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ON THE ORDER–COMPLETION OF

ADDITIVE CONJOINT STRUCTURES

F. VOGT

Abstract. Measurement theory provides additive conjoint structures for additive
representations of empirical data. Roughly, an additive conjoint structure is a prod-
uct of (quasi)ordered sets with some properties connecting the different factors of
the product. Well-known Debreu’s Theorem says that every additive conjoint struc-
ture can be embedded in a vector space over the real numbers. This embedding
yields a completion of the additive conjoint structure where every factor becomes
a complete lattice. This paper introduces a synthetical way of constructing this
completion without using real numbers.

1. Introduction

Measurement theory is the theory of representing empirical data by relations

on ordered or algebraic structures. Additive conjoint structures are basic

for the additive representation of multidimensional data in measurement theory

(cf. [3]). Additive representations reflect certain kinds of ordinal dependencies

between attributes of the data. In this frame, the question of order-completions is

motivated by the “standard case” of embedding the rational numbers into the reals.

Before we start, we shall make a short note concerning two different approaches

for the constructions of such representations or embeddings:

1. The analytical approach: For finding an embedding of a structure M into

a similar structure N with some additional properties, we consider a well-

known structure (e.g. the real numbers), construct N from this structure,

and embed M.

2. The synthetical approach: We construct the structure N directly from

M, using internal properties of M.

Both approaches have their typical advantages. The analytical approach en-

ables us to represent the original structure in a well understood environment. An

important advantage is that we can use the most often powerful language of this

well-known structure, e.g. we can calculate with real numbers. Contrary to this,
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the advantage of the synthetical approach is that we can come to a deeper under-

standing of the original structure by using its own language and internal properties.

U. Wille presented in [6] a broad discussion of the role of the synthetical approach

for measurement theory.

We start now to introduce the basic notion of additive conjoint structures by

giving some definitions (cf. [3, Chap. 6]).

Definition 1.1. Let M be a set. A binary relation . on M is called a quasi-

order if the following conditions hold for all x, y, z ∈M :

(1) x . x (reflexivity),

(2) If x . y and y . z then x . z. (transitivity).

The quasi-order is called linear if also the condition

(3) x . y or y . x (connectivity)

holds. (M,.) is called a (linear) quasi-ordered set.

Hence, a (linear) quasi-order is almost a (linear) order, but it lacks anti-sym-

metry. Observe that connectivity already implies reflexivity.

Definition 1.2. Let M1, . . . ,Mn be sets, and let . be a (linear) quasi-order on∏n
i=1Mi. For any x := (x1, . . . , xn) ∈

∏n
i=1Mi and any subset J := {j1, . . . , jm}

of the index set I := {1, . . . , n}, let xJ := (xj1 , . . . , xjm) denote the projection of

x in
∏
j∈JMj. The induced relation .J on

∏
j∈JMj is defined by

a .J b ⇐⇒ there are x, y ∈
n∏
i=1

Mi : x . y, a = xJ , b = yJ , and xI\J = yI\J .

The (linear) quasi-order . is called independent if

a .J b =⇒ x . y for all x, y ∈
n∏
i=1

Mi with a = xJ , b = yJ , and xI\J = yI\J

holds for all J ⊆ I.

In other words, the definition of the induced relation says that a .J b holds

for a, b ∈
∏
j∈JMj if there exists a simultaneous extension of a and b to elements

a′, b′ ∈
∏n
i=1Mi with a′ . b′. Then indepence says that is does not matter how

we extend a and b. In fact, this enables us to prove that the induced relation is

again a (linear) quasi-order.

Lemma 1.1. Let . be an independent (linear) quasi-order and let J ⊆ I. Then

.J is a (linear) quasi-order on
∏
j∈JMj, which is called the induced (linear)

quasi-order on
∏
j∈JMj.

