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SUPERREFLEXIVITY AND

J–CONVEXITY OF BANACH SPACES

J. WENZEL

Abstract. A Banach space X is superreflexive if each Banach space Y that is
finitely representable in X is reflexive. Superreflexivity is known to be equivalent
to J-convexity and to the non-existence of uniformly bounded factorizations of the
summation operators Sn through X.

We give a quantitative formulation of this equivalence.
This can in particular be used to find a factorization of Sn through X, given a

factorization of SN through [L2,X], where N is ‘large’ compared to n.

1. Introduction

Much of the significance of the concept of superreflexivity of a Banach space X

is due to its many equivalent characterizations, see e.g. Beauzamy [1, Part 4].

Some of these characterizations allow a quantification, that makes also sense in

non superreflexive spaces. Here are two examples.

Definition. Given n and 0 < ε < 1, we say that a Banach space X is J(n, ε)-

convex, if for all elements z1, . . . , zn ∈ UX we have

inf
1≤k≤n

∥∥∥ k∑
h=1

zh −
n∑

h=k+1

zh

∥∥∥ < n(1− ε).

We let Jn(X) denote the infimum of all ε, such that X is not J(n, ε)-convex.

Definition. Given n and σ ≥ 1, we say that a Banach space X factors the

summation operator Sn with norm σ, if there exists a factorization Sn = BnAn
with An : ln1 → X and Bn : X → ln∞ such that ‖An‖ ‖Bn‖ = σ.

We let Sn(X) denote the infimum of all σ, such that X factors Sn with norm σ.

Here, the summation operator Sn : ln1 → ln∞ is given by

(ξk) 7→

(
k∑
h=1

ξh

)
and UX denotes the unit ball of the Banach space X.
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It is known that a Banach space is superreflexive if and only if it is J(n, ε)-

convex for some n and ε > 0, or equivalently, if it does not factor the summa-

tion operators with uniformly bounded norm; see James [5, Th. 5, Lem. B], and

Schäffer/Sundaresan [9, Th. 2.2].

Using the terminology introduced above, this can be reformulated as follows:

Theorem 1. For a Banach space X the following properties are equivalent:

(i) X is not superreflexive.

(ii) For all n ∈ N we have Jn(X) = 0.

(iii) There is a constant σ ≥ 1 such that for all n ∈ N we have Sn(X) ≤ σ.

(iv) For all n ∈ N we have Sn(X) = 1.

There are two conceptually different methods to prove that X is superreflexive

if and only if [L2,X] is. The one is to use Enflo’s renorming result [2, Cor. 3],

which is not suited to be localized, the other is the use of J-convexity, see Pisier

[7, Prop. 1.2]. It turns out that for fixed n

(1) Jn([L2,X]) ≤ Jn(X) ≤ 2n2Jn([L2,X]);

see Section 2 for a proof. Similar results hold also in the case of B-convexity; see

[8, p. 30].

Theorem 2. If for some n and all ε > 0, [L2,X] contains (1 + ε) isomorphic

copies of ln1 , then X contains (1 + ε) isomorphic copies of ln1 .

Theorem 3. If for some n and all ε > 0, [L2,X] contains (1 + ε) isomorphic

copies of ln∞, then X contains (1 + ε) isomorphic copies of ln∞.

On the other hand, no result of this kind for the factorization of Sn is known,

i.e. if for some n and all ε > 0, [L2,X] factors Sn with norm (1 + ε), does it follow

that X factors Sn with norm (1 + ε)?

Assuming Sn([L2,X]) ≤ σ for some constant σ and all n ≥ 1, one can use Theo-

rem 1 to obtain that Jn([L2,X]) = 0 for all n ≥ 1 and consequently

Sn(X) = 1.

