SUPERREFLEXIVITY AND J-CONVEXITY OF BANACH SPACES

J. WENZEL

Abstract

A Banach space X is superreflexive if each Banach space Y that is finitely representable in X is reflexive. Superreflexivity is known to be equivalent to J-convexity and to the non-existence of uniformly bounded factorizations of the summation operators S_{n} through X.

We give a quantitative formulation of this equivalence. This can in particular be used to find a factorization of S_{n} through X, given a factorization of S_{N} through $\left[L_{2}, X\right]$, where N is 'large' compared to n.

1. Introduction

Much of the significance of the concept of superreflexivity of a Banach space X is due to its many equivalent characterizations, see e.g. Beauzamy [1, Part 4].

Some of these characterizations allow a quantification, that makes also sense in non superreflexive spaces. Here are two examples.

Definition. Given n and $0<\varepsilon<1$, we say that a Banach space X is $J(n, \varepsilon)$ convex, if for all elements $z_{1}, \ldots, z_{n} \in U_{X}$ we have

$$
\inf _{1 \leq k \leq n}\left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n} z_{h}\right\|<n(1-\varepsilon)
$$

We let $\boldsymbol{J}_{n}(X)$ denote the infimum of all ε, such that X is not $J(n, \varepsilon)$-convex.
Definition. Given n and $\sigma \geq 1$, we say that a Banach space X factors the summation operator S_{n} with norm σ, if there exists a factorization $S_{n}=B_{n} A_{n}$ with $A_{n}: l_{1}^{n} \rightarrow X$ and $B_{n}: X \rightarrow l_{\infty}^{n}$ such that $\left\|A_{n}\right\|\left\|B_{n}\right\|=\sigma$.

We let $\boldsymbol{S}_{n}(X)$ denote the infimum of all σ, such that X factors S_{n} with norm σ.
Here, the summation operator $S_{n}: l_{1}^{n} \rightarrow l_{\infty}^{n}$ is given by

$$
\left(\xi_{k}\right) \mapsto\left(\sum_{h=1}^{k} \xi_{h}\right)
$$

and U_{X} denotes the unit ball of the Banach space X.

[^0]It is known that a Banach space is superreflexive if and only if it is $J(n, \varepsilon)$ convex for some n and $\varepsilon>0$, or equivalently, if it does not factor the summation operators with uniformly bounded norm; see James [5, Th. 5, Lem. B], and Schäffer/Sundaresan [9, Th. 2.2].

Using the terminology introduced above, this can be reformulated as follows:
Theorem 1. For a Banach space X the following properties are equivalent:
(i) X is not superreflexive.
(ii) For all $n \in \mathbb{N}$ we have $\boldsymbol{J}_{n}(X)=0$.
(iii) There is a constant $\sigma \geq 1$ such that for all $n \in \mathbb{N}$ we have $\boldsymbol{S}_{n}(X) \leq \sigma$.
(iv) For all $n \in \mathbb{N}$ we have $\boldsymbol{S}_{n}(X)=1$.

There are two conceptually different methods to prove that X is superreflexive if and only if $\left[L_{2}, X\right]$ is. The one is to use Enflo's renorming result [2, Cor. 3], which is not suited to be localized, the other is the use of J-convexity, see Pisier [7, Prop. 1.2]. It turns out that for fixed n

$$
\begin{equation*}
\boldsymbol{J}_{n}\left(\left[L_{2}, X\right]\right) \leq \boldsymbol{J}_{n}(X) \leq 2 n^{2} \boldsymbol{J}_{n}\left(\left[L_{2}, X\right]\right) \tag{1}
\end{equation*}
$$

see Section 2 for a proof. Similar results hold also in the case of B-convexity; see [8, p. 30].

Theorem 2. If for some n and all $\varepsilon>0,\left[L_{2}, X\right]$ contains $(1+\varepsilon)$ isomorphic copies of l_{1}^{n}, then X contains $(1+\varepsilon)$ isomorphic copies of l_{1}^{n}.

Theorem 3. If for some n and all $\varepsilon>0,\left[L_{2}, X\right]$ contains $(1+\varepsilon)$ isomorphic copies of l_{∞}^{n}, then X contains $(1+\varepsilon)$ isomorphic copies of l_{∞}^{n}.

On the other hand, no result of this kind for the factorization of S_{n} is known, i.e. if for some n and all $\varepsilon>0,\left[L_{2}, X\right]$ factors S_{n} with norm $(1+\varepsilon)$, does it follow that X factors S_{n} with norm $(1+\varepsilon)$?

Assuming $\boldsymbol{S}_{n}\left(\left[L_{2}, X\right]\right) \leq \sigma$ for some constant σ and all $n \geq 1$, one can use Theorem 1 to obtain that $\boldsymbol{J}_{n}\left(\left[L_{2}, X\right]\right)=0$ for all $n \geq 1$ and consequently $S_{n}(X)=1$.

The intent of our paper is to keep n fixed in this reasoning. Unfortunately, we don't get a result as smooth as Theorems 2 and 3. Instead, we have to consider two different values n and N. If $\boldsymbol{S}_{N}\left(\left[L_{2}, X\right]\right)=\sigma$ for some 'large' N, then $\boldsymbol{S}_{n}(X) \leq$ $(1+\varepsilon)$ for some 'small' n. To make this more precise, let us introduce the iterated exponential (or TOWER) function $P_{g}(m)$. We let

$$
P_{0}(m):=m \quad \text { and } \quad P_{g+1}(m):=2^{P_{g}(m)}
$$

We will prove the following two theorems.
Theorem 4. For fixed $n \in \mathbb{N}$ and $\sigma>1$ there is $\varepsilon>0$ such that $\boldsymbol{J}_{n}(X) \leq \varepsilon$ implies $\boldsymbol{S}_{n}(X)<\sigma$. In particular $\boldsymbol{J}_{n}(X)=0$ implies $\boldsymbol{S}_{n}(X)=1$.

