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GRAPHS RELATED TO DIAMETER AND CENTER

F. GLIVIAK and P. KYŠ

Abstract. A graph is said to be an L-graph if all its paths of diametral length
contain a central vertex of G. Using an earlier result we show that any graph can
be embedded to an L-graph of radius a and diameter b, where a ≤ b ≤ 2a. We
show that the known bounds of the number of edges and the maximum degree of
the graphs of diameter d ≥ 2 are sharp for L-graphs, too. Then we estimate the
minimum degree of L-graphs. Finally we estimate the number of central vertices in
L-graphs; all bounds are best possible.

1. Introduction

We consider here non-empty, finite and connected graphs, without loops and

multiple edges. Basic notions are according to [2] and [3] and we recall some of

them now. Let dG(u, v) denote the distance between the vertices u, v of a graph

G = (V,E). The eccentricity eG(u) of u ∈ V (G) is the distance to a node farthest

from u, i.e. eG(u) = max{dG(u, v)|v ∈ V }.
The radius of G, r(G), is the minimum eccentricity and the diameter of G,

d(G), is the maximum eccentricity. A vertex with minimum eccentricity is called

central vertex and the set of all central vertices is center of G, denoted by

C(G). A graph is self-centered if every its node is in the center. A diametral

path of G is any path of length d(G) between two vertices whose distance is d(G).

The induced subgraph on the subset S of V (G) is denoted by 〈S〉. The join of two

graphs G1, G2 is denoted by G1 +G2. If x is a real number, then bxc denotes the

largest integer not exceeding x. The graph Pn will denote the path of n vertices.

The paper [3] introduces F -graphs, L-graphs and L′-graphs in the following

way:

1. A graph G is an F -graph if its center C(G) contains at least two vertices

and the distance between any two vertices of C(G) equals r(G).

2. A graphG is an L-graph if all its diametral paths contain a central vertex;

a graph G is an L′-graph if none of its diametral path contains a center

vertex.

In [3] the authors discuss the possible application of these graphs and present

their basic properties. The short paper [4] poses the problem of further study of
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these graphs and moreover, of two other classes of graphs (the so called

S-graphs and D-graphs). Next we will study the L-graphs and exceptionally also

the L′-graphs.

The short paper [1] distinguishes three types of L-graphs:

1. G is an L1-graph if all its diametral paths contain all its central vertices.

2. G is an L3-graph if G is an L-graph and no diametral path of G contains

all central vertices of G.

3. G is an L2-graph if G is an L-graph, but neither an L1-graph nor an

L3-graph.

(Thus G is an L2-graph if it contains at least one diametral path containing all

central vertices and at least one diametral path containing at least one but not all

central vertices).

In this paper we generalize the existence theorems of [3]. We show that any

graph G can be embedded into an L-graph with radius a and diameter b, where

a ≤ b ≤ 2a. We prove an analogous result for L′-graphs, too. We show that

the known bounds on the number of edges and the maximum degree of graphs of

diameter d ≥ 2 hold for L-graphs, too (see [2]). We estimate the minimum degree

of graphs of diameter d ≥ 2 and we show that the estimation holds for L-graphs,

too.

Then we study the existence and basic properties of L1-graphs, L2-graphs,

and L3-graphs. We give bounds for the number of central vertices of L1-graphs,

L2-graphs, and L3-graphs that are sharp. (This problem was given in [1]).

2. Existence Theorems

The paper [3] presents several examples of L-graphs, e.g. complete graphs, self-

centered graphs, etc. Moreover, the following existence results are proved there:

Lemma 1 [3]. Given positive integers a and b with a ≤ b ≤ 2a, there exists an

L-graph G with r(G) = a and d(G) = b.

Next we will generalize this lemma. Let G and Q be disjoint graphs and let

u ∈ V (G). We say that a graph H is a substitution of Q into G in place of u, if

the vertex set V (H) = (V (G) − {u}) ∪ V (Q) and the edge set E(H) consists of

all edges of the graphs G− {u} and Q and, moreover, every vertex of Q is joined

with every vertex from the neighbourhood of u in G.

