section 2 for a proof. Similar results hold also in the case of B-convexity; see [8, p. 30].

Theorem 2. If for some n and all $\varepsilon > 0$, $[L_2, X]$ contains $(1 + \varepsilon)$ isomorphic copies of l_1^n , then X contains $(1 + \varepsilon)$ isomorphic copies of l_1^n .

Theorem 3. If for some n and all $\varepsilon > 0$, $[L_2, X]$ contains $(1 + \varepsilon)$ isomorphic copies of l_{∞}^n , then X contains $(1 + \varepsilon)$ isomorphic copies of l_{∞}^n .

On the other hand, no result of this kind for the factorization of S_n is known, i.e. if for some n and all $\varepsilon > 0$, $[L_2, X]$ factors S_n with norm $(1 + \varepsilon)$, does it follow that X factors S_n with norm $(1 + \varepsilon)$?

Assuming $S_n([L_2, X]) \leq \sigma$ for some constant σ and all $n \geq 1$, one can use Theorem 1 to obtain that $J_n([L_2, X]) = 0$ for all $n \geq 1$ and consequently $S_n(X) = 1$.

The intent of our paper is to keep n fixed in this reasoning. Unfortunately, we don't get a result as smooth as Theorems 2 and 3. Instead, we have to consider two different values n and N. If $S_N([L_2, X]) = \sigma$ for some 'large' N, then $S_n(X) \leq (1 + \varepsilon)$ for some 'small' n. To make this more precise, let us introduce the iterated exponential (or TOWER) function $P_q(m)$. We let

$$P_0(m) := m$$
 and $P_{g+1}(m) := 2^{P_g(m)}$.

We will prove the following two theorems.

Theorem 4. For fixed $n \in \mathbb{N}$ and $\sigma > 1$ there is $\varepsilon > 0$ such that $J_n(X) \leq \varepsilon$ implies $S_n(X) < \sigma$. In particular $J_n(X) = 0$ implies $S_n(X) = 1$.

Theorem 5. For fixed $n \in \mathbb{N}$, $\varepsilon > 0$ and $\sigma \ge 1$ there is a number $N(\varepsilon, n, \sigma)$, such that $S_N(X) \le \sigma$ implies $J_n(X) < \varepsilon$. The number N can be estimated by

$$N \le P_m(cn),$$

where m and c depend on σ and ε only.

Using (1), we obtain the following consequence.

Corollary 6. For fixed $n \in \mathbb{N}$, $\sigma_1 > 1$, and $\sigma_2 \ge 1$ there is a number $N(\sigma_1, n, \sigma_2)$ such that $S_N([L_2, X]) \le \sigma_2$ implies $S_n(X) \le \sigma_1$.

Proof. Determine ε as in Theorem 4 such that $J_n(X) \leq \varepsilon$ implies $S_n(X) < \sigma_1$. Choose $N = N(\frac{\varepsilon}{2n^2}, n, \sigma_2)$ as in Theorem 5 such that $S_N([L_2, X]) \leq \sigma_2$ implies $J_n([L_2, X]) < \frac{\varepsilon}{2n^2}$. By (1) we obtain $J_n(X) < \varepsilon$ and hence $S_n(X) < \sigma_1$. \Box

The estimate in Theorem 5 seems rather crude, and we have no idea, whether or not it is optimal.

2. Proofs

First of all, we list some elementary properties of the sequences $S_n(X)$ and $J_n(X)$.

Fact.

- (i) The sequence $(\mathbf{S}_n(X))$ is non-decreasing.
- (ii) $1 \leq S_n(X) \leq (1 + \log n)$ for all infinite dimensional Banach spaces X.
- (iii) The sequence $(nJ_n(X))$ is non-decreasing.
- (iv) For all $n, m \in \mathbb{N}$ we have $J_n(X) \leq J_{nm}(X) \leq J_n(X) + 1/n$.
- (v) If $J_n(X) \to 0$ then for all $n \in \mathbb{N}$ we have $J_n(X) = 0$.
- (vi) $\boldsymbol{J}_n(\mathbb{R}) \geq 1 1/n$ for all $n \in \mathbb{N}$.
- (vii) If q and ε are related by $\varepsilon \ge (1-\varepsilon)^{q-1}$ then $J_n(l_q) \le 4\varepsilon$ for all $n \in \mathbb{N}$.

