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REMARKS ON GERMS IN INFINITE DIMENSIONS

A. KRIEGL

Abstract. Smooth, real analytic and holomorphic mappings defined on non-open
subsets of infinite dimensional vector spaces are treated.

0. Introduction

In this paper we will generalize the concept of differentiable maps f : E ⊇ X →
F defined on open subsets to such on more general subsets of infinite dimensional

vector spaces. We will refer to the theories for open domains as they have been

developed in [K82], [K83] and [F-K] for smooth (i.e. C∞) maps, in [K-N] for

holomorphic maps and in [K-M] for real analytic maps.

But before we start the general discussion, let us recall the finite dimensional

situation for smooth maps. Let first E = F = R and X be a non-trivial closed

interval. Then a map f : X → R is usually called smooth, if it is infinite often

differentiable on the interior of X and the one-sided derivatives of all orders ex-

ist. The later condition is equivalent to the condition, that all derivatives extend

continuously from the interior of X to X. Furthermore, by Whitney’s extension

theorem (see [W34]) these maps can also be described as being the restrictions to

X of smooth maps on (some open neighborhood of X in) R. In case where X ⊆ R
is more general, these conditions fall apart.

Now what happens if one changes to X ⊆ Rn. For closed convex sets with

non-empty interior the corresponding conditions to the one dimensional situation

still agree.

In case of holomorphic and real analytic maps the germ on such a subset is

already defined by the values on the subset. Hence we are actually speaking about

germs in this situation.

In infinite dimensions we will consider maps on just those convex subsets. So we

do not claim greatest achievable generality, but rather restrict to a situation which

is quite manageable. We will show that even in infinite dimensions the conditions

above often coincide, and that real analytic and holomorphic maps on such sets

are often germs of that class. Furthermore we have exponential laws for all three
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classes, more precisely, the maps on a product correspond uniquely to maps from

the first factor into the corresponding function space on the second.

1. Smooth Maps on Non-Open Domains

In this section we will discuss smooth maps f : E ⊇ X → F , where E and F

are convenient vector spaces, see [F-K], and X are certain not necessarily open

subsets of E.

We will use the setting of [F-K]. There a map f : E ⊇ X → F from an arbitrary

subset X ⊆ E of a convenient vector space E to a convenient vector space F is

smooth iff for all smooth curves c : R → X ⊆ E the composite f ◦ c : R → F is a

smooth curve. And it was shown that a curve c : R→ F is smooth iff for all ` ∈ E′

the composite `◦c : R→ R is smooth. Furthermore it was shown, that in case where

X is c∞-open, i.e. the inverse image c−1(X) ⊆ R is open for all smooth curves

c : R → F , there exist smooth derivatives f (n) : X → Ln(E;F ) which satisfy the

chain rule. Finally, cartesian closedness holds. More precisely there is a (unique)

convenient vector space structure on C∞(X2, F ) such that a map f : X1×X2 → F

is smooth if and only if the corresponding map f̌ : X1 → C∞(X2, F ) is smooth.

1.1. Lemma. (Convex sets with non-void interior)

Let K ⊆ E be a convex set with non-void c∞-interior Ko. Then the segment

(x, y] := {x+ t(y−x) : 0 < t ≤ 1} is contained in Ko for every x ∈ K and y ∈ Ko.

The interior Ko is convex and open even in the locally convex topology. And K is

closed if and only if it is c∞-closed.

Proof. Let y0 := x + t0(y − x) be an arbitrary point on the segment (x, y],

i.e. 0 < t0 ≤ 1. Then x + t0(Ko − x) is an c∞-open neighborhood of y0, since

homotheties are c∞-continuous. It is contained in K, since K is convex.

In particular, the c∞-interior Ko is convex, hence it is not only c∞-open but

open in the locally convex topology [F-K, 6.2.2].

Without loss of generality we now assume that 0 ∈ Ko. We claim that the

closure of K is the set {x : tx ∈ Ko for 0 < t < 1}. This implies the statement on

closedness. Let U := Ko and consider the Minkowski-functional qU (x) := inf{t >
0 : x ∈ tU}. Since U is convex, the function qU is convex, see [J81, 6.3.2]. Using

that U is c∞-open it can easily be shown that U = {x : qU (x) < 1}. From

[F-K, 6.4.2] we conclude that qU is c∞-continuous, and thus by [F-K, 6.4.3] even

continuous for the locally convex topology. Hence the set {x : tx ∈ Ko for 0 < t <

1} = {x : qU(x) ≤ 1} = {x : qK(x) ≤ 1} is the closure of K in the locally convex

topology by [J81, 6.4.2]. �
1.2. Theorem. (Derivative of smooth maps)

Let K ⊆ E be a convex subset with non-void interior Ko, and let f : K → R be a

smooth map. Then f |Ko : Ko → F is smooth, and its derivative (f |Ko)′ extends

(uniquely) to a smooth map K → L(E,F ).
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Proof. Only the extension property is to be shown. Let us first try to find a

candidate for f ′(x)(v) for x ∈ K and v ∈ E with x + v ∈ Ko. By convexity the

smooth curve cx,v : t 7→ x + t2v has for 0 < |t| < 1 values in Ko and cx,v(0) =

x ∈ K, hence f ◦ cx,v is smooth. In the special case where x ∈ Ko we have by

the chain rule that (f ◦ cx,v)′(t) = f ′(x)(cx,v(t))(c′x,v(t)), hence (f ◦ cx,v)′′(t) =

f ′′(cx,v(t))(c
′
x,v(t), c′x,v(t)) + f ′(cx,v(t))(c

′′
x,v(t)), and for t = 0 in particular (f ◦

cx,v)
′′(0) = 2 f ′(x)(v). Thus we define

2 f ′(x)(v) := (f ◦ cx,v)
′′(0) for x ∈ K and v ∈ Ko − x.

Note that for 0 < ε < 1 we have f ′(x)(ε v) = ε f ′(x)(v), since cx,ε v(t) = cx,v(
√
ε t).

Let us show next that f ′( )(v) : {x ∈ K : x+ v ∈ Ko} → R is smooth. So let

s 7→ x(s) be a smooth curve in K, and let v ∈ Ko − x(0). Then x(s) + v ∈ Ko for

all sufficiently small s. And thus the map (s, t) 7→ cx(s),v(t) is smooth from some

neighborhood of (0, 0) into K. Hence (s, t) 7→ f(cx(s),v(t)) is smooth and also its

second derivative s 7→ (f ◦ cx(s),v)
′′(0) = 2 f ′(x(s))(v).