Proof. Let a, b, c ∈
∏
j∈JMj be arbitrary. If a′ ∈

∏n
i=1 Mi is an arbitrary

extension of a, then a′ . a′ and therefore a .J a, i.e., .J is reflexive.
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If a .J b and b .J c then there are extensions a′, b′, b′′, c′ ∈
∏n
i=1 Mi with

a′ . b′, b′′ . c′, and the required projection properties. Since . is independent,

we can choose b′′ = b′, and by transitivity of . we conclude a′ . c′. This implies

a .J c, hence .J is transitive.

In the linear case, for any extensions a′, b′ ∈
∏n
i=1 Mi with a′J = a, b′J = b and

a′I\J = b′I\J we have a′ . b′ or b′ . a′. Hence, a .J b or b .J a holds, and .J is

connected. �
Definition 1.3. Let M1, . . . ,Mn, and . be as in Definition 1.2. Further, let

∼ denote the equivalence relation .∩&. Then . satisfies restricted solvability

provided that for every i ∈ I, whenever

(x1, . . . , xi, . . . xn) . (y1, . . . , yi, . . . , yn) . (x1, . . . , xi, . . . xn),

then there is xi ∈Mi such that

(x1, . . . , xi, . . . , xn) ∼ (y1, . . . , yi, . . . , yn).

The equivalence relation ∼ indicates which elements cannot be distinguished by

.. The meaning of restricted solvability is shown in Figure 1, where the factor Mi

is drawn horizontally and the other factors are drawn vertically. The quasi-order

. becomes greater from the lower left to the upper right corner; the diagonal line

is an equivalence class of ∼.

Figure 1. Restricted solvability.

Definition 1.4. A factor Mi is called essential for . if .{i} 6= &{i}.
A factor is essential if the induced quasi-order is not already an equivalence

relation. In the linear case, this means that it still contains some strict compara-

bility.

Definition 1.5. For any i ∈ I and any set N of consecutive integers (positive

or negative, finite or infinite), a subset {xl | l ∈ N} of Mi is called a standard

sequence on the factor Mi if there are

(y1, . . . yi−1, yi+1, . . . , yn) 6∼I\{i} (z1, . . . zi−1, zi+1, . . . , zn)
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such that

(y1, . . . yi−1, xl, yi+1, . . . , yn) ∼ (z1, . . . zi−1xl+1, zi+1, . . . , zn)

holds for all l, l+ 1 ∈ N .

A standard sequence {xl | l ∈ N} on the factor Mi is strictly upper (lower)

bounded if there is u ∈ Mi such that xl <{i} u (u <{i} xl) for all l ∈ N . Here

< denotes the relation . \ ∼, and <{i} is the induced quasi-order of < on Mi

(observe <{i} = .{i} \ ∼{i}). Furthermore, {xl | l ∈ N} is strictly bounded if

it is strictly upper and strictly lower bounded.

Figure 2 shows a typical standard sequence. Standard sequences are introduced

in order to create a notion of equidistance. Hence, strictly bounded standard

sequences will be used to model Archimedian properties.

Figure 2. A standard sequence {x1, x2, x3, x4, x5}.

Lemma 1.2. Let . be an independent linear quasi-order and let {xl | l ∈ N}
be a standard sequence on a factor Mi. Then either xl <{i} xl+1 holds for all

l ∈ N or xl+1 <{i} xl holds for all l ∈ N .

Proof. Since {xl | l ∈ N} is a standard sequence, there are

(y1, . . . yi−1, yi+1, . . . , yn) 6∼I\{i} (z1, . . . zi−1, zi+1, . . . , zn)

with the properties asserted in Definition 1.5. We have to distinguish two cases

for the comparability of these two elements. If

(y1, . . . yi−1, yi+1, . . . , yn) <I\{i} (z1, . . . zi−1, zi+1, . . . , zn)

holds, then we conclude

(y1, . . . yi−1, xl, yi+1, . . . , yn) < (z1, . . . zi−1, xl, zi+1, . . . , zn)

for all l ∈ N . By the definition of a standard sequence, this implies

(z1, . . . zi−1, xl+1, zi+1, . . . , zn) < (z1, . . . zi−1, xl, zi+1, . . . , zn)
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and therefore xl+1 <{i} xl. Since . is independent, .{i} is a linear quasi-order.