Theorem 5. For fixed $n \in \mathbb{N}, \varepsilon>0$ and $\sigma \geq 1$ there is a number $N(\varepsilon, n, \sigma)$, such that $\boldsymbol{S}_{N}(X) \leq \sigma$ implies $\boldsymbol{J}_{n}(X)<\varepsilon$. The number N can be estimated by

$$
N \leq P_{m}(c n)
$$

where m and c depend on σ and ε only.
Using (1), we obtain the following consequence.
Corollary 6. For fixed $n \in \mathbb{N}, \sigma_{1}>1$, and $\sigma_{2} \geq 1$ there is a number $N\left(\sigma_{1}, n, \sigma_{2}\right)$ such that $\boldsymbol{S}_{N}\left(\left[L_{2}, X\right]\right) \leq \sigma_{2}$ implies $\boldsymbol{S}_{n}(X) \leq \sigma_{1}$.

Proof. Determine ε as in Theorem 4 such that $\boldsymbol{J}_{n}(X) \leq \varepsilon$ implies $\boldsymbol{S}_{n}(X)<\sigma_{1}$. Choose $N=N\left(\frac{\varepsilon}{2 n^{2}}, n, \sigma_{2}\right)$ as in Theorem 5 such that $\boldsymbol{S}_{N}\left(\left[L_{2}, X\right]\right) \leq \sigma_{2}$ implies $\boldsymbol{J}_{n}\left(\left[L_{2}, X\right]\right)<\frac{\varepsilon}{2 n^{2}}$. By (1) we obtain $\boldsymbol{J}_{n}(X)<\varepsilon$ and hence $\boldsymbol{S}_{n}(X)<\sigma_{1}$.

The estimate in Theorem 5 seems rather crude, and we have no idea, whether or not it is optimal.

2. Proofs

First of all, we list some elementary properties of the sequences $\boldsymbol{S}_{n}(X)$ and $\boldsymbol{J}_{n}(X)$.

Fact.
(i) The sequence $\left(\boldsymbol{S}_{n}(X)\right)$ is non-decreasing.
(ii) $1 \leq \boldsymbol{S}_{n}(X) \leq(1+\log n)$ for all infinite dimensional Banach spaces X.
(iii) The sequence $\left(n \boldsymbol{J}_{n}(X)\right)$ is non-decreasing.
(iv) For all $n, m \in \mathbb{N}$ we have $\boldsymbol{J}_{n}(X) \leq \boldsymbol{J}_{n m}(X) \leq \boldsymbol{J}_{n}(X)+1 / n$.
(v) If $\boldsymbol{J}_{n}(X) \rightarrow 0$ then for all $n \in \mathbb{N}$ we have $\boldsymbol{J}_{n}(X)=0$.
(vi) $J_{n}(\mathbb{R}) \geq 1-1 / n$ for all $n \in \mathbb{N}$.
(vii) If q and ε are related by $\varepsilon \geq(1-\varepsilon)^{q-1}$ then $\boldsymbol{J}_{n}\left(l_{q}\right) \leq 4 \varepsilon$ for all $n \in \mathbb{N}$.

Proof. The monotonicity properties (i) and (iii) are trivial.
The bound for $\boldsymbol{S}_{n}(X)$ in (ii) follows from the fact that the summation operator S_{n} factors through l_{2}^{n} with norm $(1+\log n)$ and from Dvoretzky's Theorem.

To see (iv) assume that X is $J(n, \varepsilon)$-convex. Given $z_{1}, \ldots, z_{n m} \in U_{X}$, let

$$
x_{h}:=\frac{1}{m} \sum_{k=1}^{m} z_{(h-1) m+k} \quad \text { for } h=1, \ldots, n
$$

Then

$$
\inf _{1 \leq k \leq n m}\left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n m} z_{h}\right\| \leq m \inf _{1 \leq k \leq n}\left\|\sum_{h=1}^{k} x_{h}-\sum_{h=k+1}^{n} x_{h}\right\|<m n(1-\varepsilon)
$$

which proves that X is $J(n m, \varepsilon)$-convex, and consequently $\boldsymbol{J}_{n}(X) \leq \boldsymbol{J}_{n m}(X)$.