In particular, let x0 ∈ K and v0 ∈ Ko − x0 and x(s) := x0 + s2v0. Then

2f ′(x0)(v) := (f ◦ cx0,v)
′′(0) = lim

s→0
(f ◦ cx(s),v)

′′(0) = lim
s→0

2 f ′(x(s))(v),

with x(s) ∈ Ko for 0 < |s| < 1. Obviously this shows that the given definition of

f ′(x0)(v) is the only possible smooth extension of f ′( )(v) to {x0} ∪Ko.

Now let v ∈ E be arbitrary. Choose a v0 ∈ Ko−x0. Since the set Ko−x0− v0

is a c∞-open neighborhood of 0, hence absorbing, there exists some ε > 0 such

that v0 + εv ∈ Ko − x0. Thus

f ′(x)(v) = 1
ε
f ′(x)(εv) = 1

ε

(
f ′(x)(v0 + εv)− f ′(x)(v0)

)
for all x ∈ Ko. By what we have shown above the right side extends smoothly

to {x0} ∪Ko, hence the same is true for the left side. I.e. we define f ′(x0)(v) :=

lims→0 f
′(x(s))(v) for some smooth curve x : (−1, 1) → K with x(s) ∈ Ko for

0 < |s| < 1. Then f ′(x) is linear as pointwise limit of f ′(x(s)) ∈ L(E,R) and is

bounded by the Banach-Steinhaus theorem (applied to EB). This shows at the

same time, that the definition does not depend on the smooth curve x, since for

v ∈ x0 +Ko it is the unique extension.

In order to show that f ′ : K → L(E,F ) is smooth it is by [F-K, 3.6.5] enough

to show that

s 7→ f ′(x(s))(v), R x
→ K

f ′

→ L(E,F )
evx→ F

is smooth for all v ∈ E and all smooth curves x : R → K. For v ∈ x0 + Ko this

was shown above. For general v ∈ E, this follows since f ′(x(s))(v) is a linear

combination of f ′(x(s))(v0) for two v0 ∈ x0 +Ko not depending on s locally. �

By (1.2) the following lemma applies in particular to smooth maps.
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1.3. Lemma. (Chain rule)

Let K ⊆ E be a convex subset with non-void interior Ko, let f : K → R be smooth

on Ko and let f ′ : K → L(E,F ) be an extension of (f |Ko)′, which is continuous

for the c∞-topology of K, and let c : R → K ⊆ E be a smooth curve. Then

(f ◦ c)′(t) = f ′(c(t))(c′(t)).

Proof.

Claim. Let g : K → L(E,F ) be continuous along smooth curves in K, then

ĝ : K ×E → F is also continuous along smooth curves in K ×E.

In order to show this let t 7→ (x(t), v(t)) be a smooth curve in K × E. Then

g ◦ x : R → L(E,F ) is by assumption continuous (for the bornological topology

on L(E,F )) and v∗ : L(E,F )→ C∞(R, F ) is bounded and linear [F-K, 4.4.8 and

4.4.1]. Hence the composite v∗ ◦ g ◦ x : R → C∞(R, F ) → C(R, F ) is continuous.

Thus (v∗ ◦ g ◦ x) :̂ R2 → F is continuous, and in particular when restricted to the

diagonal in R2. But this restriction is just g ◦ (x, v).

Now choose a y ∈ Ko. And let cs(t) := c(t) + s2(y − c(t)). Then cs(t) ∈ Ko

for 0 < |s| ≤ 1 and c0 = c. Furthermore (s, t) 7→ cs(t) is smooth and c′s(t) =

(1− s2)c′(t). And for s 6= 0

f(cs(t))− f(cs(0))

t
=

∫ 1

0

(f ◦ cs)
′(tτ) dτ = (1− s2)

∫ 1

0

f ′(cs(tτ))(c′(tτ)) dτ .

Now consider the specific case where c(t) := x+ tv with x, x+ v ∈ K. Since f

is continuous along (t, s) 7→ cs(t), the left side of the above equation converges to
f(c(t))−f(c(0))

t
for s → 0. And since f ′(·)(v) is continuous along (t, τ, s) 7→ cs(tτ)

we have that f ′(cs(tτ))(v) converges to f ′(c(tτ))(v) uniformly with respect to

0 ≤ τ ≤ 1 for s → 0. Thus the right side of the above equation converges to∫ 1

0
f ′(c(tτ))(v) dτ . Hence we have

f(c(t))− f(c(0))

t
=

∫ 1

0

f ′(c(tτ))(v) dτ →

∫ 1

0

f ′(c(0))(v) dτ = f ′(c(0))(c′(0))

for t→ 0.

Now let c : R→ K be an arbitrary smooth curve. Then (s, t) 7→ c(0) + s(c(t)−
c(0)) is smooth and has values in K for 0 ≤ s ≤ 1. By the above consideration

we have for x = c(0) and v = (c(t) − c(0))/t that f(c(t))−f(c(0))
t

=
∫ 1

0
f ′(c(0) +

τ(c(t) − c(0)))(c(t)−c(0)
t

) which converges to f ′(c(0))(c′(0)) for t → 0, since f ′ is

continuous along smooth curves in K and thus f ′(c(0)+ τ(c(t)− c(0)))→ f ′(c(0))

uniformly on the bounded set { c(t)−c(0)
t

: t near 0}. Thus f ◦ c is differentiable

with derivative (f ◦ c)′(t) = f ′(c(t))(c′(t)). �

Since f ′ can be considered as a map df : E×E ⊇ K×E → F it is important to

study sets A×B ⊆ E × F . Clearly A×B is convex provided A ⊆ E and B ⊆ F
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are. Remains to consider the openness condition. In the locally convex topology

(A × B)o = Ao × Bo, which would be enough to know in our situation. However

we are also interested in the corresponding statement for the c∞-topology. This

topology on E × F is in general not the product topology c∞E × c∞F . Thus we

cannot conclude that A×B has non-void interior with respect to the c∞-topology

on E × F , even if A ⊆ E and B ⊆ F have it. However in case where B = F

everything is fine.

1.4. Lemma. (Interior of a product)

Let X ⊆ E. Then the interior (X ×F )o of X × F with respect to the c∞-topology

on E × F is just Xo × F , where Xo denotes the interior of X with respect to the

c∞-topology on E.

Proof. Let W be the saturated hull of (X × F )o with respect to the projection

pr1 : E×F → E, i.e. the c∞-open set (X×F )o+{0}×F ⊆ X×F . Its projection

to E is c∞-open, since it agrees with the intersection with E × {0}. Hence it is

contained in Xo, and (X ×F )o ⊆ Xo×F . The converse inclusion is obvious since

pr1 is continuous. �

1.5. Theorem. (Smooth maps on convex sets)

Let K ⊆ E be a convex subset with non-void interior Ko, and let f : K → F be

a map. Then f is smooth if and only if f is smooth on Ko and all derivatives

(f |Ko)(n) extend continuously to K with respect to the c∞-topology of K.