The intent of our paper is to keep n fixed in this reasoning. Unfortunately, we

don’t get a result as smooth as Theorems 2 and 3. Instead, we have to consider two

different values n and N . If SN ([L2,X]) = σ for some ‘large’ N , then Sn(X) ≤
(1 + ε) for some ‘small’ n. To make this more precise, let us introduce the iterated

exponential (or TOWER) function Pg(m). We let

P0(m) := m and Pg+1(m) := 2Pg(m).

We will prove the following two theorems.

Theorem 4. For fixed n ∈ N and σ > 1 there is ε > 0 such that Jn(X) ≤ ε

implies Sn(X) < σ. In particular Jn(X) = 0 implies Sn(X) = 1.
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Theorem 5. For fixed n ∈ N, ε > 0 and σ ≥ 1 there is a number N(ε, n, σ),

such that SN (X) ≤ σ implies Jn(X) < ε. The number N can be estimated by

N ≤ Pm(cn),

where m and c depend on σ and ε only.

Using (1), we obtain the following consequence.

Corollary 6. For fixed n ∈ N, σ1 > 1, and σ2 ≥ 1 there is a number

N(σ1, n, σ2) such that SN ([L2,X]) ≤ σ2 implies Sn(X) ≤ σ1.

Proof. Determine ε as in Theorem 4 such that Jn(X) ≤ ε implies Sn(X) < σ1.

Choose N = N( ε
2n2 , n, σ2) as in Theorem 5 such that SN ([L2,X]) ≤ σ2 implies

Jn([L2,X]) < ε
2n2 . By (1) we obtain Jn(X) < ε and hence Sn(X) < σ1. �

The estimate in Theorem 5 seems rather crude, and we have no idea, whether

or not it is optimal.

2. Proofs

First of all, we list some elementary properties of the sequences Sn(X) and

Jn(X).

Fact.

(i) The sequence (Sn(X)) is non-decreasing.

(ii) 1 ≤ Sn(X) ≤ (1 + logn) for all infinite dimensional Banach spaces X.

(iii) The sequence (nJn(X)) is non-decreasing.

(iv) For all n,m ∈ N we have Jn(X) ≤ Jnm(X) ≤ Jn(X) + 1/n.

(v) If Jn(X)→ 0 then for all n ∈ N we have Jn(X) = 0.

(vi) Jn(R) ≥ 1− 1/n for all n ∈ N.

(vii) If q and ε are related by ε ≥ (1− ε)q−1 then Jn(lq) ≤ 4ε for all n ∈ N.

Proof. The monotonicity properties (i) and (iii) are trivial.

The bound for Sn(X) in (ii) follows from the fact that the summation operator

Sn factors through ln2 with norm (1 + logn) and from Dvoretzky’s Theorem.

To see (iv) assume that X is J(n, ε)-convex. Given z1, . . . , znm ∈ UX , let

xh :=
1

m

m∑
k=1

z(h−1)m+k for h = 1, . . . , n.

Then

inf
1≤k≤nm

∥∥∥ k∑
h=1

zh −
nm∑

h=k+1

zh

∥∥∥ ≤ m inf
1≤k≤n

∥∥∥ k∑
h=1

xh −
n∑

h=k+1

xh

∥∥∥ < mn(1− ε),

which proves that X is J(nm, ε)-convex, and consequently Jn(X) ≤ Jnm(X).
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Assume now that X is J(nm, ε)-convex. Given z1, . . . , zn ∈ UX , let

x1 =. . . = xm :=z1

...
...

x(n−1)m+1 =. . . =xnm :=zn.

If

inf
1≤k≤nm

∥∥∥ k∑
h=1

xh −
nm∑

h=k+1

xh

∥∥∥ is attained for k0,

there is l ∈ {0, . . . , n} such that m/2 + (l − 1)m < k0 ≤ m/2 + lm, hence∥∥∥ k0∑
h=1

xh −
nm∑

h=k0+1

xh

∥∥∥ ≥ ∥∥∥ lm∑
h=1

xh −
nm∑

h=lm+1

xh

∥∥∥− 2
∑
h∈I

‖xh‖,

where I = {k0 + 1, . . . , lm} or I = {lm+ 1, . . . , k0} according to whether k0 ≤ lm
or k0 > lm. It follows that

nm(1− ε) > m inf
1≤k≤n

∥∥∥ k∑
h=1

zh −
n∑

h=k+1

zh

∥∥∥−m,
and hence Jn(X) ≥ ε− 1/n. This proves (iv).