Thus, we can conclude that xl <{i} xl+1 cannot hold. In the second case, we have

(z1, . . . zi−1, zi+1, . . . , zn) <I\{i} (y1, . . . yi−1, yi+1, . . . , yn),

which analogously implies xl <{i} xl+1 and not xl+1 <{i} xl for all l ∈ N . �

Now we are ready to define our basic structure. We follow the definition which

is given in [3].

Definition 1.6. Let M1, . . . ,Mn, n ≥ 3, be nonempty sets and let . be a

linear quasi-order on
∏n
i=1 Mi. Then ((Mi)

n
i=1,.) is an n-component additive

conjoint structure if

(1) . is independent,

(2) . satisfies restricted solvability,

(3) every factor Mi is essential for ., and

(4) every strictly bounded standard sequence is finite.

Typical examples are discussed in the next section. With regard to the purpose

of this paper, we can sketch our program as follows: Find for every factor Mi

a (minimal) complete lattice Li such that Mi can be embedded into Li, and

((Mi)
n
i=1,.) can be embedded into ((Li)

n
i=1,@∼) for an appropriate linear quasi-

order @∼. We close this section with the introduction of the notion of embedding

we need.

Definition 1.7. Let (M,.) and (P,@∼) be quasi-ordered sets. A map

ϕ : M −→ P is called a quasi-embedding of (M,.) into (P,@∼) if

x . y ⇐⇒ ϕ(x) @∼ ϕ(y)

holds for all x, y ∈M .

Observe that a quasi-embedding does not need to be injective. However, ϕ(x) =

ϕ(y) implies always x ∼ y, i.e., any quasi-embedding identifies at most the equiv-

alent elements.

2. Debreu’s Theorem

A prototype example of an n-component additive conjoint structures is given

by the real numbers: ((R)ni=1,.) is an n-component additive conjoint structure if

we define

(1) (x1, . . . , xn) . (y1, . . . , yn) ⇐⇒ x1 + · · ·+ xn ≤ y1 + · · ·+ yn,

where ≤ is the usual linear order on R. Similar examples can be obtained by re-

placing R by the rational numbers Q, the integers Z, or the unit interval [0, 1]. All
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these examples may serve as motivations for the name “additive conjoint struc-

ture”: If we interprete the n factors as representations of n different attributes,

then these attributes are mutually dependent. The dependence can be expressed

by the “additive” inequality above.

In fact, ((R)ni=1,.) is not only a prototype. Debreu’s Theorem ([1]) says that

every n-component additive conjoint structure can be embedded into ((R)ni=1,.).

We cite Debreu’s Theorem in the way it is stated in [3].

Theorem 2.1 [Debreu’s Theorem]. If ((Mi)
n
i=1,.), n ≥ 3, is an n-compo-

nent additive conjoint structure then there exist functions ϕi : Mi −→ R for i =

1, . . . , n such that for all xi, yi ∈Mi the equivalence

(x1, . . . , xn) . (y1, . . . , yn) ⇐⇒
n∑
i=1

ϕi(xi) ≤
n∑
i=1

ϕi(yi)

holds. If ψ1, . . . , ψn is another such family of functions, then there exist real num-

bers r > 0 and si, i = 1, . . . , n, with

ψi(xi) = rϕi(xi) + si.