Proof. The monotonicity properties (i) and (iii) are trivial.

The bound for $S_n(X)$ in (ii) follows from the fact that the summation operator S_n factors through l_2^n with norm $(1 + \log n)$ and from Dvoretzky's Theorem.

To see (iv) assume that X is $J(n, \varepsilon)$ -convex. Given $z_1, \ldots, z_{nm} \in U_X$, let

$$x_h := \frac{1}{m} \sum_{k=1}^m z_{(h-1)m+k}$$
 for $h = 1, \dots, n$.

Then

$$\inf_{1 \le k \le nm} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{nm} z_h \right\| \le m \inf_{1 \le k \le n} \left\| \sum_{h=1}^{k} x_h - \sum_{h=k+1}^{n} x_h \right\| < mn(1-\varepsilon),$$

which proves that X is $J(nm, \varepsilon)$ -convex, and consequently $J_n(X) \leq J_{nm}(X)$.

Assume now that X is $J(nm, \varepsilon)$ -convex. Given $z_1, \ldots, z_n \in U_X$, let

$$x_1 = \ldots = x_m := z_1$$

$$\vdots$$

$$x_{(n-1)m+1} = \ldots = x_{nm} := z_n.$$

 \mathbf{If}

$$\inf_{1 \le k \le nm} \left\| \sum_{h=1}^{k} x_h - \sum_{h=k+1}^{nm} x_h \right\| \text{ is attained for } k_0,$$

there is $l \in \{0, \ldots, n\}$ such that $m/2 + (l-1)m < k_0 \le m/2 + lm$, hence

$$\left\|\sum_{h=1}^{k_0} x_h - \sum_{h=k_0+1}^{nm} x_h\right\| \ge \left\|\sum_{h=1}^{lm} x_h - \sum_{h=lm+1}^{nm} x_h\right\| - 2\sum_{h\in I} \|x_h\|,$$

where $I = \{k_0 + 1, ..., lm\}$ or $I = \{lm + 1, ..., k_0\}$ according to whether $k_0 \le lm$ or $k_0 > lm$. It follows that

$$nm(1-\varepsilon) > m \inf_{1 \le k \le n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| - m,$$

and hence $J_n(X) \ge \varepsilon - 1/n$. This proves (iv).

(v) is a consequence of (iv).

For (vi) and (vii) see Section 3.

For the convenience of the reader, let us repeat the argument for the proof of (1) from [1]. The left-hand part of (1) is obvious, since X can be isometrically embedded into $[L_2, X]$. To see the right-hand inequality, assume that for all $z_1, \ldots, z_n \in U_X$

$$\inf_{1 \le k \le n} \left\| \sum_{h=1}^k z_h - \sum_{h=k+1}^n z_h \right\| < n(1-\varepsilon).$$

Obviously, if $||z_1|| = \cdots = ||z_n||$ it follows by homogeneity that

(2)
$$\inf_{1 \le k \le n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| < (1-\varepsilon) \sum_{k=1}^{n} \|z_k\|.$$

If z_1, \ldots, z_n are arbitrary, let $m := \min_{1 \le k \le n} ||z_k||$, $\lambda_k := m/||z_k||$, and $\tilde{z}_k := (1 - \lambda_k)z_k$. It turns out that $||z_k - \tilde{z}_k|| = m$ and therefore by (2)

$$\inf_{1 \le k \le n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| < \sum_{k=1}^{n} \|\tilde{z}_k\| + (1-\varepsilon) \sum_{k=1}^{n} \|z_k - \tilde{z}_k\| \\ \le \sum_{k=1}^{n} ((1-\lambda_k) + (1-\varepsilon)\lambda_k) \|z_k\| \le \left(\sum_{k=1}^{n} (1-\varepsilon\lambda_k)^2\right)^{1/2} \left(\sum_{k=1}^{n} \|z_k\|^2\right)^{1/2} .$$

J-CONVEXITY

Now, at least one of the λ_k 's equals one, while the others are greater than or equal to zero. This yields

$$\inf_{1 \le k \le n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| < \left((1-\varepsilon)^2 + n - 1 \right)^{1/2} \left(\sum_{k=1}^{n} \|z_k\|^2 \right)^{1/2} \\ \le (n - 2\varepsilon + \varepsilon^2)^{1/2} \left(\sum_{k=1}^{n} \|z_k\|^2 \right)^{1/2}.$$