(v) is a consequence of (iv).

For (vi) and (vii) see Section 3. �
For the convenience of the reader, let us repeat the argument for the proof

of (1) from [1]. The left-hand part of (1) is obvious, since X can be isometri-

cally embedded into [L2,X]. To see the right-hand inequality, assume that for all

z1, . . . , zn ∈ UX

inf
1≤k≤n

∥∥∥ k∑
h=1

zh −
n∑

h=k+1

zh

∥∥∥ < n(1− ε).

Obviously, if ‖z1‖ = · · · = ‖zn‖ it follows by homogeneity that

(2) inf
1≤k≤n

∥∥∥ k∑
h=1

zh −
n∑

h=k+1

zh

∥∥∥ < (1− ε)
n∑
k=1

‖zk‖.

If z1, . . . , zn are arbitrary, let m := min1≤k≤n ‖zk‖, λk := m/‖zk‖, and z̃k :=

(1− λk)zk. It turns out that ‖zk − z̃k‖ = m and therefore by (2)

inf
1≤k≤n

∥∥∥ k∑
h=1

zh −
n∑

h=k+1

zh

∥∥∥ < n∑
k=1

‖z̃k‖+ (1− ε)
n∑
k=1

‖zk − z̃k‖

≤
n∑
k=1

(
(1− λk) + (1− ε)λk

)
‖zk‖ ≤

( n∑
k=1

(1− ελk)2
)1/2( n∑

k=1

‖zk‖
2
)1/2

.
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Now, at least one of the λk’s equals one, while the others are greater than or

equal to zero. This yields

inf
1≤k≤n

∥∥∥ k∑
h=1

zh −
n∑

h=k+1

zh

∥∥∥ < ((1− ε)2 + n− 1
)1/2( n∑

k=1

‖zk‖
2
)1/2

≤ (n− 2ε+ ε2)1/2
( n∑
k=1

‖zk‖
2
)1/2

.

On the other hand, we trivially get that for all 1 ≤ k ≤ n

∥∥∥ k∑
h=1

zh −
n∑

h=k+1

zh

∥∥∥ ≤ n1/2
( n∑
k=1

‖zk‖
2
)1/2

.

Therefore

n∑
k=1

∥∥∥ k∑
h=1

zh −
n∑

h=k+1

zh

∥∥∥2

<
(
(n− 2ε+ ε2) + (n− 1)n

) n∑
k=1

‖zk‖
2

for all z1, . . . , zn ∈ X. If in particular f1, . . . , fn ∈ U[L2,X], then

n∑
k=1

∥∥∥ k∑
h=1

fh(t)−
n∑

h=k+1

fh(t)
∥∥∥2

< (n2 − 2ε+ ε2)
n∑
k=1

‖fk(t)‖
2.

Integration with respect to t yields

n∑
k=1

∥∥∥ k∑
h=1

fh −
n∑

h=k+1

fh

∣∣∣L2

∥∥∥2

< (n2 − 2ε+ ε2)
n∑
k=1

‖fk|L2‖
2 ≤ n(n2 − 2ε+ ε2).

This implies that

inf
1≤k≤n

∥∥∥ k∑
h=1

fh −
n∑

h=k+1

fh

∣∣∣L2

∥∥∥ < (n2 − 2ε+ ε2)1/2 ≤ n(1− δ)

for δ = ε/2n2. Therefore Jn([L2,X]) ≥ Jn(X)/2n2. �

Let us now prove Theorem 4.