Assume now that X is $J(n m, \varepsilon)$-convex. Given $z_{1}, \ldots, z_{n} \in U_{X}$, let

$$
\begin{gathered}
x_{1}=\ldots=x_{m}:=z_{1} \\
\vdots \\
\vdots \\
x_{(n-1) m+1}=\ldots=x_{n m}:=z_{n} .
\end{gathered}
$$

If

$$
\inf _{1 \leq k \leq n m}\left\|\sum_{h=1}^{k} x_{h}-\sum_{h=k+1}^{n m} x_{h}\right\| \quad \text { is attained for } k_{0}
$$

there is $l \in\{0, \ldots, n\}$ such that $m / 2+(l-1) m<k_{0} \leq m / 2+l m$, hence

$$
\left\|\sum_{h=1}^{k_{0}} x_{h}-\sum_{h=k_{0}+1}^{n m} x_{h}\right\| \geq\left\|\sum_{h=1}^{l m} x_{h}-\sum_{h=l m+1}^{n m} x_{h}\right\|-2 \sum_{h \in I}\left\|x_{h}\right\|
$$

where $I=\left\{k_{0}+1, \ldots, l m\right\}$ or $I=\left\{l m+1, \ldots, k_{0}\right\}$ according to whether $k_{0} \leq l m$ or $k_{0}>l m$. It follows that

$$
n m(1-\varepsilon)>m \inf _{1 \leq k \leq n}\left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n} z_{h}\right\|-m
$$

and hence $\boldsymbol{J}_{n}(X) \geq \varepsilon-1 / n$. This proves (iv).
(v) is a consequence of (iv).

For (vi) and (vii) see Section 3.
For the convenience of the reader, let us repeat the argument for the proof of (1) from [1]. The left-hand part of (1) is obvious, since X can be isometrically embedded into $\left[L_{2}, X\right]$. To see the right-hand inequality, assume that for all $z_{1}, \ldots, z_{n} \in U_{X}$

$$
\inf _{1 \leq k \leq n}\left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n} z_{h}\right\|<n(1-\varepsilon)
$$

Obviously, if $\left\|z_{1}\right\|=\cdots=\left\|z_{n}\right\|$ it follows by homogeneity that

$$
\begin{equation*}
\inf _{1 \leq k \leq n}\left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n} z_{h}\right\|<(1-\varepsilon) \sum_{k=1}^{n}\left\|z_{k}\right\| \tag{2}
\end{equation*}
$$

If z_{1}, \ldots, z_{n} are arbitrary, let $m:=\min _{1 \leq k \leq n}\left\|z_{k}\right\|, \lambda_{k}:=m /\left\|z_{k}\right\|$, and $\tilde{z}_{k}:=$ $\left(1-\lambda_{k}\right) z_{k}$. It turns out that $\left\|z_{k}-\tilde{z}_{k}\right\|=m$ and therefore by (2)

$$
\begin{aligned}
\inf _{1 \leq k \leq n} & \left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n} z_{h}\right\|<\sum_{k=1}^{n}\left\|\tilde{z}_{k}\right\|+(1-\varepsilon) \sum_{k=1}^{n}\left\|z_{k}-\tilde{z}_{k}\right\| \\
& \leq \sum_{k=1}^{n}\left(\left(1-\lambda_{k}\right)+(1-\varepsilon) \lambda_{k}\right)\left\|z_{k}\right\| \leq\left(\sum_{k=1}^{n}\left(1-\varepsilon \lambda_{k}\right)^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n}\left\|z_{k}\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

Now, at least one of the λ_{k} 's equals one, while the others are greater than or equal to zero. This yields

$$
\begin{aligned}
\inf _{1 \leq k \leq n}\left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n} z_{h}\right\| & <\left((1-\varepsilon)^{2}+n-1\right)^{1 / 2}\left(\sum_{k=1}^{n}\left\|z_{k}\right\|^{2}\right)^{1 / 2} \\
& \leq\left(n-2 \varepsilon+\varepsilon^{2}\right)^{1 / 2}\left(\sum_{k=1}^{n}\left\|z_{k}\right\|^{2}\right)^{1 / 2}
\end{aligned}
$$

On the other hand, we trivially get that for all $1 \leq k \leq n$

$$
\left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n} z_{h}\right\| \leq n^{1 / 2}\left(\sum_{k=1}^{n}\left\|z_{k}\right\|^{2}\right)^{1 / 2}
$$

Therefore

$$
\sum_{k=1}^{n}\left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n} z_{h}\right\|^{2}<\left(\left(n-2 \varepsilon+\varepsilon^{2}\right)+(n-1) n\right) \sum_{k=1}^{n}\left\|z_{k}\right\|^{2}
$$

for all $z_{1}, \ldots, z_{n} \in X$. If in particular $f_{1}, \ldots, f_{n} \in U_{\left[L_{2}, X\right]}$, then

$$
\sum_{k=1}^{n}\left\|\sum_{h=1}^{k} f_{h}(t)-\sum_{h=k+1}^{n} f_{h}(t)\right\|^{2}<\left(n^{2}-2 \varepsilon+\varepsilon^{2}\right) \sum_{k=1}^{n}\left\|f_{k}(t)\right\|^{2}
$$

Integration with respect to t yields

$$
\sum_{k=1}^{n}\left\|\sum_{h=1}^{k} f_{h}-\sum_{h=k+1}^{n} f_{h}\left|L_{2}\left\|^{2}<\left(n^{2}-2 \varepsilon+\varepsilon^{2}\right) \sum_{k=1}^{n}\right\| f_{k}\right| L_{2}\right\|^{2} \leq n\left(n^{2}-2 \varepsilon+\varepsilon^{2}\right)
$$