Proof.

(⇒) It follows by induction using (1.2) that f (n) has a smooth extension K →
Ln(E;F ).

(⇐) By (1.3) we conclude that for every c : R→ K the composite f ◦ c : R→ F

is differentiable with derivative (f ◦ c)′(t) = f ′(c(t))(c′(t)) =: df(c(t), c′(t)).

The map df is smooth on the interior Ko×E, linear in the second variable, and

its derivatives (df)(p)(x,w)(y1, w1; . . . , yp, wp) are universal linear combinations of

f (p+1)(x)(y1, . . . , yp;w) and of f (k+1)(x)(yi1 , . . . , yik ;wi0) for k ≤ p.

These summands have unique extensions to K × E. The first one is continuous

along smooth curves in K × E, because for such a curve (t 7→ (x(t), w(t)) the

extension f (k+1) : K → L(Ek, L(E,F )) is continuous along the smooth curve x,

and w∗ : L(E,F ) → C∞(R, F ) is continuous and linear, so the map t 7→ (s 7→
f (k+1)(x(t))(yi1 , . . . , yik ;w(s))) is continuous from R → C∞(R, F ) and thus as

map from R2 → F it is continuous, and in particular if restricted to the diagonal.

And the other summands only depend on x, hence have a continuous extension by

assumption.

So we can apply (1.3) inductively using (1.4), to conclude that f ◦ c : R→ F is

smooth. �
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In view of the preceding theorem (1.5) it is important to know the c∞-topology

c∞X of X, i.e. the final topology generated by all the smooth curves c : R →
X ⊆ E. So the first question is whether this is the trace topology c∞E|X of the

c∞-topology of E.

1.6. Lemma. (The c∞-topology is the trace topology)

In the following cases of subsets X ⊆ E the trace topology c∞E|X equals the

topology c∞X:

(1) X is c∞E-open.

(2) X is convex and locally c∞-closed.

(3) The topology c∞E is sequential and X ⊆ E is convex and has non-void

interior.

(3) applies in particular to the case where E is metrizable, see [F-K, 6.1.4].

A topology is called sequential iff the closure of any subset equals its adherence,

i.e. the set of all accumulation points of sequences in it. By [F-K, 2.3.10] the

adherence of a set X with respect to the c∞-topology, is formed by the limits of

all Mackey-converging sequences in X.

Proof. Remark that the inclusion X → E is by definition smooth in the sense

of [F-K], hence the identity c∞X → c∞E|X is always continuous.

(1) Let U ⊆ X be c∞X-open and let c : R → E be a smooth curve with

c(0) ∈ U . Since X is c∞E-open, c(t) ∈ X for all small t. By composing with a

smooth map h : R→ R which satisfies h(t) = t for all small t, we obtain a smooth

curve c◦h : R→ X, which coincides with c locally around 0. Since U is c∞X-open

we conclude that c(t) = (c ◦ h)(t) ∈ U for small t. Thus U is c∞E-open.

(2) Let A ⊆ X be c∞X-closed. And let Ā be the c∞E-closure of A. We have

to show that Ā ∩X ⊆ A. So let x ∈ Ā ∩X. Since X is locally c∞E-closed, there

exists a c∞E-neighborhood U of x ∈ X with U ∩ X c∞-closed in U . For every

c∞E-neighborhood U of x we have that x is in the closure of A ∩ U in U with

respect to the c∞E-topology (otherwise some open neighborhood of x in U does

not meet A ∩ U , hence also not A). Let an ∈ A ∩ U be Mackey converging to

a ∈ U . Then an ∈ X ∩ U which is closed in U thus a ∈ X. Since X is convex the

infinite polygon through the an lies in X and can be smoothly parameterized by

the special curve lemma [F-K, 2.3.4]. Using that A is c∞X-closed, we conclude

that a ∈ A. Thus A ∩ U is c∞U -closed and x ∈ A.

(3) Let A ⊆ X be c∞X-closed. And let Ā denote the closure of A in c∞E. We

have to show that Ā∩X ⊆ A. So let x ∈ Ā∩X. Since c∞E is sequential there is a

Mackey converging sequence A 3 an → x. By the special curve lemma [F-K, 2.3.4]

the infinite polygon through the an can be smoothly parameterized. Since X is

convex this curve gives a smooth curve c : R→ X and thus c(0) = x ∈ A, since A

is c∞X-closed. �
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1.7. Example. (The c∞-topology is not trace topology)

Let A ⊆ E be such that the c∞-adherence Adh(A) of A is not the whole c∞-closure

Ā of A. So let a ∈ Ā\Adh(A). Then consider the convex subset K ⊆ E×R defined

by K := {(x, t) ∈ E × R : t ≥ 0 and (t = 0⇒ x ∈ A ∪ {a})} which has non-empty

interior E×R+. However the topology c∞K is not the trace topology of c∞(E×R)

which equals c∞(E)× R by [F-K, 3.3.4].

Remark that this situation occurs quite often, see [F-K, 6.1.6] and [F-K, 6.3.3]

where A is even a linear subspace.

Proof. Consider A = A × {0} ⊆ K. This set is closed in c∞K, since E ∩K is

closed in c∞K and the only point in (K ∩ E) \ A is a, which cannot be reached

by a Mackey converging sequence in A, since a /∈ Adh(A).

It is however not the trace of a closed subset in c∞(E)×R, since such a set has

to contain A and hence Ā 3 a. �
1.8. Theorem. (Smooth maps on subsets with collar)

Let M ⊆ E have a smooth collar, i.e. the boundary ∂M of M is a smooth sub-

manifold of E and there exists a neighborhood U of ∂M and a diffeomorphism

ψ : ∂M × R → U which is the identity on ∂M and such that ψ(M × {t ∈ R :

t ≥ 0}) = M ∩ U . Then every smooth map f : M → F extends to a smooth map

f̃ : M ∪ U → F .

Proof. Due to [S64] (see [F-K, 7.1.4] for a reformulation in this setting) there is

a continuous linear right inverse S to the restriction map C∞(R,R)→ C∞(I,R),

where I := {t ∈ R : t ≥ 0}. Now let x ∈ U and (px, tx) := ψ−1(x). Then

f(ψ(px, ·)): I → F is smooth, since ψ(px, t) ∈M for t ≥ 0. Thus we have a smooth

map S(f(ψ(px, ·))): R→ F and we define f̃(x) := S(f(ψ(px, ·)))(tx). Then f̃(x) =

f(x) for all x ∈ M ∩ U , since for such an x we have tx ≥ 0. Now we extend the

definition by f̃(x) = f(x) for x ∈ Mo. Remains to show that f̃ is smooth (on

U). So let s 7→ x(s) be a smooth curve in U . Then s 7→ (ps, ts) := ψ−1(x(s))

is smooth. Hence s 7→ (t 7→ f(ψ(ps, t)) is a smooth curve R → C∞(I, F ). Since

S is continuous and linear the composite s 7→ (t 7→ S(fψ(ps, ·))(t)) is a smooth

curve R → C∞(R, F ) and thus the associated map R2 → F is smooth, and also

the composite f̃(xs) of it with s 7→ (s, ts). �
In particular the previous theorem applies to the following convex sets:

1.9. Proposition. (Convex sets with smooth boundary have a collar)

Let K ⊆ E be a closed convex subset with non-empty interior and smooth boundary

∂K. Then K has a smooth collar as defined in (1.8).