In terms of Definition 1.7, (ϕ1, . . . , ϕn) is a quasi-embedding of ((Mi)
n
i=1,.)

into ((R)ni=1,.). In the introdution, the differences between the analytical and

the synthetical approach for the construction of such quasi-embeddings were men-

tioned. Clearly, Debreu’s Theroem follows the analytical approach. The advan-

tage of this approach concerning representations of additive conjoint structures is

that we can calculate with real numbers and use the usual linear order instead of

making considerations using the rather complex properties of the original linear

quasi-order . on
∏n
i=1Mi. Contrary to this, a synthetical construction of an em-

bedding may lead to a deeper understanding of the complex properties of . and

their dependencies.

From Debreu’s Theorem we obtain an analytical solution of our completion

problem. For a given n-component additive conjoint structure ((Mi)
n
i=1,.), n ≥ 3,

we define

Li :=
{
x ∈ R | there is X ⊆ ϕi(Mi) such that x = supX or x = inf X

}
.

In other words, Li is the “complete sublattice” of R which is generated by ϕi(Mi).

The quotes in the previous sentence indicate that Li might not be a complete

lattice since it may fail to have a least or greatest element. If @∼ denotes the

restriction of the linear quasi-order defined in (1) to
∏n
i=1 Li, then ((Li)

n
i=1,@∼) is

the desired order-completion. The aim of this paper is to present a synthetical

solution of the completion problem. Before we start to do this, we must discuss

the little failure of completeness which was already mentioned above.
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Suppose that Mi already equals R for all i. With the above approach, Li
equals R, too. Hence, (Li,≤) is not a complete lattice because it has no least or

greatest element. It turns out that this is not a lack of the construction but a basic

consequence of the Archimedian properties of additive conjoint structures. Hence,

we cannot go beyond this point and must allow that every factor in our completion

may or may not have a least or greatest element. The following proposition gives

a precise formulation.

Proposition 2.1. Let ((Mi)
n
i=1,.), n ≥ 3, be an n-component additive con-

joint structure. If there is a strictly lower (upper) bounded infinite standard se-

quence on a factor Mi, then the quasi-ordered set (Mi,.{i}) does not have a great-

est (least) element.

Proof. Assume that there exists a strictly lower bounded infinite standard se-

quence {xl | l ∈ N} on the factor Mi with strict lower bound x. Let us conclude

first that xl <{i} xl+1 for all l ∈ N. Otherwise, we would have x <{i} xl <{i} x1

for all k ≥ 2 by Lemma 1.2 But then {xl | l ≥ 2} would be an infinite strictly

bounded standard sequence, what cannot be the case by Definition 1.6.

Suppose now that (Mi,.{i}) has a greatest element 1. Then we must have

xl <{i} 1, because otherwise 1 could not be the greatest element. Thus, x <{i}
xl <{i}< 1 holds for all l ∈ N. Again, we would have an infinite strictly bounded

standard sequence, in contradiction to the assumption. �

3. Solvability and Thomsen Conditions

We start now with our synthetical construction of the order-completion of an

additive conjoint structure. In order to prepare this, we must say some more words

about solvability and Thomsen Conditions. The notion of restricted solvability

can be generalized in several ways. One possibility is to specify less than n − 1

coordinates of the element we are searching for, as it is formulated in the following

lemma.

Lemma 3.1. Let ((Mi)
n
i=1,.), n ≥ 3, be an n-component additive conjoint

structure. Let J ⊆ {1, . . . , n} and let x, y, z ∈
∏n
i=1Mi such that x . y . z and

xJ = zJ . Then there is w ∈
∏n
i=1Mi with wJ = xJ and y ∼ w.

Proof. If J = ∅ then we can choose w := y. If J = {1, . . . , n} we have x = z

and therefore x ∼ y. Thus, we can choose w := x. For the other cases, w.l.o.g.,

let J := {1, . . . , j} for some j ∈ {1, . . . , n− 1}. Further, let

x =: (x1, . . . , xn) and z =: (x1, . . . , xj , zj+1, . . . , zn).
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Now, we consider the elements

(x1, . . . , xj , xj+1, . . . , xn),

(x1, . . . , xj , xj+1, . . . , xn−1, zn),

. . .