On the other hand, we trivially get that for all $1 \leq k \leq n$

$$\left\|\sum_{h=1}^{k} z_{h} - \sum_{h=k+1}^{n} z_{h}\right\| \le n^{1/2} \left(\sum_{k=1}^{n} \|z_{k}\|^{2}\right)^{1/2}.$$

Therefore

$$\sum_{k=1}^{n} \left\| \sum_{h=1}^{k} z_{h} - \sum_{h=k+1}^{n} z_{h} \right\|^{2} < \left((n - 2\varepsilon + \varepsilon^{2}) + (n - 1)n \right) \sum_{k=1}^{n} \|z_{k}\|^{2}$$

for all $z_1, \ldots, z_n \in X$. If in particular $f_1, \ldots, f_n \in U_{[L_2,X]}$, then

$$\sum_{k=1}^{n} \left\| \sum_{h=1}^{k} f_{h}(t) - \sum_{h=k+1}^{n} f_{h}(t) \right\|^{2} < (n^{2} - 2\varepsilon + \varepsilon^{2}) \sum_{k=1}^{n} \|f_{k}(t)\|^{2}.$$

Integration with respect to t yields

$$\sum_{k=1}^{n} \left\| \sum_{h=1}^{k} f_h - \sum_{h=k+1}^{n} f_h \right| L_2 \right\|^2 < (n^2 - 2\varepsilon + \varepsilon^2) \sum_{k=1}^{n} \|f_k\| L_2 \|^2 \le n(n^2 - 2\varepsilon + \varepsilon^2).$$

This implies that

$$\inf_{1 \le k \le n} \left\| \sum_{h=1}^{k} f_h - \sum_{h=k+1}^{n} f_h \right| L_2 \right\| < (n^2 - 2\varepsilon + \varepsilon^2)^{1/2} \le n(1-\delta)$$

for $\delta = \varepsilon/2n^2$. Therefore $J_n([L_2, X]) \ge J_n(X)/2n^2$.

Let us now prove Theorem 4.

Proof of Theorem 4. Choose $\varepsilon < \frac{1}{2(n+2)!}$ such that $1 + 2(n+2)!\varepsilon < \sigma$. If $J_n(X) \leq \varepsilon$, we find $z_1, \ldots, z_n \in U_X$ be such that

$$\inf_{1 \le k \le n} \left\| \sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h \right\| \ge n(1-\varepsilon).$$

J. WENZEL

By the Hahn-Banach theorem, we find $y_k \in U_{X^*}$ such that

$$n(1-\varepsilon) \leq \sum_{h=1}^{k} \langle z_h, y_k \rangle - \sum_{h=k+1}^{n} \langle z_h, y_k \rangle.$$

Obviously $|\langle z_h, y_k \rangle| \leq 1$. If for some $h \leq k$ we even have

$$\langle z_h, y_k \rangle < 1 - n\varepsilon,$$

then

$$n(1-\varepsilon) \leq \sum_{l=1}^{k} \langle z_l, y_k \rangle - \sum_{l=k+1}^{n} \langle z_l, y_k \rangle < (n-1) + (1-n\varepsilon) = n(1-\varepsilon),$$

which is a contradiction. Hence

(3)
$$1 - n\varepsilon \le \langle z_h, y_k \rangle \le 1$$
 for all $h \le k$

Similarly

(4)
$$1 - n\varepsilon \leq -\langle z_h, y_k \rangle \leq 1$$
 for all $h > k$.

Let $x_h := (z_1 + z_h)/2$. Then it follows from (3) and (4) that there are $x_1, \ldots, x_n \in U_X$ and $y_1, \ldots, y_n \in U_{X'}$ so that

$$\langle x_h, y_k
angle \in \left\{ egin{array}{ll} (1 - narepsilon, 1] & ext{if } h \leq k, \ (-narepsilon, +narepsilon) & ext{if } h > k. \end{array}
ight.$$

The assertion now follows from the following distortion lemma.