Lemma 2. Let G and Q be disjoint graphs. Let r(G) ≥ 2 and u ∈ V (G). Let

H be a substitution of Q into G in place of u. Then:

(a) r(H) = r(G), d(H) = d(G) and Q is an induced subgraph of H.

(b) if G is an L-graph, u ∈ C(G), then H is an L-graph.

(c) if G is an L′-graph, u /∈ C(G), then H is an L′-graph.
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Proof. (a) Directly from the construction of H it follows that Q is an induced

subgraph of H. If w ∈ V (H) − V (Q), i.e. w ∈ V (G) − {u}, then dH(w, x) =

dG(w, u) for every x ∈ V (Q), and dH(w, y) = dG(w, y) for every y /∈ V (Q). So

eH(w) = eG(w). If w ∈ V (Q), then eH(w) = eG(u). Thus we get r(H) = r(G)

and d(H) = d(G). Part (a) follows.

(b) We show that H is an L-graph by contradiction. Let P be a diametral

path in H, not containing a central vertex of H. From the construction of H it

follows that C(H) = (C(G) − {u}) ∪ V (Q). Then P does not contain any vertex

from V (Q), all vertices of P lie in G and P is a diametral path not containing any

central vertex of G. This is impossible and part (b) holds.

(c) We show by contradiction that H is also an L′-graph. Let P (x, y), where

x, y ∈ V (H), be a diametral path of H containing a central vertex c of H. Directly

from the construction of H in this case it follows that C(H) = C(G). If P (x, y)

contains no vertex from V (Q) then it is also a diametral path in G, which is a

contradiction. Thus the path P (x, y) contains at least one vertex t ∈ V (Q). From

r(G) ≥ 2 it follows that d(G) ≥ 3, because if d(G) = 2 G would be self-centered.

Then at least one of the vertices x, y does not belong to V (Q). Since P (x, y) is

a shortest path, it cannot contain two vertices from V (Q). Therefore P (x, y) has

exactly one vertex from V (Q). If we replace the vertex t of Q by u ∈ V (G), then

we obtain a new path P ′ which has the same length as P , belongs to the L′-graph

G and contains c ∈ C(H) = C(G). This is impossible and part (c) follows. �

Let Q be an arbitrary graph and a, b be natural numbers such that a ≤ b ≤ 2a.

We study the existence of an L-graph H of radius a, diameter b, and containing

Q as an induced subgraph.If a = b = 1, then H is a complete graph and cannot

contain an arbitrary graph Q as an induced subgraph.

Theorem 3. Let H be an L-graph of radius one and diameter two. Then H

has the form Kp+G, where p = |C(H)|, each of the components of G is a complete

graph and the number of components of G is at least two.

Proof. Since r(H) = 1, any central vertex is connected to all other vertices

and 〈C(G)〉 is a complete graph. Let K be a component of the induced subgraph

G = 〈V (H)−C(H)〉. If there exist two vertices x, y ∈ V (K) such that dK(x, y) = 2

then the graph H contains a diametral path of length two containing no central

vertex, which is a contradiction. Thus K is a complete graph. Since d(G) = 2, G

has at least two components. This completes the proof of the theorem. �

The other cases are settled by the following theorem.

Theorem 4. Let Q be a graph and let a, b be positive integers such that 2 ≤ a ≤
b ≤ 2a. Then there exists an L-graph H of radius a, diameter b, and containing

Q as an induced subgraph.
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Proof. According to Lemma 1, there exists an L-graph G of radius a, diameter

b, where a, b are natural numbers, such that a ≤ b ≤ 2a. Let 2 ≤ a and c ∈ C(G).

Let H be a substitution of Q into G in place of c. Then, according to Lemma 2(a),

r(H) = a, d(H) = b and Q is an induced subgraph of H. The graph H is also an

L-graph by Lemma 2(b). The proof is complete. �

Next we prove an analogous theorem for L′-graphs. In [3] it is proved that if G

is an L′-graph, then r(G) + 2 ≤ d(G) ≤ 2r(G)− 1. Moreover, this paper contains

the following existence results.