Proof of Theorem 4. Choose ε < 1
2(n+2)! such that 1 + 2(n + 2)!ε < σ. If

Jn(X) ≤ ε, we find z1, . . . , zn ∈ UX be such that

inf
1≤k≤n

∥∥∥ k∑
h=1

zh −
n∑

h=k+1

zh

∥∥∥ ≥ n(1− ε).
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By the Hahn-Banach theorem, we find yk ∈ UX∗ such that

n(1− ε) ≤
k∑
h=1

〈zh, yk〉 −
n∑

h=k+1

〈zh, yk〉 .

Obviously | 〈zh, yk〉 | ≤ 1. If for some h ≤ k we even have

〈zh, yk〉 < 1− nε,

then

n(1− ε) ≤
k∑
l=1

〈zl, yk〉 −
n∑

l=k+1

〈zl, yk〉 < (n− 1) + (1− nε) = n(1− ε),

which is a contradiction. Hence

(3) 1− nε ≤ 〈zh, yk〉 ≤ 1 for all h ≤ k.

Similarly

(4) 1− nε ≤ −〈zh, yk〉 ≤ 1 for all h > k.

Let xh := (z1 +zh)/2. Then it follows from (3) and (4) that there are x1, . . . , xn
∈ UX and y1, . . . , yn ∈ UX′ so that

〈xh, yk〉 ∈

{
(1− nε, 1] if h ≤ k,

(−nε,+nε) if h > k.

The assertion now follows from the following distortion lemma. �

Lemma 7. Suppose that ε < 1
2(n+1)! and that there are x1, . . . , xn ∈ UX and

y1, . . . , yn ∈ UX∗ such that

〈xh, yk〉 ∈

{
(1− ε, 1] if h ≤ k,

(−ε,+ε) if h > k.

Then Sn(X) ≤ 1 + 2(n+ 1)!ε.

Proof. Fix h ∈ {1, . . . , n}. Let αlk := 〈xl, yk〉. Consider the system of linear

equations

n∑
l=1

αlkξl =

{
1− αhk if h ≤ k,

−αhk if h > k,
k = 1, . . . , n
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in the n variables ξ1, . . . , ξn. Its solution is given by

ξ(h)
m =

det(β
(m)
lk )

det(αlk)
,

where (β
(m)
lk ) is the matrix (αlk) but with its m-th column replaced by the right-

hand side of our system of equations. It follows that

|det(β
(m)
lk )| =

∣∣∣∑
π

sgn (π)
n∏
k=1

β
(m)
kπ(k)

∣∣∣ ≤ n!|β
(m)
mπ(m)| ≤ n!ε.

Since for all permutations π that are not the identity, there exists at least one k

such that π(k) > k, we have |απ(k)k| < ε and hence

|det(αlk)| =
∣∣∣∑
π

sgn (π)
n∏
k=1

απ(k)k

∣∣∣ ≥ ∣∣∣ n∏
k=1

αkk

∣∣∣−∑
π 6=id

ε

≥ (1− ε)n − n!ε ≥ 1− nε− n!ε ≥ 1− (n+ 1)!ε.

Hence if ε < 1
2(n+1)! the solutions ξ

(h)
m satisfy

|ξ(h)
m | ≤ 2n!ε.

Defining An : ln1 → X by

Aneh :=
n∑

m=1

xmξ
(h)
m + xh,

we get that ‖An‖ ≤ 1 + suph
∑n
m=1 |ξ

(h)
m | ≤ 1 + 2(n+ 1)!ε. Defining Bn : X → ln∞

by

Bnx := (〈x, yk〉)
n
k=1,

we get that ‖Bn‖ ≤ 1 and Sn = BnAn. This completes the proof, since Sn(X) ≤
‖An‖ ‖Bn‖ ≤ 1 + 2(n+ 1)!ε. �

Interlude on Ramsey theory

Our proof of Theorem 5 makes massive use of the general form of Ramsey’s

Theorem. Therefore, for the convenience of the reader, let us recall, what it says;

see [3] and [6].