Lemma 7. Suppose that $\varepsilon < \frac{1}{2(n+1)!}$ and that there are $x_1, \ldots, x_n \in U_X$ and $y_1, \ldots, y_n \in U_{X^*}$ such that

$$\langle x_h, y_k \rangle \in \begin{cases} (1 - \varepsilon, 1] & \text{if } h \leq k, \\ (-\varepsilon, +\varepsilon) & \text{if } h > k. \end{cases}$$

Then $S_n(X) \le 1 + 2(n+1)!\varepsilon$.

Proof. Fix $h \in \{1, ..., n\}$. Let $\alpha_{lk} := \langle x_l, y_k \rangle$. Consider the system of linear equations

$$\sum_{l=1}^{n} \alpha_{lk} \xi_l = \begin{cases} 1 - \alpha_{hk} & \text{if } h \le k, \\ -\alpha_{hk} & \text{if } h > k, \end{cases} \qquad k = 1, \dots, n$$

in the *n* variables ξ_1, \ldots, ξ_n . Its solution is given by

$$\xi_m^{(h)} = \frac{\det(\beta_{lk}^{(m)})}{\det(\alpha_{lk})},$$

where $(\beta_{lk}^{(m)})$ is the matrix (α_{lk}) but with its *m*-th column replaced by the righthand side of our system of equations. It follows that

$$|\det(\beta_{lk}^{(m)})| = \left|\sum_{\pi} \operatorname{sgn}\left(\pi\right) \prod_{k=1}^{n} \beta_{k\pi(k)}^{(m)}\right| \le n! |\beta_{m\pi(m)}^{(m)}| \le n! \varepsilon.$$

Since for all permutations π that are not the identity, there exists at least one k such that $\pi(k) > k$, we have $|\alpha_{\pi(k)k}| < \varepsilon$ and hence

$$|\det(\alpha_{lk})| = \left|\sum_{\pi} \operatorname{sgn}(\pi) \prod_{k=1}^{n} \alpha_{\pi(k)k}\right| \ge \left|\prod_{k=1}^{n} \alpha_{kk}\right| - \sum_{\pi \neq id} \varepsilon$$
$$\ge (1-\varepsilon)^n - n!\varepsilon \ge 1 - n\varepsilon - n!\varepsilon \ge 1 - (n+1)!\varepsilon.$$

Hence if $\varepsilon < \frac{1}{2(n+1)!}$ the solutions $\xi_m^{(h)}$ satisfy

$$|\xi_m^{(h)}| \le 2n!\varepsilon.$$

Defining $A_n \colon l_1^n \to X$ by

$$A_n e_h := \sum_{m=1}^n x_m \xi_m^{(h)} + x_h,$$

we get that $||A_n|| \le 1 + \sup_h \sum_{m=1}^n |\xi_m^{(h)}| \le 1 + 2(n+1)!\varepsilon$. Defining $B_n \colon X \to l_\infty^n$ by

$$B_n x := (\langle x, y_k \rangle)_{k=1}^n,$$

we get that $||B_n|| \leq 1$ and $S_n = B_n A_n$. This completes the proof, since $S_n(X) \leq ||A_n|| ||B_n|| \leq 1 + 2(n+1)!\varepsilon$.

Interlude on Ramsey theory

Our proof of Theorem 5 makes massive use of the general form of Ramsey's Theorem. Therefore, for the convenience of the reader, let us recall, what it says; see [3] and [6].

For a set M and a positive integer k, let $M^{[k]}$ be the set of all subsets of M of cardinality k.

Theorem 8. Given r, k and n, there is a number $R_k(n,r)$ such that for all $N \ge R_k(n,r)$ the following holds:

For each function $f: \{1, \ldots, N\}^{[k]} \to \{1, \ldots, r\}$ there exists a subset $M \subseteq \{1, \ldots, N\}$ of cardinality at least n such that $f(M^{[k]})$ is a singleton.

The following estimate for the Ramsey number $R_k(l, r)$ can be found in [3, p. 106].

Lemma. There is a number c(r, k) depending on r and k, such that

$$R_k(l,r) \le P_k(c(r,k) \cdot l).$$

We can now turn to the proof of Theorem 5.

Proof of Theorem 5. The proof follows the line of James's proof in [4, Th. 1.1]. The main new ingredient is the use of Ramsey's Theorem to estimate the number N.