Lemma 5 [3]. For each pair of positive integers a and b, there exists an

L′-graph with radius a and diameter b if and only if a+ 2 ≤ b ≤ 2a− 1.

The proof of Lemma 5 gives constructions of the required L′-graphs. The

following theorem is a generalization of Lemma 5.

Theorem 6. Let Q be a graph and let a, b be natural numbers such that a+2 ≤
b ≤ 2a−1. Then there exists an L′-graph H of radius a, diameter b and containing

Q as an induced subgraph.

Proof. It is clear that the smallest values of radius a and diameter b for an

L′-graph are a = 3, b = 5. According to Lemma 5, there exists an L′-graph G

of radius a and diameter b for adequate a, b. Let z /∈ c(G) and let the graph H

be a substitution of Q into G in place of z. Then, according to Lemma 2(a), it is

r(H) = a, d(H) = b and Q is an induced subgraph of H. The graph H is also an

L′-graph, by Lemma 2c). The theorem follows. �

3. Bounds on the Basic Parameters of L-graphs

Ore proved an upper bound on the number of edges of graphs of diameter

d ≥ 2, see [2, p. 106]. Bosák, Rosa and Znám proved an upper bound on the

maximum degree of graphs of diameter d ≥ 2, see [2, p. 106]. We show that these

estimations are best possible also for L-graphs. Then we estimate the minimum

degree of graphs of diameter d ≥ 2 and we show that the obtained bound is sharp

for L-graphs, too.

Theorem 7. Let G be a graph with p vertices, q edges, maximum degree ∆(G)

and diameter d ≥ 2. If G is an L-graph, then

p− 1 ≤ q ≤ d+
1

2
(p− d− 1)(p− d+ 4)(a)

2 ≤ ∆(G) ≤ p− d+ 1.(b)

Proof. (a) The inequality p− 1 ≤ q holds because G is a connected graph. The

equality holds for all trees that are L-graphs. Ore proved that for all graphs of
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diameter d ≥ 2 we have q ≤ d + 1
2 (p − d − 1)(p − d + 4), see [2]. The graphs

depicted in Fig. 1 show that equality holds for L-graphs, too.

(b) If the diameter d ≥ 2, then G contains at least one path of length d and

then ∆(G) ≥ 2. Bosák, Rosa and Znám proved that for all graphs of diameter

d ≥ 2 we have ∆(G) ≤ p− d + 1, see [2]. Fig. 1 exhibits L-graphs attaining this

bound.

This completes the proof of the theorem. �

u0 u1 u2 ud−3

ud
ud−2

Kp−d

Figure 1. L-graphs that attain the upper bounds.

Next we estimate the minimum degree of a graphG with p vertices and diameter

d and then we exhibit L-graphs that attain the obtained bounds.

If d(G) = 1, then G is a complete graph and δ(G) = p − 1. If d(G) = 2, then

δ(G) ≤ p − 2 and this bound is attained at the graphs Kp − e, where e is an

arbitrary edge of Kp. The other cases are handles in the following theorem.

Theorem 8. Let G be a graph with p vertices, diameter d ≥ 3 and minimal

degree δ = δ(G). Then

1 ≤ δ(G) ≤

⌊
p− d+ 2m− 1

m+ 1

⌋
,

where m = bd3c and these bounds are sharp.

Proof. It is clear that the lower bound holds and is sharp. We shall derive the

upper bound.

Let the vertex u of G be such that e(u) = d. Let us denote Di = Di(u) =

{x ∈ V (G)| d(u, x) = i}, |Di| = ai for i = 0, 1, . . . , d. The following three inequal-

ities hold and will be useful later:

δ ≤ a1

δ ≤ deg (t) ≤ ai−1 + ai + ai+1 − 1, for 2 ≤ i ≤ d− 1, t ∈ Di

δ ≤ deg (t) ≤ ad−1 + ad − 1, for t ∈ Dd.
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It is obvious that

p = 1 + a1 +
d−2∑
i=2

ai + ad−1 + ad

and then

ad−1 + ad = p− 1− a1 −
d−2∑
i=2

ai ≤ p− δ − 1−
d−2∑
i=2

ai.