This implies that

$$
\inf _{1 \leq k \leq n}\left\|\sum_{h=1}^{k} f_{h}-\sum_{h=k+1}^{n} f_{h} \mid L_{2}\right\|<\left(n^{2}-2 \varepsilon+\varepsilon^{2}\right)^{1 / 2} \leq n(1-\delta)
$$

for $\delta=\varepsilon / 2 n^{2}$. Therefore $\boldsymbol{J}_{n}\left(\left[L_{2}, X\right]\right) \geq \boldsymbol{J}_{n}(X) / 2 n^{2}$.
Let us now prove Theorem 4.
Proof of Theorem 4. Choose $\varepsilon<\frac{1}{2(n+2)!}$ such that $1+2(n+2)!\varepsilon<\sigma$. If $\boldsymbol{J}_{n}(X) \leq \varepsilon$, we find $z_{1}, \ldots, z_{n} \in U_{X}$ be such that

$$
\inf _{1 \leq k \leq n}\left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n} z_{h}\right\| \geq n(1-\varepsilon)
$$

By the Hahn-Banach theorem, we find $y_{k} \in U_{X^{*}}$ such that

$$
n(1-\varepsilon) \leq \sum_{h=1}^{k}\left\langle z_{h}, y_{k}\right\rangle-\sum_{h=k+1}^{n}\left\langle z_{h}, y_{k}\right\rangle
$$

Obviously $\left|\left\langle z_{h}, y_{k}\right\rangle\right| \leq 1$. If for some $h \leq k$ we even have

$$
\left\langle z_{h}, y_{k}\right\rangle<1-n \varepsilon
$$

then

$$
n(1-\varepsilon) \leq \sum_{l=1}^{k}\left\langle z_{l}, y_{k}\right\rangle-\sum_{l=k+1}^{n}\left\langle z_{l}, y_{k}\right\rangle<(n-1)+(1-n \varepsilon)=n(1-\varepsilon)
$$

which is a contradiction. Hence

$$
\begin{equation*}
1-n \varepsilon \leq\left\langle z_{h}, y_{k}\right\rangle \leq 1 \quad \text { for all } h \leq k \tag{3}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
1-n \varepsilon \leq-\left\langle z_{h}, y_{k}\right\rangle \leq 1 \quad \text { for all } h>k \tag{4}
\end{equation*}
$$

Let $x_{h}:=\left(z_{1}+z_{h}\right) / 2$. Then it follows from (3) and (4) that there are x_{1}, \ldots, x_{n} $\in U_{X}$ and $y_{1}, \ldots, y_{n} \in U_{X^{\prime}}$ so that

$$
\left\langle x_{h}, y_{k}\right\rangle \in \begin{cases}(1-n \varepsilon, 1] & \text { if } h \leq k \\ (-n \varepsilon,+n \varepsilon) & \text { if } h>k\end{cases}
$$

The assertion now follows from the following distortion lemma.
Lemma 7. Suppose that $\varepsilon<\frac{1}{2(n+1)!}$ and that there are $x_{1}, \ldots, x_{n} \in U_{X}$ and $y_{1}, \ldots, y_{n} \in U_{X^{*}}$ such that

$$
\left\langle x_{h}, y_{k}\right\rangle \in \begin{cases}(1-\varepsilon, 1] & \text { if } h \leq k \\ (-\varepsilon,+\varepsilon) & \text { if } h>k .\end{cases}
$$

Then $\boldsymbol{S}_{n}(X) \leq 1+2(n+1)!$.
Proof. Fix $h \in\{1, \ldots, n\}$. Let $\alpha_{l k}:=\left\langle x_{l}, y_{k}\right\rangle$. Consider the system of linear equations

$$
\sum_{l=1}^{n} \alpha_{l k} \xi_{l}=\left\{\begin{array}{ll}
1-\alpha_{h k} & \text { if } h \leq k, \\
-\alpha_{h k} & \text { if } h>k,
\end{array} \quad k=1, \ldots, n\right.
$$

in the n variables ξ_{1}, \ldots, ξ_{n}. Its solution is given by

$$
\xi_{m}^{(h)}=\frac{\operatorname{det}\left(\beta_{l k}^{(m)}\right)}{\operatorname{det}\left(\alpha_{l k}\right)}
$$

where $\left(\beta_{l k}^{(m)}\right)$ is the matrix $\left(\alpha_{l k}\right)$ but with its m-th column replaced by the righthand side of our system of equations. It follows that

$$
\left|\operatorname{det}\left(\beta_{l k}^{(m)}\right)\right|=\left|\sum_{\pi} \operatorname{sgn}(\pi) \prod_{k=1}^{n} \beta_{k \pi(k)}^{(m)}\right| \leq n!\left|\beta_{m \pi(m)}^{(m)}\right| \leq n!\varepsilon
$$

Since for all permutations π that are not the identity, there exists at least one k such that $\pi(k)>k$, we have $\left|\alpha_{\pi(k) k}\right|<\varepsilon$ and hence

$$
\begin{aligned}
\left|\operatorname{det}\left(\alpha_{l k}\right)\right| & =\left|\sum_{\pi} \operatorname{sgn}(\pi) \prod_{k=1}^{n} \alpha_{\pi(k) k}\right| \geq\left|\prod_{k=1}^{n} \alpha_{k k}\right|-\sum_{\pi \neq i d} \varepsilon \\
& \geq(1-\varepsilon)^{n}-n!\varepsilon \geq 1-n \varepsilon-n!\varepsilon \geq 1-(n+1)!\varepsilon
\end{aligned}
$$