Let $n, \varepsilon > 0$, and σ be given. Define m by

(5)
$$2m\sigma < \left(\frac{1}{1-\varepsilon}\right)^{m-1}$$

and let

(6)
$$N := R_{2m}(R_{2m}(2nm+1,m),m),$$

where R denotes the Ramsey number introduced in the previous paragraph.

The required estimate for N then follows from Lemma 9 as follows

$$N \le P_{2m}(c_1 P_{2m}(c_2 2nm)) \le P_{4m}(c_3 n),$$

where c_1 , c_2 , and c_3 are constants depending on m, which in turn depends on σ and ε .

Replacing, e.g. σ by 2σ , we may assume that in fact $S_N(X) < \sigma$ in order to avoid using an additional δ in the notation. If $S_N(X) < \sigma$ then there are $A_N : l_1^N \to X$ and $B_N : X \to l_\infty^N$ such that $S_N = B_N A_N$ and $||A_N|| = 1$, $||B_N|| \leq \sigma$. Let $x_h := A_N e_h$ and $y_k := B_N^* e_k$. Note that

$$||x_h|| \le 1, ||y_k|| \le \sigma, \text{ and } \langle x_h, y_k \rangle = \begin{cases} 1 & \text{if } h \le k, \\ 0 & \text{if } h > k. \end{cases}$$

For each subset $M \subseteq \{1, \ldots, N\}$, we let $\mathcal{F}_m(M)$ denote the collection of all sequences $\mathbb{F} = (F_1, \ldots, F_m)$ of consecutive intervals of numbers, whose endpoints are in M, i.e.

$$F_j = \{l_j, l_j + 1, \dots, r_j\}, \quad l_j, r_j \in M, \quad l_j < r_j < l_{j+1},$$

for j = 1, ..., m. Note that $\mathcal{F}_m(M)$ can be identified with $M^{[2m]}$.

J-CONVEXITY

The outline of the proof of Theorem 5 is as follows. To each $\mathbb{F} = (F_1, \ldots, F_m)$, we assign an element $x(\mathbb{F})$ which in fact is a linear combination of the elements x_1, \ldots, x_N . Next, we extract a 'large enough' subset M of $\{1, \ldots, N\}$, such that all $x(\mathbb{F})$ with $\mathbb{F} \in \mathcal{F}_m(M)$ have about equal norm. Finally, we look at special sequences $\mathbb{F}^{(1)}, \ldots, \mathbb{F}^{(n)}$ and $\mathbb{E}^{(1)}, \ldots, \mathbb{E}^{(n)}$ in $\mathcal{F}_m(M)$ such that

$$\left\|\sum_{h=1}^{k} x(\mathbb{F}^{(h)}) - \sum_{h=k+1}^{n} x(\mathbb{F}^{(h)})\right\| \ge n \|x(\mathbb{E}^{(k)})\|.$$

Since $||x(\mathbb{E}^{(k)})|| \simeq ||x(\mathbb{F}^{(h)})||$, normalizing the elements $x(\mathbb{F}^{(h)})$ yields the required elements z_1, \ldots, z_n to prove that $J_n(X) < \varepsilon$.

Let us start by choosing the elements $x(\mathbb{F})$. For a sequence $\mathbb{F} \in \mathcal{F}_m(M)$, we define

$$S(\mathbb{F}) := \left\{ x = \sum_{h=1}^{N} \xi_h x_h : \sup_h |\xi_h| \le 2, \ \langle x, y_l \rangle = (-1)^j \quad \text{for all } l \in F_j \\ \text{and } j = 1, \dots, m \right\}.$$

By compactness, there is $x(\mathbb{F}) \in S(\mathbb{F})$ such that

$$\|x(\mathbb{F})\| = \inf_{x \in S(\mathbb{F})} \|x\|.$$

Lemma 10. We have $1/\sigma \leq ||x(\mathbb{F})|| \leq 2m$ for all $\mathbb{F} \in \mathcal{F}_m(\{1,\ldots,N\})$.