Proof. Without loss of generality let 0 ∈ Ko.

In order to show that the set U := {x ∈ E : tx /∈ K for some t > 0} is c∞-open

let s 7→ x(s) be a smooth curve R → E and assume that t0x(0) /∈ K for some

t0 > 0. Since K is closed we have that t0x(s) /∈ K for all small |s|.
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For x ∈ U let r(x) := sup{t ≥ 0 : tx ∈ Ko} > 0, i.e. r = 1
qKo

as defined in

the proof of (1.1) and r(x)x is the unique intersection point of ∂K ∩ (0,+∞)x.

We claim that r : U → R+ is smooth. So let s 7→ x(s) be a smooth curve in U

and x0 := r(x(0))x(0) ∈ ∂K. Choose a local diffeomorphism ψ : (E, x0) → (E, 0)

which maps ∂K locally to some closed hyperplane F ⊆ E. Any such hyperplane

is the kernel of a continuous linear functional ` : E → R, hence E ∼= F × R.

We claim that v := ψ′(x0)(x0) /∈ F . If this were not the case, then we consider

the smooth curve c : R→ ∂K defined by c(t) = ψ−1(−tv). Since ψ′(x0) is injective

its derivative is c′(0) = −x0 and c(0) = x0. Since 0 ∈ Ko, we have that x0 +
c(t)−c(0)

t
∈ Ko for all small |t|. By convexity c(t) = x0 + t c(t)−c(0)

t
∈ Ko for small

t > 0, a contradiction.

So we may assume that `(ψ′(x)(x)) 6= 0 for all x in a neighborhood of x0.

For s close enough to 0 we have that r(x(s)) is given by the implicit equa-

tion `(ψ(r(x(s))x(s))) = 0. So let g : R2 → R be the locally defined smooth

map g(t, s) := `(ψ(tx(s))). For t 6= 0 its first partial derivative is ∂1g(t, s) =

`(ψ′(tx(s))(x(s))) 6= 0. So by the classical implicit function theorem the solution

s 7→ r(x(s)) is smooth.

Now let Ψ: U × R → U be the smooth map defined by (x, t) 7→ e−tr(x)x.

Restricted to ∂K × R → U is injective, since tx = t′x′ with x, x′ ∈ ∂K and

t, t′ > 0 implies x = x′ and hence t = t′. Furthermore it is surjective, since

the inverse mapping is given by x 7→ (r(x)x, ln(r(x))). Use that r(λx) = 1
λ
r(x).

Since this inverse is also smooth, we have the required diffeomorphism Ψ. In fact

Ψ(x, t) ∈ K iff e−tr(x) ≤ r(x), i.e. t ≤ 0. �

2. Real Analytic Maps on Non-Open Domains

In this section we will consider real analytic mappings defined on the same type

of convex subsets as in the previous section. Here we will use the cartesian closed

setting of [K-M] for real analytic maps defined on open subsets.

2.1. Theorem. (Power series in Fréchet spaces)

Let E be a Fréchet space and (F, F ′) be a dual pair. Assume that a Baire vector

space topology on E′ exists for which the point evaluations are continuous. Let

fk be k-linear symmetric bounded functionals from E to F , for each k ∈ N. As-

sume that for every ` ∈ F ′ and every x in some open subset W ⊆ E the power

series
∑∞
k=0 `(fk(xk))tk has positive radius of convergence. Then there exists a

0-neighborhood U in E, such that {fk(x1, . . . , xk) : k ∈ N, xj ∈ U} is bounded and

thus the power series x 7→
∑∞
k=0 fk(xk) converges Mackey on some 0-neighborhood

in E.

Proof. Choose a fixed but arbitrary ` ∈ F ′. Then `◦ fk satisfy the assumptions

of [K-M, 2.2.1] for an absorbing subset in a closed cone C with non-empty interior.

Since this cone is also complete metrizable we can proceed with the proof as in
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[K-M, 2.2] to obtain a set AK,r ⊆ C whose interior in C is non-void. But this

interior has to contain a non-void open set of E and as in the proof of [K-M, 2.2]

there exists some ρ` > 0 such that for the ball Uρ` in E with radius ρ` and center

0 the set {`(fk(x1, . . . , xk)) : k ∈ N, xj ∈ Uρ`} is bounded.

Now let similarly to [K-M, 1.5]

AK,r,ρ :=
⋂
k∈N

⋂
x1,...xn∈Uρ

{` ∈ F ′ : |`(fk(x1, . . . , xk))| ≤ Krk}

for K, r, ρ > 0. These sets AK,r,ρ are closed in the Baire topology, since evaluation

at fk(x1, . . . , xk) is assumed to be continuous.

By the first part of the proof the union of these sets is F ′. So by the Baire

property, there exist K, r, ρ > 0 such that the interior U of AK,r,ρ is non-empty. As

in the proof of [K-M, 1.5] we choose an `0 ∈ U . Then for every ` ∈ F ′ there exists

some ε > 0 such that `ε := ε` ∈ U − `0. So |`(y)| ≤ 1
ε
(|`ε(y) + `0(y)| + |`0(y)|) ≤

2
ε
Krn for every y = fk(x1, . . . , xk) with xi ∈ Uρ. Thus {fk(x1, . . . , xk) : k ∈
N, xi ∈ Uρ

r
} is bounded.

On every smaller ball we have therefore that the power series with terms fk
converges Mackey. �

Remark that if the vector spaces are real and the assumption above hold, then

the conclusion is even true for the complexified terms by [K-M, 2.2].

2.2. Theorem. (Real analytic maps I → R are germs)

Let f : I := {t ∈ R : t ≥ 0} → R be a map. Suppose t 7→ f(t2) is real analytic

R → R. Then f extends to a real analytic map f̃ : Ĩ → R, where Ĩ is an open

neighborhood of I in R.