Next we will estimate
d−2∑
i=2

ai.

(a) Let d = 3m, m = 1, 2, 3, . . . . Then we have

d−2∑
i=2

ai = (a2 + a3 + a4) + · · ·+ (ad−4 + ad−3 + ad−2).

(If d = 3 then we put
∑d−2
i=2 = 0.) Since we have m−1 brackets and every

bracket is, according to the above, greater or equal to δ + 1, we have

d−2∑
i=2

ai ≥ (m− 1)(δ + 1).

(b) Let d = 3m+ 1, m = 1, 2 . . . . Then,

d−2∑
i=2

ai = (a2 + a3 + a4) + · · ·+ (ad−5 + ad−4 + ad−3) + ad−2.

From the fact that ad−2 ≥ 1 and according to the preceding arguments

we obtain
d−2∑
i=2

ai ≥ (m− 1)(δ + 1) + 1.

(c) Let d = 3m+ 2, m = 1, 2 . . . . Then,

d−2∑
i=2

ai = (a2 + a3 + a4) + · · ·+ (ad−6 + ad−5 + ad−4) + ad−3 + ad−2.

From the facts ad−3 ≥ 1, ad−2 ≥ 1 and from the arguments in part (a) we

have:
d−2∑
i=2

ai ≥ (m− 1)(δ + 1) + 2.
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These three inequalities can be joined into a single one:

d−2∑
i=2

ai ≥ (m− 1)(δ + 1) + d− 3m

where d ≥ 3,m = bd3c.
From the above we have

δ ≤ ad−1 + ad − 1 ≤ p− δ − 1−
d−2∑
i=2

ai − 1

≤ p− δ − 1− (m− 1)(δ + 1)− d+ 3m− 1.

Then 2δ + (m− 1)δ ≤ p− d+ 2m− 1 and finally δ ≤ bp−d+2m−1
m+1 c.

This upper bound for δ(G) is attained at the graphs in Fig. 2 where δ ≥ 2;

Fig. 2a presents the graphs for d = 3m,m ≥ 2, Fig. 2b the graphs for d = 3m+ 1,

m ≥ 2 and Fig. 2c the graphs for d = 3m+ 2,m ≥ 2. This completes the proof of

the theorem. �

Kδ Kδ−1 Kδ−1 Kδ

Kδ Kδ−1 Kδ−1 Kδ

Kδ Kδ−1 Kδ−1 Kδ

(a) d = 9

(b) d = 10

(c) d = 11

Figure 2. Illustrations for the upper bound of δ(G).
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Corollary. Let G be an L-graph with p vertices, diameter d ≥ 2 and minimum

degree δ(G). Then δ(G) ≤ bp−d+2m−1
m+1 c, where m = bd3c and there are L-graphs

for which the equality holds.

Proof. This upper bound holds also for L-graphs, because the graphs in Fig. 2

are L-graphs with δ = bp−d+2m−1
m+1 c. �

3. Special Classes of L-graphs

The short paper [1] introduces L1-, L2-, and L3-graphs and poses the problem

of bounds on the cardinality of their centers. We list the basic properties of these

classes of graphs and also estimate the number of vertices in their centers.

We begin with L1-graphs.

Remark 9.

(a) All trees are L1-graphs. (Any tree has either one or two central vertices,

see [2]. In both cases one can verify the remark.)

(b) If G is an L-graph with one central vertex, then G is an L1-graph.

(c) In [3] it is proved that if 〈C(G)〉 is a bridge of G, then G is an L-graph.

The short paper [1] notes that then G is an L1-graph.

(d) If a graph G contains two central vertices, then G can be either an

L1-graph (see part (a)) or an L2-graph (see Fig. 3a) or an L3-graph (see

Fig. 3b).

(a) (b)

3 3 3

22

3 3

3 3

2 23

4

4

Figure 3. L-graphs and their eccentricities.