Proof. Write $F_j = \{l_j, \ldots, r_j\}$ and let

$$x := -x_{l_1} + 2\sum_{i=2}^m (-1)^i x_{l_i}.$$

Then for $l \in F_j$, we have

$$\langle x, y_l \rangle = -1 + 2 \sum_{i=2}^{j} (-1)^i \cdot 1 + 2 \sum_{i=j+1}^{m} (-1)^i \cdot 0 = (-1)^j,$$

hence $x \in S(\mathbb{F})$ and $||x(\mathbb{F})|| \le ||x|| \le 2m - 1$. On the other hand,

$$1 = |\langle x(\mathbb{F}), y_{l_1} \rangle| \le \sigma ||x(\mathbb{F})||.$$

Hence $1/\sigma \leq ||x(\mathbb{F})||$.

By (5), we can write the interval $[1/\sigma, 2m]$ as a disjoint union as follows

$$\left[\frac{1}{\sigma}, 2m\right] \subseteq \bigcup_{i=1}^{m-1} A_i, \quad \text{where} \quad A_i := \frac{1}{\sigma} \left[\left(\frac{1}{1-\varepsilon}\right)^{i-1}, \left(\frac{1}{1-\varepsilon}\right)^i \right).$$

J. WENZEL

For
$$\mathbb{F} = (F_1, \dots, F_m) \in \mathcal{F}_m(\{1, \dots, N\})$$
 and $1 \le j \le m$, let
 $P_j(\mathbb{F}) := (F_1, \dots, F_j) \in \mathcal{F}_j(\{1, \dots, N\}).$

Obviously

$$||x(P_{j-1}(\mathbb{F}))|| \le ||x(P_j(\mathbb{F}))|| \le 2m \text{ for } j = 2, \dots, m.$$

It follows that for each $\mathbb{F} \in \mathcal{F}_m(\{1, \ldots, N\})$ there is at least one index j for which the two values $||x(P_{j-1}(\mathbb{F}))||$ and $||x(P_j(\mathbb{F}))||$ belong to the same interval A_i . Letting $f(\mathbb{F})$ be the least such value j, defines a function

$$f: \{1, \dots, N\}^{[2m]} \to \{1, \dots, m\}.$$

Applying Ramsey's Theorem to that function, yields the existence of a number j_0 and a subset L of $\{1, \ldots, N\}$ of cardinality $|L| \ge R_{2m}(2nm+1, m)$ such that for all $\mathbb{F} \in \mathcal{F}_m(L)$ the two values $||x(P_{j_0-1}(\mathbb{F}))||$ and $||x(P_{j_0}(\mathbb{F}))||$ belong to the same of the intervals A_i .

Next, for each $\mathbb{F} \in \mathcal{F}_m(L)$ there is a unique number *i* for which the value $||x(P_{j_0}(\mathbb{F}))||$ belongs to the interval A_i . Letting $g(\mathbb{F})$ be that number *i*, defines a function

$$g\colon L^{\lfloor 2m \rfloor} \to \{1,\ldots,m\}.$$

Applying Ramsey's Theorem to that function, yields the existence of a number i_0 and a subset M of L of cardinality $|M| \ge 2nm + 1$ such that for all $\mathbb{F} \in \mathcal{F}_m(M)$ we have

(7)
$$||x(P_{j_0}(\mathbb{F}))|| \in A_{i_0},$$

and hence, by the choice of j_0 and L, also

(8)
$$||x(P_{j_0-1}(\mathbb{F}))|| \in A_{i_0}$$

We now define sequences

$$\mathbb{F}^{(h)} := (F_1^{(h)}, \dots, F_m^{(h)}) \text{ and } \mathbb{E}^{(k)} := (E_1^{(k)}, \dots, E_{m-1}^{(k)})$$

of nicely overlapping intervals.

Write $M = \{p_1, ..., p_{2nm+1}\}$, where $p_1 < p_2 < \cdots < p_{2nm+1}$ and define

$$\mathbb{F}^{(h)} := (F_1^{(h)}, \dots, F_m^{(h)}) \in \mathcal{F}_m(M) \qquad h = 1, \dots, n$$

as follows

$$F_j^{(h)} := \begin{cases} \{p_h, \dots, p_{n+2h-1}\} & \text{if } j = 1, \\ \{p_{n(2j-3)+2h}, \dots, p_{n(2j-1)+2h-1}\} & \text{if } j = 2, \dots, m-1, \\ \{p_{n(2m-3)+2h}, \dots, p_{n(2m-1)+h}\} & \text{if } j = m. \end{cases}$$

It turns out that

(9)
$$E_j^{(k)} := \bigcap_{h=1}^k F_{j+1}^{(h)} \cap \bigcap_{h=k+1}^n F_j^{(h)} \qquad k = 1, \dots, n$$

is given by

 $E_i^{(k)} := \{ p_{n(2j-1)+2k}, \dots, p_{n(2j-1)+2k+1} \}$ if $j = 1, \dots, m-1$.