Proof. We show first that f is smooth. Consider g(t) := f(t2). Since g : R→ R
is assumed to be real analytic it is smooth and clearly even. We claim that there

exists a smooth map h : R→ R with g(t) = h(t2) (This is due to [W43]). In fact

by h(t2) := g(t) a continuous map h : {t :∈ R : t ≥ 0} → R is uniquely determined.

Obviously h|{t∈R:t>0} is smooth. Differentiating for t 6= 0 the defining equation

gives h′(t2) = g′(t)
2t =: g1(t). Since g is smooth and even, g′ is smooth and odd, so

g′(0) = 0. Thus

t 7→ g1(t) =
g′(t)− g′(0)

2t
=

1

2

∫ 1

0

g′′(ts) ds

is smooth. Hence we may define h′ on {t ∈ R : t ≥ 0} by the equation h′(t2) = g1(t)

with even smooth g1. By induction we obtain continuous extensions of h(n) : {t ∈
R : t > 0} → R to {t ∈ R : t ≥ 0}, and hence h is smooth on {t ∈ R : t ≥ 0} and

so can be extended to a smooth map h : R→ R.



126 A. KRIEGL

From this we get f(t2) = g(t) = h(t2) for all t. Thus h : R → R is a smooth

extension of f .

Composing with the exponential map exp : R → R+ shows that f is real ana-

lytic on {t : t > 0}, and has derivatives f (n) which extend by (1.5) continuously

to maps I → R. It is enough to show that an := 1
n!f

(n)(0) are the coefficients

of a power series p with positive radius of convergence and for t ∈ I this map p

coincides with f .

Claim. We show that a smooth map f : I → R, which has a real analytic

composite with t 7→ t2, is the germ of a real analytic mapping.

Consider the real analytic curve c : R → I defined by c(t) = t2. Thus f ◦ c is

real analytic. By the chain rule the derivative (f ◦ c)(p)(t) is for t 6= 0 a universal

linear combination of terms f (k)(c(t))c(p1)(t) · · · c(pk)(t), where 1 ≤ k ≤ p and

p1 + . . . + pk = p. Taking the limit for t → 0 and using that c(n)(0) = 0 for

all n 6= 2 and c′′(0) = 2 shows that there is a universal constant cp satisfying

(f ◦ c)(2p)(0) = cp ·f (p)(0). Take as f(x) = xp to conclude that (2p)! = cp ·p!. Now

we use [K-M, 1.3.3] to show that the power series
∑∞
k=0

1
k!f

(k)(0)tk converges

locally. So choose a sequence (rk) with rkt
k → 0 for all t > 0. Define a sequence

(r̄k) by r̄2n = r̄2n+1 := rn and let t̄ > 0. Then r̄k t̄
k = rnt

n for 2n = k and

r̄k t̄
k = rnt

nt̄ for 2n + 1 = k, where t := t̄2 > 0, hence (r̄k) satisfies the same

assumptions as (rk) and thus by [K-M, 1.4(1⇒ 3)] the sequence 1
k! (f ◦ c)

(k)(0)r̄k
is bounded. In particular this is true for the subsequence

1
(2p)! (f ◦ c)

(2p)(0)r̄2p =
cp

(2p)!f
(p)(0)rp = 1

p!f
(p)(0)rp.

Thus by [K-M, 1.4(1⇐ 3)] the power series with coefficients 1
p!f

(p)(0) converges

locally to a real analytic function f̃ .

Remains to show that p = f on J . But since p◦c and f ◦c are both real analytic

near 0, and have the same Taylor series at 0, they have to coincide locally, i.e.

p(t2) = f(t2) for small t. �

Remark however that the more straight forward attempt of a proof of the first

step, namely to show that f ◦c is smooth for all c : R→ {t ∈ R : t ≥ 0} by showing

that for such c there is a smooth map h : R→ R, satisfying c(t) = h(t)2, is doomed

to fail as the following example shows.

2.3. Example. (A smooth function without smooth square root)

Let c : R → {t ∈ R : t ≥ 0} be defined by the general curve lemma [F-K, 4.2.5]

using pieces of parabolas cn : t 7→ 2n
2n t

2 + 1
4n . Then there is no smooth square root

of c.

Proof. The curve c constructed in [F-K, 4.2.5] has the property that there exists

a converging sequence tn such that c(t + tn) = cn(t) for small t. Assume there
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were a smooth map h : R → R satisfying c(t) = h(t)2 for all t. At points where

c(t) 6= 0 we have in turn:

c′(t) = 2h(t)h′(t)

c′′(t) = 2h(t)h′′(t) + 2h′(t)2

2c(t)c′′(t) = 4h(t)3h′′(t) + c′(t)2.

Choosing tn for t in the last equation gives h′′(tn) = 2n, which is unbounded in

n. Thus h cannot be C2. �

2.4. Definition. (Real analytic maps I → F )

Let I ⊆ R be a non-trivial interval. Then a map f : I → F is called real analytic iff

the composites `◦ f ◦ c : R→ R are real analytic for all real analytic c : R→ I ⊆ R
and all ` ∈ F ′. If I is an open interval then this definition coincides with [K-M,

1.2, 2.6].

2.5. Lemma. (Bornological description of real analyticity)

Let I ⊆ R be a compact interval. A curve c : I → E is real analytic if and only if

c is smooth and the set { 1
k! c

(k)(a) rk : a ∈ I, k ∈ N} is bounded for all sequences

(rk) with rk t
k → 0 for all t > 0.

Proof. We use [K-M, 1.5]. Since both sides can be tested with ` ∈ E′ we may

assume that E = R.

(⇒) By (2.2) we may assume that c : Ĩ → R is real analytic for some open

neighborhood Ĩ of I. Thus the required boundedness condition follows from

[K-M, 1.5].

(⇐) By (2.2) we only have to show that f : t 7→ c(t2) is real analytic. For this

we use again [K-M, 1.5]. So let K ⊆ R be compact. Then the Taylor series of

f is obtained by that of c composed with t2. Thus the composite f satisfies the

required boundedness condition, and hence is real analytic. �

This characterization of real analyticity can not be weakened by assuming the

boundedness conditions only for single pointed K as the map c(t) := e−
1
t2 for t 6= 0

and c(0) = 0 shows. It is real analytic on R \ {0} thus the condition is satisfied at

all points there, and at 0 the power series has all coefficients equal to 0, hence the

condition is satisfied there as well.

2.6. Corollary. (Real analytic maps into inductive limits)

Let Tα : E → Eα be a family of bounded linear maps that generates the bornology

on E. Then a map c : I → F is real analytic if and only if all the composites

Tα ◦ c : I → Fα are real analytic.