For a set M and a positive integer k, let M [k] be the set of all subsets of M of

cardinality k.
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Theorem 8. Given r, k and n, there is a number Rk(n, r) such that for all

N ≥ Rk(n, r) the following holds:

For each function f : {1, . . . , N}[k] → {1, . . . , r} there exists a subset M ⊆
{1, . . . , N} of cardinality at least n such that f(M [k]) is a singleton.

The following estimate for the Ramsey number Rk(l, r) can be found in

[3, p. 106].

Lemma. There is a number c(r, k) depending on r and k, such that

Rk(l, r) ≤ Pk(c(r, k) · l).

We can now turn to the proof of Theorem 5.

Proof of Theorem 5. The proof follows the line of James’s proof in [4, Th. 1.1].

The main new ingredient is the use of Ramsey’s Theorem to estimate the num-

ber N .

Let n, ε > 0, and σ be given. Define m by

(5) 2mσ <
( 1

1− ε

)m−1

and let

(6) N := R2m(R2m(2nm+ 1,m),m),

where R denotes the Ramsey number introduced in the previous paragraph.

The required estimate for N then follows from Lemma 9 as follows

N ≤ P2m(c1P2m(c22nm)) ≤ P4m(c3n),

where c1, c2, and c3 are constants depending on m, which in turn depends on σ

and ε.

Replacing, e.g. σ by 2σ, we may assume that in fact SN (X) < σ in order to avoid

using an additional δ in the notation. If SN (X) < σ then there are AN : lN1 → X

and BN : X → lN∞ such that SN = BNAN and ‖AN‖ = 1, ‖BN‖ ≤ σ. Let

xh := ANeh and yk := B∗Nek. Note that

‖xh‖ ≤ 1, ‖yk‖ ≤ σ, and 〈xh, yk〉 =

{
1 if h ≤ k,

0 if h > k.

For each subset M ⊆ {1, . . . , N}, we let Fm(M) denote the collection of all

sequences F = (F1, . . . , Fm) of consecutive intervals of numbers, whose endpoints

are in M , i.e.

Fj = {lj, lj + 1, . . . , rj}, lj , rj ∈M, lj < rj < lj+1,

for j = 1, . . . ,m. Note that Fm(M) can be identified with M [2m].
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The outline of the proof of Theorem 5 is as follows. To each F = (F1, . . . , Fm),

we assign an element x(F) which in fact is a linear combination of the elements

x1, . . . , xN . Next, we extract a ‘large enough’ subset M of {1, . . . , N}, such that

all x(F) with F ∈ Fm(M) have about equal norm. Finally, we look at special

sequences F(1), . . . ,F(n) and E(1), . . . ,E(n) in Fm(M) such that

∥∥∥ k∑
h=1

x(F(h))−
n∑

h=k+1

x(F(h))
∥∥∥ ≥ n‖x(E(k))‖.

Since ‖x(E(k))‖ � ‖x(F(h))‖, normalizing the elements x(F(h)) yields the required

elements z1, . . . , zn to prove that Jn(X) < ε.

Let us start by choosing the elements x(F). For a sequence F ∈ Fm(M), we

define

S(F) :=

{
x =

N∑
h=1

ξhxh: sup
h

|ξh| ≤ 2, 〈x, yl〉 = (−1)j
for all l ∈ Fj

and j = 1, . . . ,m

}
.

By compactness, there is x(F) ∈ S(F) such that

‖x(F)‖ = inf
x∈S(F)

‖x‖.

Lemma 10. We have 1/σ ≤ ‖x(F)‖ ≤ 2m for all F ∈ Fm({1, . . . , N}).

Proof. Write Fj = {lj, . . . , rj} and let

x := −xl1 + 2
m∑
i=2

(−1)ixli .