Hence $(E_1^{(k)}, \ldots, E_{m-1}^{(k)}) \in \mathcal{F}_{m-1}(M)$. In order to obtain an element of $\mathcal{F}_m(M)$ we add the auxiliary set $E_m^{(k)} := \{p_{2nm}, \ldots, p_{2nm+1}\}$, this can be done for $n \ge 2$, which is the only interesting case anyway since $J_1(X) = 0$ for any Banach space X. We have $\mathbb{E}^{(k)} := (E_1^{(k)}, \ldots, E_m^{(k)}) \in \mathcal{F}_m(M)$.

The following picture shows the sets $F_j^{(h)}$ and $E_j^{(k)}$ in the case n = 3 and m = 4:

 $p_3 p_4 p_5 p_6 p_7 p_8 p_9 p_{10} p_{11} p_{12} p_{13} p_{14} p_{15} p_{16} p_{17} p_{18} p_{19} p_{20} p_{21} p_{22} p_{23} p_{24} p_{25}$

It follows from (9) that for $1 \le k \le n$

$$\frac{1}{n} \left(-\sum_{h=1}^{k} x(P_{j_0}(\mathbb{F}^{(h)})) + \sum_{h=k+1}^{n} x(P_{j_0}(\mathbb{F}^{(h)})) \right) \in S(P_{j_0-1}(\mathbb{E}^{(k)}))$$

hence

$$\left\|\sum_{h=1}^{k} x(P_{j_0}(\mathbb{F}^{(h)})) - \sum_{h=k+1}^{n} x(P_{j_0}(\mathbb{F}^{(h)}))\right\| \ge n \|x(P_{j_0-1}(\mathbb{E}^{(k)}))\|.$$

Let $z_h := \sigma (1 - \varepsilon)^{i_0} x(P_{j_0}(\mathbb{F}^{(h)}))$. Then

$$\left\|\sum_{h=1}^{k} z_{h} - \sum_{h=k+1}^{n} z_{h}\right\| \ge n \sigma \left(1 - \varepsilon\right)^{i_{0}} \|x(P_{j_{0}-1}(\mathbb{E}^{(k)}))\|.$$

By (7) we have $||x(P_{j_0}(\mathbb{F}^{(h)}))|| \in A_{i_0}$, which implies $||z_h|| \leq 1$. On the other hand, by (8) we have $||x(P_{j_0-1}(\mathbb{E}^{(k)}))|| \in A_{i_0}$, which implies

$$\left\|\sum_{h=1}^{k} z_h - \sum_{h=k+1}^{n} z_h\right\| \ge n \,\sigma \,(1-\varepsilon)^{i_0} \,\frac{1}{\sigma} \left(\frac{1}{1-\varepsilon}\right)^{i_0-1} = n \,(1-\varepsilon).$$

Consequently $J_n(X) \leq \varepsilon$.

3. PROBLEMS AND EXAMPLES

Example 1. $J_n(\mathbb{R}) \geq 1 - 1/n$.

Proof. Let $|\xi_h| \leq 1$ for $h = 1, \ldots, n$. For $k = 1, \ldots, n$ define

$$\eta_k := \sum_{h=1}^k \xi_h - \sum_{h=k+1}^n \xi_h$$

and let $\eta_0 := -\eta_n$. Obviously $|\eta_k - \eta_{k+1}| \leq 2$ for $k = 0, \ldots, n-1$. Since $\eta_0 = -\eta_n$ there exists at least one k_0 such that sgn $\eta_{k_0} \neq$ sgn η_{k_0+1} . Assume that $|\eta_{k_0}| > 1$ and $|\eta_{k_0+1}| > 1$, then $|\eta_{k_0} - \eta_{k_0+1}| > 2$, a contradiction. Hence there is k such that $|\eta_k| \leq 1$. This proves that

$$\inf_{1 \le k \le n} \Big| \sum_{h=1}^{k} \xi_h - \sum_{h=k+1}^{n} \xi_h \Big| \le 1 = n \frac{1}{n},$$

and hence $J_n(\mathbb{R}) \ge 1 - \frac{1}{n}$.