Proof. This follows either directly from (2.5) or from (2.2) by using the corre-

sponding statement for maps R→ E, see [K-M, 1.11]. �
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2.7. Definition. (Real analytic maps K → F )

For an arbitrary subset K ⊆ E let us call a map f : E ⊇ K → F real analytic iff

λ◦f ◦c : I → R is a real analytic (resp. smooth) for all λ ∈ F ′ and all real analytic

(resp. smooth) maps c : I → K, where I ⊂ R is some compact non-trivial interval.

Remark however that it is enough to use all real analytic (resp. smooth) curves

c : R→ K by (2.2).

With Cω(K,F ) we denote the vector space of all real analytic maps K →
F . And we topologize this space with the initial structure induced by the cone

c∗ : Cω(K,F ) → Cω(R, F ) (for all real analytic c : R → K) together with the

cone c∗ : Cω(K,F )→ C∞(R, F ) (for all smooth c : R→ K). The space Cω(R, F )

should carry the structure of [K-M, 5.4] and the space C∞(R, F ) that of [F-K].

For an open K ⊆ E the definition for Cω(K,F ) given here coincides with that

of [K-M, 2.6 and 5.4].

2.8. Proposition. (Cω(K,F ) is convenient)

Let K ⊆ E and F be arbitrary. Then the space Cω(K,F ) is a convenient vector

space and satisfies the S-uniform boundedness principle (see [K-M, 4.1]), where

S := {evx : x ∈ K}.

Proof. Since both spaces Cω(R,R) and C∞(R,R) are c∞-complete and satisfy

the uniform boundedness principle for the set of point evaluations the same is true

for Cω(K,F ), by the usual arguments, cf. [K-M, 5.5 and 5.6]. �

2.9. Theorem. (Real analytic maps K → F are often germs)

Let K ⊆ E be a convex subset with non-empty interior of a Fréchet space and

let (F, F ′) be a complete dual pair for which a Baire topology on F ′ exists, as

required in (2.1). Let f : K → F be a real analytic map. Then there exists an

open neighborhood U ⊆ EC of K and a holomorphic map f̃ : U → FC such that

f̃ |K = f .

Proof. By (1.5) the map f : K → F is smooth, i.e. the derivatives f (k) exist on

the interior Ko and extend continuously (with respect to the c∞-topology of K)

to the whole of K. So let x ∈ K be arbitrary and consider the power series with

coefficients fk = 1
k!f

(k)(x). This power series has the required properties of (2.1),

since for every ` ∈ F ′ and v ∈ Ko−x the series
∑
k `(fk(vk))tk has positive radius

of convergence. In fact `(f(x+ tv)) is by assumption a real analytic germ I → R,

by (1.8) hence locally around any point in I it is represented by its converging

Taylor series at that point. Since (x, v − x] ⊆ Ko and f is smooth on this set,

( d
dt

)k(`(f(x + tv)) = `(f (k)(x + tv)(vk) for t > 0. Now take the limit for t → 0

to conclude that the Taylor coefficients of t 7→ `(f(x + tv)) at t = 0 are exactly

k!`(fk). Thus by (2.1) the power series converges locally and hence represents a

holomorphic map in a neighborhood of x. Let y ∈ Ko be an arbitrary point in

this neighborhood. Then t 7→ `(f(x+ t(y − x))) is real analytic I → R and hence
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the series converges at y − x towards f(y). So the restriction of the power series

to the interior of K coincides with f .

We have to show that the extensions fx of f : K ∩ Ũx → FC to star shaped

neighborhoods Ũx of x in EC fit together to give an extension f̃ : Ũ → FC. So let

Ũx be such a domain for the extension and let Ux := Ũx ∩E.

For this we claim that we may assume that Ux has the following additional

property: y ∈ Ux ⇒ [0, 1]y ⊆ Ko ∪ Ux. In fact let U0 := {y ∈ Ux : [0, 1]y ⊆ Ko ∪
Ux}. Then U0 is open, since f : (t, s) 7→ ty(s) being smooth, and f(t, 0) ∈ Ko∪Ux
for t ∈ [0, 1], implies that a δ > 0 exists such that f(t, s) ∈ Ko ∪ Ux for all |s| < δ

and −δ < t < 1 + δ. The set U0 is star shaped, since y ∈ U0 and s ∈ [0, 1] implies

that t(x+ s(y−x)) ∈ [x, t′y] for some t′ ∈ [0, 1], hence lies in Ko∪Ux. The set U0

contains x, since [0, 1]x = {x} ∪ [0, 1)x ⊆ {x} ∪Ko. Finally U0 has the required

property, since z ∈ [0, 1]y for y ∈ U0 implies that [0, 1]z ⊆ [0, 1]y ⊆ Ko ∪ Ux, i.e.

z ∈ U0.

Furthermore, we may assume that for x+iy ∈ Ũx and t ∈ [0, 1] also x+ity ∈ Ũx
(replace Ũx by {x+ iy : x+ ity ∈ Ũx for all t ∈ [0, 1]}).

Now let Ũ1 and Ũ2 be two such domains around x1 and x2, with corresponding

extensions f1 and f2. Let x+ iy ∈ Ũ1∩Ũ2. Then x ∈ U1∩U2 and [0, 1]x ⊆ Ko∪Ui
for i = 1, 2. If x ∈ Ko we are done, so let x /∈ Ko. Let t0 := inf{t > 0 : tx /∈ Ko}.
Then t0x ∈ Ui for i = 1, 2 and by taking t0 a little smaller we may assume that

x0 := t0x ∈ Ko ∩ U1 ∩ U2. Thus fi = f on [x0, xi] and the fi are real analytic on

[x0, x] for i = 1, 2. Hence f1 = f2 on [x0, x] and thus f1 = f2 on [x, x+ iy] by the

1-dimensional uniqueness theorem. �

That the result corresponding to (1.8) is not true for manifolds with real analytic

boundary shows the following

2.10. Example. (No real analytic extension exists)

Let I := {t ∈ R : t ≥ 0}, E := Cω(I,R), and let ev : E × R ⊇ E × I → R be the

real analytic map (f, t) 7→ f(t). Then there is no real analytic extension of ev to

a neighborhood of E × I.

Proof. Suppose there is some open set U ⊆ E × R containing {(0, t) : t ≥ 0}
and a Cω-extension ϕ : U → R. Then there exists a c∞-open neighborhood V of

0 and some δ > 0 such that U contains V × (−δ, δ). Since V is absorbing in E,

we have for every f ∈ E that there exists some ε > 0 such that εf ∈ V and hence
1
ε
ϕ(εf, ·) : (−δ, δ)→ R is a real analytic extension of f . This cannot be true, since

there are f ∈ E having a singularity inside (−δ, δ). �

The following theorem generalizes [K-M, 5.11].