Hence if $\varepsilon<\frac{1}{2(n+1)!}$ the solutions $\xi_{m}^{(h)}$ satisfy

$$
\left|\xi_{m}^{(h)}\right| \leq 2 n!\varepsilon
$$

Defining $A_{n}: l_{1}^{n} \rightarrow X$ by

$$
A_{n} e_{h}:=\sum_{m=1}^{n} x_{m} \xi_{m}^{(h)}+x_{h}
$$

we get that $\left\|A_{n}\right\| \leq 1+\sup _{h} \sum_{m=1}^{n}\left|\xi_{m}^{(h)}\right| \leq 1+2(n+1)!\varepsilon$. Defining $B_{n}: X \rightarrow l_{\infty}^{n}$ by

$$
B_{n} x:=\left(\left\langle x, y_{k}\right\rangle\right)_{k=1}^{n},
$$

we get that $\left\|B_{n}\right\| \leq 1$ and $S_{n}=B_{n} A_{n}$. This completes the proof, since $\boldsymbol{S}_{n}(X) \leq$ $\left\|A_{n}\right\|\left\|B_{n}\right\| \leq 1+2(n+1)!$.

Interlude on Ramsey theory

Our proof of Theorem 5 makes massive use of the general form of Ramsey's Theorem. Therefore, for the convenience of the reader, let us recall, what it says; see $[\mathbf{3}]$ and $[\mathbf{6}]$.

For a set M and a positive integer k, let $M^{[k]}$ be the set of all subsets of M of cardinality k.

Theorem 8. Given r, k and n, there is a number $R_{k}(n, r)$ such that for all $N \geq R_{k}(n, r)$ the following holds:

For each function $f:\{1, \ldots, N\}^{[k]} \rightarrow\{1, \ldots, r\}$ there exists a subset $M \subseteq$ $\{1, \ldots, N\}$ of cardinality at least n such that $f\left(M^{[k]}\right)$ is a singleton.

The following estimate for the Ramsey number $R_{k}(l, r)$ can be found in [3, p. 106].

Lemma. There is a number $c(r, k)$ depending on r and k, such that

$$
R_{k}(l, r) \leq P_{k}(c(r, k) \cdot l)
$$

We can now turn to the proof of Theorem 5.
Proof of Theorem 5. The proof follows the line of James's proof in [4, Th. 1.1]. The main new ingredient is the use of Ramsey's Theorem to estimate the number N.

Let $n, \varepsilon>0$, and σ be given. Define m by

$$
\begin{equation*}
2 m \sigma<\left(\frac{1}{1-\varepsilon}\right)^{m-1} \tag{5}
\end{equation*}
$$

and let

$$
\begin{equation*}
N:=R_{2 m}\left(R_{2 m}(2 n m+1, m), m\right) \tag{6}
\end{equation*}
$$

where R denotes the Ramsey number introduced in the previous paragraph.
The required estimate for N then follows from Lemma 9 as follows

$$
N \leq P_{2 m}\left(c_{1} P_{2 m}\left(c_{2} 2 n m\right)\right) \leq P_{4 m}\left(c_{3} n\right)
$$

where c_{1}, c_{2}, and c_{3} are constants depending on m, which in turn depends on σ and ε.

Replacing, e.g. σ by 2σ, we may assume that in fact $\boldsymbol{S}_{N}(X)<\sigma$ in order to avoid using an additional δ in the notation. If $\boldsymbol{S}_{N}(X)<\sigma$ then there are $A_{N}: l_{1}^{N} \rightarrow X$ and $B_{N}: X \rightarrow l_{\infty}^{N}$ such that $S_{N}=B_{N} A_{N}$ and $\left\|A_{N}\right\|=1,\left\|B_{N}\right\| \leq \sigma$. Let $x_{h}:=A_{N} e_{h}$ and $y_{k}:=B_{N}^{*} e_{k}$. Note that

$$
\left\|x_{h}\right\| \leq 1, \quad\left\|y_{k}\right\| \leq \sigma, \quad \text { and } \quad\left\langle x_{h}, y_{k}\right\rangle= \begin{cases}1 & \text { if } h \leq k \\ 0 & \text { if } h>k\end{cases}
$$

For each subset $M \subseteq\{1, \ldots, N\}$, we let $\mathcal{F}_{m}(M)$ denote the collection of all sequences $\mathbb{F}=\left(F_{1}, \ldots, F_{m}\right)$ of consecutive intervals of numbers, whose endpoints are in M, i.e.

$$
F_{j}=\left\{l_{j}, l_{j}+1, \ldots, r_{j}\right\}, \quad l_{j}, r_{j} \in M, \quad l_{j}<r_{j}<l_{j+1}
$$

for $j=1, \ldots, m$. Note that $\mathcal{F}_{m}(M)$ can be identified with $M^{[2 m]}$.

The outline of the proof of Theorem 5 is as follows. To each $\mathbb{F}=\left(F_{1}, \ldots, F_{m}\right)$, we assign an element $x(\mathbb{F})$ which in fact is a linear combination of the elements x_{1}, \ldots, x_{N}. Next, we extract a 'large enough' subset M of $\{1, \ldots, N\}$, such that all $x(\mathbb{F})$ with $\mathbb{F} \in \mathcal{F}_{m}(M)$ have about equal norm. Finally, we look at special sequences $\mathbb{F}^{(1)}, \ldots, \mathbb{F}^{(n)}$ and $\mathbb{E}^{(1)}, \ldots, \mathbb{E}^{(n)}$ in $\mathcal{F}_{m}(M)$ such that

$$
\left\|\sum_{h=1}^{k} x\left(\mathbb{F}^{(h)}\right)-\sum_{h=k+1}^{n} x\left(\mathbb{F}^{(h)}\right)\right\| \geq n\left\|x\left(\mathbb{E}^{(k)}\right)\right\|
$$

Since $\left\|x\left(\mathbb{E}^{(k)}\right)\right\| \asymp\left\|x\left(\mathbb{F}^{(h)}\right)\right\|$, normalizing the elements $x\left(\mathbb{F}^{(h)}\right)$ yields the required elements z_{1}, \ldots, z_{n} to prove that $\boldsymbol{J}_{n}(X)<\varepsilon$.