Example 2. If q and ε are related by

$$\varepsilon > (1 - \varepsilon)^{q-1}$$

then $J_n(l_q) \leq 4\varepsilon$ for all $n \in \mathbb{N}$.

Proof. Given $\varepsilon > 0$ find n_0 such that

$$\frac{1}{n_0} < \varepsilon \le \frac{1}{n_0 - 1}$$

then

$$\left(\frac{1}{n_0}\right)^{1/q} \ge \left(1 - \frac{1}{n_0}\right)^{1/q} \varepsilon^{1/q} \ge 1 - \varepsilon.$$

If $n \leq n_0$, choosing

$$x_h := (\overbrace{-1, \dots, -1}^{h}, \overbrace{+1, \dots, +1}^{n-h}, 0, \dots),$$

we obtain

$$\left\|\sum_{h=1}^{k} x_{h} - \sum_{h=k+1}^{n} x_{h}\right\|_{q} \ge \left\|\sum_{h=1}^{k} x_{h} - \sum_{h=k+1}^{n} x_{h}\right\|_{\infty} = n.$$

And since

$$||x_h||_q = n^{1/q} \le n_0^{1/q} \le 1/(1-\varepsilon)$$

it follows that $J_n(l_q) \leq \varepsilon$.

If $n > n_0$, there is $m \ge 2$ such that $(m-1)n_0 < n \le mn_0$. Hence, by Properties (iii) and (iv) in the fact in Section 2 it follows that

$$\boldsymbol{J}_n(X) \leq \frac{mn_0}{n} \boldsymbol{J}_{mn_0}(X) \leq \frac{mn_0}{n} (\boldsymbol{J}_{n_0} + \frac{1}{n_0}) \leq \frac{mn_0}{n} 2\varepsilon \leq 4\varepsilon.$$

The main open problem of this article is the optimality of the estimate for N in Theorem 5.

Problem. Are there $\sigma \geq 1$ and $\varepsilon > 0$ and a sequence of Banach spaces (X_n) such that

$$\boldsymbol{S}_{f(n)}(X_n) \leq \sigma \quad and \quad \boldsymbol{J}_n(X_n) \geq \varepsilon,$$

where f(n) is any function such that f(n) > n?

In particular $f(n) > P_m(n)$, where m is given by (5) would show that the estimate in Theorem 5 for N is sharp in an asymptotic sense.

References

- 1. Beauzamy B., *Introduction to Banach spaces and their geometry*, Volume 68 of North-Holland mathematics studies, North-Holland, second edition, 1985.
- Enflo P., Banach spaces which can be given an equivalent uniformly convex norm, Isr. J. Math. 13, no. 3-4 (1972), 281–288.
- Graham R. L., Rothschild B.L. and Spencer J. H., Ramsey Theory, Wiley, second edition, 1990.
- 4. James R. C., Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542–550.
- Some self dual properties of normed linear spaces, Symposium on infinite dimensional topology, Baton Rouge, 1967, volume 69 of Annals of Mathematics Studies, 1972, pp. 159–175.
- Milman V. D. and Schechtman G., Asymptotic Theory of Finite Dimensional Normed Spaces, volume 1200 of Lecture Notes in Mathematics, Springer-Verlag, 1986.
- Pisier G., Martingales with values in uniformly convex spaces, Isr. J. Math. 20, no. 3-4 (1975), 326–350.
- Rosenthal H. P., Some applications of p-summing operators to Banach spaces, Stud. Math. 58, no. 1 (1976), 21–43.
- Schäffer J. J. and Sundaresan K., Reflexivity and the girth of spheres, Math. Ann. 184, no. 3 (1970), 163–168.

J. Wenzel, Texas A&M University, Department of Mathematics, College Station, Texas 77843–3368, U.S.A.

current address: Mathematisches Institut, FSU Jena, 07740 Jena, Germany