Next we will estimate the cardinality of the center of an L1-graph G of diame-

ter d.

Let d ≥ 2. Then G is not self-centered because otherwise G would contain at

least one circuit Ci, i ≥ 3 and no diametral path in G can contain all vertices

of Ci. If |C(G)| > d − 1 then for any diametral path P (x, y) at least one of the

vertices x, y belongs to C(G) and G is self-centered. Thus |C(G)| ≤ d− 1 and this
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bound is attained at the path P3 (with 3 vertices) for d = 2 and the path P4 for

d = 3. For d ≥ 4 we give a better estimation.

Theorem 10. Let G be an L1-graph of diameter d ≥ 4. Then 1 ≤ |C(G)| ≤
d− 3.

Proof. It is clear that the lower bound 1 ≤ |C(G)| holds and is sharp. We shall

prove the upper bound.

Let P = P (u, v) be a diametral path of G. Then the path P contains all central

vertices of G and, moreover, the induced subgraph 〈V (P )〉 = P , because otherwise

P would not be a diametral path. Let P ≡ (u = w0, w1, . . . , wd−1, wd = v). Then

e(u) = e(v) = d. The graph G is not self-centered because otherwise G would be

an L3-graph (see Remark 12b). Hence the vertices u and v do not belong to C(G)

and |C(G)| ≤ d−1. Next we will prove by contradiction that |C(G)| 6= d−1, d−2.

1. Suppose |C(G)| = d− 1. Then wi ∈ C(G) for i = 1, 2, . . . , d− 1; d(w1, v) =

d−1 and then e(wi) = d−1 for i = 1, 2, . . . , d−1. Let s be any vertex of G different

from w2. If s belongs to P (u, v), then d(w2, s) ≤ d − 2. If s does not belong to

P (u, v), then s /∈ C(G), there exists a vertex t such that e(s) = d = d(s, t) and the

diametral path Q(s, t) contains all central vertices of G. But the vertex s must

be adjacent to either w1 or wd−1 because d(s, t) = d and the induced subgraph

〈V (P )〉 = P . In both cases d(w2, s) ≤ d − 2. Therefore we have e(w2) ≤ d − 2,

which is a contradiction. Hence |C(G)| ≤ d− 2.

2. Suppose |C(G)| = d−2. Then d−2 vertices from the set {w1, w2, . . . , wd−1}
belong to C(G). We distinguish two cases:

(a) C(G) does not contain either w1 or wd−1, e.g. w1 /∈ C(G). Then

d(w0, wd−1) = d− 1; e(wd−1) = d− 1; e(wi) = d− 1 for i = 2, 3, . . . , d− 1

and e(x) = d for every x /∈ C(G). Similarly to part 1) we denote by s any

vertex of G different from w2. Using analogous arguments as in part 1) we

obtain that d(w2, s) ≤ d− 2, i.e. e(w2) ≤ d− 2, which is a contradiction.

(b) C(G) does not contain a vertex wj , 2 ≤ j ≤ d − 2. Then e(wj) = d =

d(wj , t) for some t ∈ V (G) and any diametral path Q(wj , t) contains all

central vertices {w1, w2, . . . , wj−1, wj+1, . . . , wd−1}. One can easily verify

that the diametral path Q(wj , t) can be shortened in all cases by using

either the edge (wj , wj−1) or (wj , wj+1), which is a contradiction.

Thus, we have |C(G)| ≤ d − 3. This bound is attained at graphs that are

depicted in Fig. 4a for d = 2k, k > 2 and in Fig. 4b for d = 2k + 1, k > 2.

The base of these graphs is a circuit C2d−3 : u1, u2, . . . , u2d−3 for an even d and

C2d−4: u1, u2, . . . , u2d−4 for an odd d. The central vertices are u1, u2, . . . , ud−3.