Let us start by choosing the elements $x(\mathbb{F})$. For a sequence $\mathbb{F} \in \mathcal{F}_{m}(M)$, we define

$$
S(\mathbb{F}):=\left\{x=\sum_{h=1}^{N} \xi_{h} x_{h}: \sup _{h}\left|\xi_{h}\right| \leq 2,\left\langle x, y_{l}\right\rangle=(-1)^{j} \quad \begin{array}{c}
\text { for all } l \in F_{j} \\
\text { and } j=1, \ldots, m
\end{array}\right\}
$$

By compactness, there is $x(\mathbb{F}) \in S(\mathbb{F})$ such that

$$
\|x(\mathbb{F})\|=\inf _{x \in S(\mathbb{F})}\|x\|
$$

Lemma 10. We have $1 / \sigma \leq\|x(\mathbb{F})\| \leq 2 m$ for all $\mathbb{F} \in \mathcal{F}_{m}(\{1, \ldots, N\})$.
Proof. Write $F_{j}=\left\{l_{j}, \ldots, r_{j}\right\}$ and let

$$
x:=-x_{l_{1}}+2 \sum_{i=2}^{m}(-1)^{i} x_{l_{i}} .
$$

Then for $l \in F_{j}$, we have

$$
\left\langle x, y_{l}\right\rangle=-1+2 \sum_{i=2}^{j}(-1)^{i} \cdot 1+2 \sum_{i=j+1}^{m}(-1)^{i} \cdot 0=(-1)^{j},
$$

hence $x \in S(\mathbb{F})$ and $\|x(\mathbb{F})\| \leq\|x\| \leq 2 m-1$.
On the other hand,

$$
1=\left|\left\langle x(\mathbb{F}), y_{l_{1}}\right\rangle\right| \leq \sigma\|x(\mathbb{F})\| .
$$

Hence $1 / \sigma \leq\|x(\mathbb{F})\|$.
By (5), we can write the interval $[1 / \sigma, 2 m]$ as a disjoint union as follows

$$
\left[\frac{1}{\sigma}, 2 m\right] \subseteq \bigcup_{i=1}^{m-1} A_{i}, \quad \text { where } \quad A_{i}:=\frac{1}{\sigma}\left[\left(\frac{1}{1-\varepsilon}\right)^{i-1},\left(\frac{1}{1-\varepsilon}\right)^{i}\right)
$$

For $\mathbb{F}=\left(F_{1}, \ldots, F_{m}\right) \in \mathcal{F}_{m}(\{1, \ldots, N\})$ and $1 \leq j \leq m$, let

$$
P_{j}(\mathbb{F}):=\left(F_{1}, \ldots, F_{j}\right) \in \mathcal{F}_{j}(\{1, \ldots, N\}) .
$$

Obviously

$$
\left\|x\left(P_{j-1}(\mathbb{F})\right)\right\| \leq\left\|x\left(P_{j}(\mathbb{F})\right)\right\| \leq 2 m \quad \text { for } j=2, \ldots, m
$$

It follows that for each $\mathbb{F} \in \mathcal{F}_{m}(\{1, \ldots, N\})$ there is at least one index j for which the two values $\left\|x\left(P_{j-1}(\mathbb{F})\right)\right\|$ and $\left\|x\left(P_{j}(\mathbb{F})\right)\right\|$ belong to the same interval A_{i}. Letting $f(\mathbb{F})$ be the least such value j, defines a function

$$
f:\{1, \ldots, N\}^{[2 m]} \rightarrow\{1, \ldots, m\}
$$

Applying Ramsey's Theorem to that function, yields the existence of a number j_{0} and a subset L of $\{1, \ldots, N\}$ of cardinality $|L| \geq R_{2 m}(2 n m+1, m)$ such that for all $\mathbb{F} \in \mathcal{F}_{m}(L)$ the two values $\left\|x\left(P_{j_{0}-1}(\mathbb{F})\right)\right\|$ and $\left\|x\left(P_{j_{0}}(\mathbb{F})\right)\right\|$ belong to the same of the intervals A_{i}.

Next, for each $\mathbb{F} \in \mathcal{F}_{m}(L)$ there is a unique number i for which the value $\left\|x\left(P_{j_{0}}(\mathbb{F})\right)\right\|$ belongs to the interval A_{i}. Letting $g(\mathbb{F})$ be that number i, defines a function

$$
g: L^{[2 m]} \rightarrow\{1, \ldots, m\}
$$

Applying Ramsey's Theorem to that function, yields the existence of a number i_{0} and a subset M of L of cardinality $|M| \geq 2 n m+1$ such that for all $\mathbb{F} \in \mathcal{F}_{m}(M)$ we have

$$
\begin{equation*}
\left\|x\left(P_{j_{0}}(\mathbb{F})\right)\right\| \in A_{i_{0}} \tag{7}
\end{equation*}
$$

and hence, by the choice of j_{0} and L, also

$$
\begin{equation*}
\left\|x\left(P_{j_{0}-1}(\mathbb{F})\right)\right\| \in A_{i_{0}} \tag{8}
\end{equation*}
$$