Then for l ∈ Fj , we have

〈x, yl〉 = −1 + 2

j∑
i=2

(−1)i · 1 + 2
m∑

i=j+1

(−1)i · 0 = (−1)j ,

hence x ∈ S(F) and ‖x(F)‖ ≤ ‖x‖ ≤ 2m− 1.

On the other hand,

1 = | 〈x(F), yl1〉 | ≤ σ‖x(F)‖.

Hence 1/σ ≤ ‖x(F)‖. �

By (5), we can write the interval [1/σ, 2m] as a disjoint union as follows

[ 1

σ
, 2m

]
⊆
m−1⋃
i=1

Ai, where Ai :=
1

σ

[( 1

1− ε

)i−1

,
( 1

1− ε

)i)
.



144 J. WENZEL

For F = (F1, . . . , Fm) ∈ Fm({1, . . . , N}) and 1 ≤ j ≤ m, let

Pj(F) := (F1, . . . , Fj) ∈ Fj({1, . . . , N}).

Obviously

‖x(Pj−1(F))‖ ≤ ‖x(Pj(F))‖ ≤ 2m for j = 2, . . . ,m.

It follows that for each F ∈ Fm({1, . . . , N}) there is at least one index j for

which the two values ‖x(Pj−1(F))‖ and ‖x(Pj(F))‖ belong to the same interval Ai.

Letting f(F) be the least such value j, defines a function

f : {1, . . . , N}[2m] → {1, . . . ,m}.

Applying Ramsey’s Theorem to that function, yields the existence of a number j0
and a subset L of {1, . . . , N} of cardinality |L| ≥ R2m(2nm+ 1,m) such that for

all F ∈ Fm(L) the two values ‖x(Pj0−1(F))‖ and ‖x(Pj0(F))‖ belong to the same

of the intervals Ai.

Next, for each F ∈ Fm(L) there is a unique number i for which the value

‖x(Pj0(F))‖ belongs to the interval Ai. Letting g(F) be that number i, defines a

function

g : L[2m] → {1, . . . ,m}.

Applying Ramsey’s Theorem to that function, yields the existence of a number i0
and a subset M of L of cardinality |M | ≥ 2nm+ 1 such that for all F ∈ Fm(M)

we have

(7) ‖x(Pj0(F))‖ ∈ Ai0 ,

and hence, by the choice of j0 and L, also

(8) ‖x(Pj0−1(F))‖ ∈ Ai0 .

We now define sequences

F(h) := (F
(h)
1 , . . . , F (h)

m ) and E(k) := (E
(k)
1 , . . . , E

(k)
m−1)

of nicely overlapping intervals.

Write M = {p1, . . . , p2nm+1}, where p1 < p2 < · · · < p2nm+1 and define

F(h) := (F
(h)
1 , . . . , F (h)

m ) ∈ Fm(M) h = 1, . . . , n

as follows

F
(h)
j :=


{ph, . . . , pn+2h−1} if j = 1,

{pn(2j−3)+2h, . . . , pn(2j−1)+2h−1} if j = 2, . . . ,m− 1,

{pn(2m−3)+2h, . . . , pn(2m−1)+h} if j = m.
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It turns out that

(9) E
(k)
j :=

k⋂
h=1

F
(h)
j+1 ∩

n⋂
h=k+1

F
(h)
j k = 1, . . . , n

is given by

E
(k)
j := {pn(2j−1)+2k, . . . , pn(2j−1)+2k+1} if j = 1, . . . ,m− 1.

Hence (E
(k)
1 , . . . , E

(k)
m−1) ∈ Fm−1(M). In order to obtain an element of Fm(M)

we add the auxiliary set E
(k)
m := {p2nm, . . . , p2nm+1}, this can be done for n ≥ 2,

which is the only interesting case anyway since J1(X) = 0 for any Banach space

X. We have E(k) := (E
(k)
1 , . . . , E

(k)
m ) ∈ Fm(M).