The diametral pair of vertices is x, y. This completes the proof. �
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u2d−1
u2d−2

u2d−3

u1

u2 u3

ud
ud−1

ud−2

ud−3

ud−4ud−5

(a) d = 2k, k > 2

u2d−2
u2d−3

u2d−4

u1

u2 u3

ud
ud−1

ud−2

ud−3

ud−4ud−5

(b) d = 2k + 1, k > 2

x y

x y

Figure 4. L1-graphs for which |C(G)| = d− 3.

Theorem 11. Let G be an L3-graph with p ≥ 3 vertices. Then 2 ≤ |C(G)| ≤ p.

Proof. If G is an L-graph with one central vertex, then G is an L1-graph. The

lower bound 2 is attained at the graph in Fig. 3b.

The upper bound |C(G)| ≤ p follows if the graph G is a circuit Cp with p ≥ 3

vertices. It is clear that then G is an L3-graph and has p central vertices.

The theorem follows. �
Next we will show that several well-known classes of graphs are

L3-graphs.

Remark 12. (a) A complete graph Kn, n ≥ 3 is an L3-graph with n central

vertices. A complete bipartite graph Km,n, m ≥ 2, n ≥ 2 is an L3-graph of radius

two with m+ n central vertices.

(b) A self-centered graph G such that G 6= P2 is an L3-graph. (If G is a self-

centered graph and G 6= P2 then G contains at least one circuit Ci, i ≥ 3, and then

any diametral path of G does not contain all vertices of Ci and hence all vertices

of G.)
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(c) Next we will describe a general construction of some L3-graphs. Let n ≥
3 and r ≥ 2 be given integers. Let Kn be a complete graph on n vertices

u1, u2, . . . , un. Let Gi, i = 1, 2, . . . , n be any graph that has one vertex vi of

eccentricity r−1. Let all graphs Kn, G1, G2, . . . , Gn be mutually disjoint. Finally,

let the graph H arise from the above graphs Kn and G1, G2, . . . , Gn only by iden-

tification of the vertices ui and vi, for i = 1, 2 . . . , n. One can easily verify that H

is an L3-graph of radius r with n central vertices. An example of these graphs for

n = 3 and r = 3 is in Fig. 5.

Figure 5. An L3-graph for r = 3, n = 3.

Remark 13. (a) An L2-graph G of diameter 1 does not exist.

(b) An L2-graph G of diameter 2 does not exist.

Proof. Since d(G) = 2, then according to Remark 12(b) G cannot be self-

centered and therefore r(G) = 1. L-graphs with diameter two and radius one

are described in Theorem 3. One can easily verify that these graphs are not L2-

graphs. �

Next we will prove a bound for |C(G)| of L2-graphs of diameter d ≥ 3.

Theorem 14. Let G be an L2-graph of diameter d ≥ 3. Then 2 ≤ |C(G)| ≤
d− 1.

Proof. If G is an L-graph and |C(G)| = 1, thenG is an L1-graph. So |C(G)| ≥ 2

and this lower bound is attained at the graph in Fig. 6a. �

Since G is an L2-graph, then there exists a diametral path P (x, y) containing all

central vertices of G. According to Remark 12(b) the graph G is not self-centered.

Then there exists at least one vertex of G which does not belong to C(G). But

the maximum of eccentricities of all vertices of G is d(G) = e(x) = e(y). Hence

x /∈ C(G), y /∈ C(G) and then |C(G)| ≤ d− 1.

This upper bound is attained in graphs G depicted in Fig. 6a for d = 3, and in

Fig. 6b for d ≥ 4, where

— the levels of vertices A,B,C consist of the mutally disjoint paths Pd−1;

— the levels of vertices X,Y consist of paths Pd−3;
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— the other edges of G are depicted in Fig. 6 and we did not describe them in

details.

All central vertices of G are vertices of level A. One can easily verify that the

graphs G are L2-graphs of diameter d ≥ 3. This completes the proof. �

C

A

B

X

C

A

B

Y

(b)

Figure 6. L2−graphs for which |C(G)| = d− 1.

x1 xd−3

c1 c2 cd−2 cd−1

a1 a2 ad−2 ad−1

b1 b2 bd−2 bd−1

y1 yd−3

(a)
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