2.11. Theorem. (Mixing of C∞ and Cω)

Let (E,E′) be a complete dual pair, let X ⊆ E, let f : R×X → R be a mapping that

extends for every B locally around every point in R× (X ∩EB) to a holomorphic
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map C × (EB)C → C, and let c ∈ C∞(R,X). Then c∗ ◦ f̌ : R → Cω(X,R) →
C∞(R,R) is real analytic.

Proof. Let I ⊆ R be open and relatively compact, let t ∈ R and k ∈ N. Now

choose an open and relatively compact J ⊆ R containing the closure Ī of I. There

is a bounded subset B ⊆ E such that c|J : J → EB is a Lipk-curve in the Banach

space EB generated by B. This is [K82, Folgerung on p. 114]. Let XB denote

the subset X ∩ EB of the Banach space EB . By assumption on f there is a

holomorphic extension f : V ×W → C of f to an open set V ×W ⊆ C × (EB)C
containing the compact set {t} × c(Ī). By cartesian closedness of the category

of holomorphic mappings f̌ : V → H(W,C) is holomorphic. Now recall that the

bornological structure of H(W,C) is induced by that of C∞(W,C) := C∞(W,R2).

And c∗ : C∞(W,C) → Lipk(I,C) is a bounded C-linear map, by [F-K]. Thus

c∗ ◦ f̌ : V → Lipk(I,C) is holomorphic, and hence its restriction to R ∩ V , which

has values in Lipk(I,R), is (even topologically) real analytic by [K-M, 1.7]. Since

t ∈ R was arbitrary we conclude that c∗ ◦ f̌ : R → Lipk(I,R) is real analytic.

But the bornology of C∞(R,R) is generated by the inclusions into Lipk(I,R),

[F-K, 4.2.7], and hence c∗ ◦ f̌ : R→ C∞(R,R) is real analytic. �

This can now be used to show cartesian closedness with the same proof as in

[K-M, 5.12] for certain non-open subsets of convenient vector spaces. In particular

the previous theorem applies to real analytic mappings f : R × X → R, where

X ⊆ E is convex with non-void interior. Since for such a set the intersection XB

with EB has the same property and since EB is a Banach space, the real analytic

mapping is the germ of a holomorphic mapping.

2.12. Theorem. (Exponential law for real analytic germs)

Let K and L be two convex subsets with non-empty interior in convenient vector

spaces. A map f : K → Cω(L, F ) is real analytic if and only if the associated

mapping f̂ : K × L→ F is real analytic.

Proof. (⇒) Let c = (c1, c2) : R→ K×L be Cα (for α ∈ {∞, ω}) and let ` ∈ F ′.
We have to show that ` ◦ f̂ ◦ c : R→ R is Cα. By cartesian closedness of Cα it is

enough to show that the map ` ◦ f̂ ◦ (c1 × c2) : R2 → R is Cα. This map however

is associated to `∗ ◦ (c2)∗ ◦ f ◦ c1 : R→ K → Cω(L, F )→ Cα(R,R), hence is Cα

by assumption on f and the structure of Cω(L, F ).

(⇐) Let conversely f : K×L→ F be real analytic. Then obviously f(x, ·) : L→
F is real analytic, hence f̌ : K → Cω(L, F ) makes sense. Now take an arbitrary

Cα-map c1 : R → K. We have to show that f̌ ◦ c1 : R → Cω(L, F ) is Cα. Since

the structure of Cω(L, F ) is generated by Cβ(c1, `) for Cβ-curves c2 : R→ L (for

β ∈ {∞, ω}) and ` ∈ F ′, it is by [K-M, 1.5] enough to show that Cβ(c2, `) ◦ f̌ ◦
c1 : R → Cβ(R,R) is Cα. For α = β it is by cartesian closedness of Cα maps

[K-M, 5.1] enough to show that the associate map R2 → R is Cα. Since this map

is just `◦ f ◦ (c1× c2), this is clear. In fact take for γ ≤ α, γ ∈ {∞, ω} an arbitrary



REMARKS ON GERMS IN INFINITE DIMENSIONS 131

Cγ-curve d = (d1, d2) : R→ R2. Then (c1 × c2) ◦ (d1, d2) = (c1 ◦ d1, c2 ◦ d2) is Cγ ,

and so the composite with ` ◦ f has the same property.

Remains to show the mixing case, where c1 is real analytic and c2 is smooth or

conversely.

First the case c1 real analytic, c2 smooth. Then ` ◦ f ◦ (c1 × id) : R× L→ R is

real analytic, hence extends to some holomorphic map by (2.9), and by (2.11) the

map

C∞(c2, `) ◦ f̌ ◦ c1 = c∗2 ◦ (` ◦ f ◦ (c1 × id))∨ : R→ C∞(R,R)

is real analytic.

Now the case c1 smooth and c2 real analytic. Then `◦ f ◦ (id× c2) : K×R→ R
is real analytic, so by the same reasoning as just before applied to f̃ defined by

f̃(x, y) := f(y, x), the map

C∞(c1, `) ◦ (f̃)∨ ◦ c2 = c∗1 ◦ (` ◦ f̃ ◦ (id× c2))∨ : R→ C∞(R,R)

is real analytic. By [K-M, 5.10] the associated mapping

(c∗1 ◦ (` ◦ f̃ ◦ (id× c2))∨)∼ = Cω(c2, `) ◦ f̃ ◦ c1 : R→ Cω(R,R)

is smooth. �

The following example shows that Theorem (2.12) does not extend to arbitary

domains.

2.13. Example. (The exponential law for general domains is false)

Let X ⊆ R2 be the graph of the map h : R → R defined by h(t) := e−t
−2

for

t 6= 0 and h(0) = 0. Let, furthermore, f : R ×X → R be the mapping defined by

f(t, s, r) := r
t2+s2 for (t, s) 6= (0, 0) and f(0, 0, r) := 0. Then f : R × X → R is

real analytic, however the associated mapping f̌ : R→ Cω(X,R) is not.

Proof. Obviously f is real analytic on R3 \{(0, 0)}×R. If u 7→ (t(u), s(u), r(u))

is real analytic R → R ×X, then r(u) = h(s(u)). Suppose s is not constant and

t(0) = s(0) = 0, then we have that r(u) = h(uns0(u)) cannot be real analytic,

since it is not constant but the Taylor series at 0 is identical 0, contradiction.

Thus s = 0, r = h◦s = 0 and therefore u 7→ f(t(u), s(u), r(u)) = 0 is real analytic.