We now define sequences

$$
\mathbb{F}^{(h)}:=\left(F_{1}^{(h)}, \ldots, F_{m}^{(h)}\right) \quad \text { and } \quad \mathbb{E}^{(k)}:=\left(E_{1}^{(k)}, \ldots, E_{m-1}^{(k)}\right)
$$

of nicely overlapping intervals.
Write $M=\left\{p_{1}, \ldots, p_{2 n m+1}\right\}$, where $p_{1}<p_{2}<\cdots<p_{2 n m+1}$ and define

$$
\mathbb{F}^{(h)}:=\left(F_{1}^{(h)}, \ldots, F_{m}^{(h)}\right) \in \mathcal{F}_{m}(M) \quad h=1, \ldots, n
$$

as follows

$$
F_{j}^{(h)}:= \begin{cases}\left\{p_{h}, \ldots, p_{n+2 h-1}\right\} & \text { if } j=1 \\ \left\{p_{n(2 j-3)+2 h}, \ldots, p_{n(2 j-1)+2 h-1}\right\} & \text { if } j=2, \ldots, m-1, \\ \left\{p_{n(2 m-3)+2 h}, \ldots, p_{n(2 m-1)+h}\right\} & \text { if } j=m .\end{cases}
$$

It turns out that

$$
\begin{equation*}
E_{j}^{(k)}:=\bigcap_{h=1}^{k} F_{j+1}^{(h)} \cap \bigcap_{h=k+1}^{n} F_{j}^{(h)} \quad k=1, \ldots, n \tag{9}
\end{equation*}
$$

is given by

$$
E_{j}^{(k)}:=\left\{p_{n(2 j-1)+2 k}, \ldots, p_{n(2 j-1)+2 k+1}\right\} \quad \text { if } j=1, \ldots, m-1
$$

Hence $\left(E_{1}^{(k)}, \ldots, E_{m-1}^{(k)}\right) \in \mathcal{F}_{m-1}(M)$. In order to obtain an element of $\mathcal{F}_{m}(M)$ we add the auxiliary set $E_{m}^{(k)}:=\left\{p_{2 n m}, \ldots, p_{2 n m+1}\right\}$, this can be done for $n \geq 2$, which is the only interesting case anyway since $\boldsymbol{J}_{1}(X)=0$ for any Banach space X. We have $\mathbb{E}^{(k)}:=\left(E_{1}^{(k)}, \ldots, E_{m}^{(k)}\right) \in \mathcal{F}_{m}(M)$.

The following picture shows the sets $F_{j}^{(h)}$ and $E_{j}^{(k)}$ in the case $n=3$ and $m=4$:

It follows from (9) that for $1 \leq k \leq n$

$$
\frac{1}{n}\left(-\sum_{h=1}^{k} x\left(P_{j_{0}}\left(\mathbb{F}^{(h)}\right)\right)+\sum_{h=k+1}^{n} x\left(P_{j_{0}}\left(\mathbb{F}^{(h)}\right)\right)\right) \in S\left(P_{j_{0}-1}\left(\mathbb{E}^{(k)}\right)\right)
$$

hence

$$
\left\|\sum_{h=1}^{k} x\left(P_{j_{0}}\left(\mathbb{F}^{(h)}\right)\right)-\sum_{h=k+1}^{n} x\left(P_{j_{0}}\left(\mathbb{F}^{(h)}\right)\right)\right\| \geq n\left\|x\left(P_{j_{0}-1}\left(\mathbb{E}^{(k)}\right)\right)\right\|
$$

Let $z_{h}:=\sigma(1-\varepsilon)^{i_{0}} x\left(P_{j_{0}}\left(\mathbb{F}^{(h)}\right)\right)$. Then

$$
\left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n} z_{h}\right\| \geq n \sigma(1-\varepsilon)^{i_{0}}\left\|x\left(P_{j_{0}-1}\left(\mathbb{E}^{(k)}\right)\right)\right\|
$$

By (7) we have $\left\|x\left(P_{j_{0}}\left(\mathbb{F}^{(h)}\right)\right)\right\| \in A_{i_{0}}$, which implies $\left\|z_{h}\right\| \leq 1$. On the other hand, by (8) we have $\left\|x\left(P_{j_{0}-1}\left(\mathbb{E}^{(k)}\right)\right)\right\| \in A_{i_{0}}$, which implies

$$
\left\|\sum_{h=1}^{k} z_{h}-\sum_{h=k+1}^{n} z_{h}\right\| \geq n \sigma(1-\varepsilon)^{i_{0}} \frac{1}{\sigma}\left(\frac{1}{1-\varepsilon}\right)^{i_{0}-1}=n(1-\varepsilon)
$$

Consequently $\boldsymbol{J}_{n}(X) \leq \varepsilon$.