The following picture shows the sets F
(h)
j and E

(k)
j in the case n = 3 and m = 4:

It follows from (9) that for 1 ≤ k ≤ n

1

n

(
−

k∑
h=1

x(Pj0(F(h))) +
n∑

h=k+1

x(Pj0(F(h)))
)
∈ S(Pj0−1(E(k)))

hence ∥∥∥ k∑
h=1

x(Pj0(F(h)))−
n∑

h=k+1

x(Pj0(F(h)))
∥∥∥ ≥ n‖x(Pj0−1(E(k)))‖.

Let zh := σ (1− ε)i0 x(Pj0(F(h))). Then∥∥∥ k∑
h=1

zh −
n∑

h=k+1

zh

∥∥∥ ≥ nσ (1− ε)i0 ‖x(Pj0−1(E(k)))‖.

By (7) we have ‖x(Pj0(F(h)))‖ ∈ Ai0 , which implies ‖zh‖ ≤ 1. On the other hand,

by (8) we have ‖x(Pj0−1(E(k)))‖ ∈ Ai0 , which implies∥∥∥ k∑
h=1

zh −
n∑

h=k+1

zh

∥∥∥ ≥ nσ (1− ε)i0
1

σ

(
1

1− ε

)i0−1

= n (1− ε).

Consequently Jn(X) ≤ ε. �
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3. Problems and Examples

Example 1. Jn(R) ≥ 1− 1/n.

Proof. Let |ξh| ≤ 1 for h = 1, . . . , n. For k = 1, . . . , n define

ηk :=
k∑
h=1

ξh −
n∑

h=k+1

ξh

and let η0 := −ηn. Obviously |ηk− ηk+1| ≤ 2 for k = 0, . . . , n− 1. Since η0 = −ηn
there exists at least one k0 such that sgn ηk0 6= sgn ηk0+1. Assume that |ηk0 | > 1

and |ηk0+1| > 1, then |ηk0 − ηk0+1| > 2, a contradiction. Hence there is k such

that |ηk| ≤ 1. This proves that

inf
1≤k≤n

∣∣∣ k∑
h=1

ξh −
n∑

h=k+1

ξh

∣∣∣ ≤ 1 = n
1

n
,

and hence Jn(R) ≥ 1− 1
n

. �
Example 2. If q and ε are related by

ε ≥ (1− ε)q−1

then Jn(lq) ≤ 4ε for all n ∈ N.

Proof. Given ε > 0 find n0 such that

1

n0
< ε ≤

1

n0 − 1
,

then ( 1

n0

)1/q

≥
(

1−
1

n0

)1/q

ε1/q ≥ 1− ε.

If n ≤ n0, choosing

xh := (

h︷ ︸︸ ︷
−1, . . . ,−1,

n−h︷ ︸︸ ︷
+1, . . . ,+1, 0, . . . ),

we obtain ∥∥∥ k∑
h=1

xh −
n∑

h=k+1

xh

∥∥∥
q
≥
∥∥∥ k∑
h=1

xh −
n∑

h=k+1

xh

∥∥∥
∞

= n.

And since

‖xh‖q = n1/q ≤ n1/q
0 ≤ 1/(1− ε)

it follows that Jn(lq) ≤ ε.
If n > n0, there is m ≥ 2 such that (m − 1)n0 < n ≤ mn0. Hence, by

Properties (iii) and (iv) in the fact in Section 2 it follows that

Jn(X) ≤
mn0

n
Jmn0(X) ≤

mn0

n
(Jn0 +

1

n0
) ≤

mn0

n
2ε ≤ 4ε. �

The main open problem of this article is the optimality of the estimate for N

in Theorem 5.
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Problem. Are there σ ≥ 1 and ε > 0 and a sequence of Banach spaces (Xn)

such that

Sf(n)(Xn) ≤ σ and Jn(Xn) ≥ ε,

where f(n) is any function such that f(n) > n?

In particular f(n) > Pm(n), where m is given by (5) would show that the

estimate in Theorem 5 for N is sharp in an asymptotic sense.
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