Remains to show that u 7→ f(t(u), s(u), r(u)) is smooth for all smooth curves

(t, s, r) : R → R × X. Since f(t(u), s(u), r(u)) = h(s(u))
t(u)2+s(u)2 it is enough to show

that ϕ : R2 → R defined by ϕ(t, s) = h(s)
t2+s2 is smooth. This is obviously the case,

since each of its partial derivatives is of the form h(s) multiplied by some rational

function of t and s, hence extend continuously to {(0, 0)}.
Now we show that f̌ : R → Cω(X,R) is not real analytic. Take the smooth

curve c : u 7→ (u, h(u)) into X and consider c∗ ◦ f̌ : R→ C∞(R,R), which is given

by t 7→ (s 7→ f(t, c(s)) = h(s)
t2+s2 ). Suppose it is real analytic into C([−1,+1],R).
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Then it has to be locally representable by a converging power series
∑
ant

n ∈
C([−1,+1],R). So there has to exist a δ > 0 such that

∑
an(s)zn =

h(s)
s2

∑∞
k=0(−1)k( zs )2k converges for all |z| < δ and |s| < 1. This is impossible,

since at z = si there is a pole. �

3. Holomorphic Maps on Non-Open Domains

In this section we will consider holomorphic maps defined on two types of convex

subsets. First the case where the set is contained in some real part of the vector

space and has non-empty interior there. Here we use the cartesian closed setting

of [K-N] for holomorphic mappings.

Recall that for a subset X ⊆ R ⊆ C the space of germs of holomorphic maps

X → C is the complexification of that of germs of real analytic maps X → R,

[K-M, 3.11]. Thus we give the following

3.1. Definition. (Holomorphic maps K → F )

Let K ⊆ E be a convex set with non-empty interior in a real convenient vector

space. And let F be a complex convenient vector space. We call a map f : EC ⊇
K → F holomorphic iff f : E ⊇ K → F is real analytic.

3.2. Lemma. (Holomorphic maps can be tested by functionals)

Let K ⊆ E be a convex set with non-empty interior in a real convenient vector

space. And let F be a complex convenient vector space. Then a map f : K → F

is holomorphic if and only if the composites ` ◦ f : K → C are holomorphic for all

` ∈ LC(E,C), where LC(E,C) denotes the space of C-linear maps.

Proof. (⇒) Let ` ∈ LC(F,C). Then the real and imaginary part <`,=` ∈
LR(F,R) and since by assumption f : K → F is real analytic so are the composites

<` ◦ f and =` ◦ f , hence ` ◦ f : K → R2 is real analytic, i.e. ` ◦ f : K → C is

holomorphic.

(⇐) We have to show that ` ◦ f : K → R is real analytic for every ` ∈ LR(F,R).

So let ˜̀: F → C be defined by ˜̀(x) = i`(x) + `(ix). Then ˜̀ ∈ LC(F,C), since

i˜̀(x) = −`(x)+i`(ix) = ˜̀(ix). Remark that ` = =◦ ˜̀. By assumption ˜̀◦f : K → C
is holomorphic, hence its imaginary part ` ◦ f : K → R is real analytic. �

3.3. Theorem. (Holomorphic maps K → F are often germs)

Let K ⊆ E be a convex subset with non-empty interior in a real Fréchet space

E and let F be a complex convenient vector space such that F ′ carries a Baire

topology as required in (2.1). Then a map f : EC ⊇ K → F is holomorphic if and

only if it extends to a holomorphic map f̃ : K̃ → F for some neighborhood K̃ of

K in EC.

Proof. Using (2.9) we conclude that f extends to a holomorphic map f̃ : K̃ →
FC for some neighborhood K̃ of K in EC. The map pr : FC → F , given by

pr (x, y) = x + iy ∈ F for (x, y) ∈ F 2 = F ⊗R C, is C-linear and restricted to
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F × {0} = F it is the identity. Thus pr ◦ f̃ : K̃ → FC → F is a holomorphic

extension of f .

Conversely let f̃ : K̃ → F be a holomorphic extension to a neighborhood K̃

of K. So it is enough to show that the holomorphic map f̃ is real analytic. By

[K-N] it is smooth. So it remains to show that it is real analytic. For this it is

enough to consider a topological real analytic curve in K̃ by [K-M, 2.8]. Such a

curve is extendable to a holomorphic curve c̃ by [K-M, 1.7], hence the composite

f̃ ◦ c̃ is holomorphic and its restriction f̃ ◦ c to R is real analytic. �

3.4. Definition. (Holomorphic maps on complex vector spaces)

Let K ⊆ E be a convex subset with non-empty interior in a complex convenient

vector space. And map f : E ⊇ K → F is called holomorphic iff it is real analytic

and the derivative f ′(x) is C-linear for all x ∈ Ko.

3.5. Theorem. (Holomorphic maps are germs)

Let K ⊆ E be a convex subset with non-empty interior in a complex convenient

vector space. Then a map f : E ⊇ K → F into a complex convenient vector space

F is holomorphic if and only if it extends to a holomorphic map defined on some

neighborhood of K in E.

Proof. Since f : K → F is real analytic, it extends by (2.9) to a real analytic

map f̃ : E ⊇ U → F , where we may assume that U is connected with K by straight

line segments. We claim that f̃ is in fact holomorphic. For this it is enough to

show that f ′(x) is C-linear for all x ∈ U . So consider the real analytic mapping

g : U → F given by g(x) := if ′(x)(v) − f ′(x)(iv). Since it is zero on Ko it has to

be zero everywhere by the uniqueness theorem. �

3.6. Remark. (There is no definition for holomorphy analogous to (2.7))

In order for a map K → F to be holomorphic it is not enough to assume that all

composites f ◦ c for holomorphic c : D→ K are holomorphic, where D is the open

unit disk. Take as K the closed unit disk, then c(D) ∩ ∂K = φ. In fact let z0 ∈ D
then c(z) = (z− z0)n(cn + (z− z0)

∑
k>n ck(z− z0)k−n−1) for z close to z0, which

covers a neighborhood of c(z0). So the boundary values of such a map would be

completely arbitrary.

3.7. Lemma. (Holomorphy is a bornological concept)

Let Tα : E → Eα be a family of bounded linear maps that generates the bornology

on E. Then a map c : K → F is holomorphic if and only if all the composites

Tα ◦ c : I → Fα are holomorphic.

Proof. It follows from (2.6) that f is real analytic. And the C-linearity of f ′(x)

can certainly be tested by point separating linear functionals. �

3.8. Theorem. (Exponential law for holomorphic maps)

Let K and L be convex subsets with non-empty interior in complex convenient
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vector spaces. Then a map f : K × L → F is holomorphic if and only if the

associated map f̌ : K → H(L, F ) is holomorphic.

Proof. This follows immediately from the real analytic result (2.12), since

the C-linearity of the involved derivatives translates to each other. In fact we

have f ′(x1, x2)(v1, v2) = evx2((f̌ )′(x1)(v1)) + (f̌(x1))′(x2)(v2) for x1 ∈ K and

x2 ∈ L. �
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