3. Problems and Examples

Example 1. $J_{n}(\mathbb{R}) \geq 1-1 / n$.
Proof. Let $\left|\xi_{h}\right| \leq 1$ for $h=1, \ldots, n$. For $k=1, \ldots, n$ define

$$
\eta_{k}:=\sum_{h=1}^{k} \xi_{h}-\sum_{h=k+1}^{n} \xi_{h}
$$

and let $\eta_{0}:=-\eta_{n}$. Obviously $\left|\eta_{k}-\eta_{k+1}\right| \leq 2$ for $k=0, \ldots, n-1$. Since $\eta_{0}=-\eta_{n}$ there exists at least one k_{0} such that $\operatorname{sgn} \eta_{k_{0}} \neq \operatorname{sgn} \eta_{k_{0}+1}$. Assume that $\left|\eta_{k_{0}}\right|>1$ and $\left|\eta_{k_{0}+1}\right|>1$, then $\left|\eta_{k_{0}}-\eta_{k_{0}+1}\right|>2$, a contradiction. Hence there is k such that $\left|\eta_{k}\right| \leq 1$. This proves that

$$
\inf _{1 \leq k \leq n}\left|\sum_{h=1}^{k} \xi_{h}-\sum_{h=k+1}^{n} \xi_{h}\right| \leq 1=n \frac{1}{n}
$$

and hence $\boldsymbol{J}_{n}(\mathbb{R}) \geq 1-\frac{1}{n}$.
Example 2. If q and ε are related by

$$
\varepsilon \geq(1-\varepsilon)^{q-1}
$$

then $\boldsymbol{J}_{n}\left(l_{q}\right) \leq 4 \varepsilon$ for all $n \in \mathbb{N}$.
Proof. Given $\varepsilon>0$ find n_{0} such that

$$
\frac{1}{n_{0}}<\varepsilon \leq \frac{1}{n_{0}-1}
$$

then

$$
\left(\frac{1}{n_{0}}\right)^{1 / q} \geq\left(1-\frac{1}{n_{0}}\right)^{1 / q} \varepsilon^{1 / q} \geq 1-\varepsilon
$$

If $n \leq n_{0}$, choosing

$$
x_{h}:=(\overbrace{-1, \ldots,-1}^{h}, \overbrace{+1, \ldots,+1}^{n-h}, 0, \ldots),
$$

we obtain

$$
\left\|\sum_{h=1}^{k} x_{h}-\sum_{h=k+1}^{n} x_{h}\right\|_{q} \geq\left\|\sum_{h=1}^{k} x_{h}-\sum_{h=k+1}^{n} x_{h}\right\|_{\infty}=n .
$$

And since

$$
\left\|x_{h}\right\|_{q}=n^{1 / q} \leq n_{0}^{1 / q} \leq 1 /(1-\varepsilon)
$$

it follows that $\boldsymbol{J}_{n}\left(l_{q}\right) \leq \varepsilon$.
If $n>n_{0}$, there is $m \geq 2$ such that $(m-1) n_{0}<n \leq m n_{0}$. Hence, by Properties (iii) and (iv) in the fact in Section 2 it follows that

$$
\boldsymbol{J}_{n}(X) \leq \frac{m n_{0}}{n} \boldsymbol{J}_{m n_{0}}(X) \leq \frac{m n_{0}}{n}\left(\boldsymbol{J}_{n_{0}}+\frac{1}{n_{0}}\right) \leq \frac{m n_{0}}{n} 2 \varepsilon \leq 4 \varepsilon
$$

The main open problem of this article is the optimality of the estimate for N in Theorem 5.

Problem. Are there $\sigma \geq 1$ and $\varepsilon>0$ and a sequence of Banach spaces $\left(X_{n}\right)$ such that

$$
\boldsymbol{S}_{f(n)}\left(X_{n}\right) \leq \sigma \quad \text { and } \quad \boldsymbol{J}_{n}\left(X_{n}\right) \geq \varepsilon
$$

where $f(n)$ is any function such that $f(n)>n$?
In particular $f(n)>P_{m}(n)$, where m is given by (5) would show that the estimate in Theorem 5 for N is sharp in an asymptotic sense.

References

1. Beauzamy B., Introduction to Banach spaces and their geometry, Volume 68 of North-Holland mathematics studies, North-Holland, second edition, 1985.
2. Enflo P., Banach spaces which can be given an equivalent uniformly convex norm, Isr. J. Math. 13, no. 3-4 (1972), 281-288.
3. Graham R. L., Rothschild B.L. and Spencer J. H., Ramsey Theory, Wiley, second edition, 1990.
4. James R. C., Uniformly non-square Banach spaces, Ann. of Math. (2) 80 (1964), 542-550.
5. sional topology, Baton Rouge, 1967, volume 69 of Annals of Mathematics Studies, 1972, pp. 159-175.
6. Milman V. D. and Schechtman G., Asymptotic Theory of Finite Dimensional Normed Spaces, volume 1200 of Lecture Notes in Mathematics, Springer-Verlag, 1986.
7. Pisier G., Martingales with values in uniformly convex spaces, Isr. J. Math. 20, no. 3-4 (1975), 326-350.
8. Rosenthal H. P., Some applications of p-summing operators to Banach spaces, Stud. Math. 58, no. 1 (1976), 21-43.
9. Schäffer J. J. and Sundaresan K., Reflexivity and the girth of spheres, Math. Ann. 184, no. 3 (1970), 163-168.
J. Wenzel, Texas A\&M University, Department of Mathematics, College Station, Texas 778433368, U.S.A.
current address: Mathematisches Institut, FSU Jena, 07740 Jena, Germany

[^0]: Received June 20, 1996.
 1980 Mathematics Subject Classification (1991 Revision). Primary 46B07, 46B10.
 Key words and phrases. superreflexivity, summation operator, J-convexity.
 Research supported by German Academic Exchange Service (DAAD).