(x1, . . . , xj , zj+1, . . . , zn).

Since . is connected, all these elements are comparable, and x . y . z implies

that there exists some k ∈ {j + 1, . . . , n} with

(x1, . . . , xj , xj+1, . . . , xk−1, xk, zk+1, . . . , zn) . y
. (x1, . . . , xj , xj+1, . . . , xk−1, zk, zk+1, . . . , zn).

By restricted solvability, we get some wk ∈Mk such that

y ∼ (x1, . . . , xj , xj+1, . . . , xk−1, wk, zk+1, . . . , zn),

what completes the proof. �
The following generalization is also often considered in measurement theory.

Definition 3.1. The linear quasi-order . on ((Mi)
n
i=1,.) satisfies general

solvability if for every i ∈ {1, . . . n} and all x, y ∈
∏n
i=1 Mi there is some w ∈∏n

i=1Mi with xI\{i} = wI\{i} and y ∼ w.

The “prototype” ((R)i∈I ,.) also satisfies general solvability. In [4], a synthet-

ical proof of the following embedding theorem is given.

Theorem 3.1. For n ≥ 3, every n-component additive conjoint structure has

a quasi-embedding into an n-component additive conjoint structure which satisfies

general solvability.

For the proof of this theorem, we need the validity of the Thomsen Condition,

which also can be shown synthetically (see [3, p. 306f]). The geometrical meaning

of the condition is shown in Figure 3.

Figure 3. The Thomsen condition.
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Proposition 3.1. Let ((Mi)
n
i=1,.), n ≥ 3, be an n-component additive con-

joint structure. Let i 6= j ∈ {1, . . . n}. Then ((Mi)
n
i=1,.) satisfies the Thomsen

Condition on the factors Mi and Mj, i.e., for any ai, bi, ci ∈Mi and aj , bj, cj ∈Mj

the equivalences (ai, bj) ∼{i,j} (bi, aj) and (ai, cj) ∼{i,j} (ci, aj) imply

(bi, cj) ∼{i,j} (ci, bj).

For the synthetical construction of the order-completion of an additive conjoint

structure, we need a generalized version of the Thomsen Condition, which is no

longer restricted to two factors. As notation we introduce that (xJ , yI\J) for

xJ ∈
∏
j∈JMj and yI\J ∈

∏
j∈I\JMj denotes the unique element z ∈

∏
i∈IMi

with zJ = xJ and zI\J = yI\J .

Proposition 3.2. Let ((Mi)
n
i=1,.), n ≥ 3, be an n-component additive con-

joint structure. ((Mi)
n
i=1,.) satisfies the generalized Thomsen Condition,

i.e., for every nonempty J ⊂ I := {1, . . . , n} and all aJ , bJ , cJ ∈
∏
j∈JMj

and aI\J , bI\J , cI\J ∈
∏
j∈I\JMj the equivalences (aJ , bI\J) ∼ (bJ , aI\J ) and

(aJ , cI\J) ∼ (cJ , aI\J) imply (bJ , cI\J) ∼ (cJ , bI\J).

Proof. We will give the proof for an additive conjoint structure with general

solvability. This is sufficient because of Theorem 3.1, since we can embed the

original structure into one which satisfies general solvability. If the generalized

Thomsen Condition holds there, it must hold in the original structure because we

have a quasi-embedding.

If J = ∅ or J = I, the proposition is trivial. In all other cases, w.l.o.g., we

may assume that J = {1, . . . , j} with 1 ≤ j < n. We define aJ =: (a1, . . . , aj),

bJ =: (b1, . . . , bj), cJ =: (c1, . . . , cj), aI\J =: (aj+1, . . . , an), bI\J =: (bj+1, . . . , bn),

and cI\J =: (cj+1, . . . , cn). The assumptions of the proposition read then as

(a1, . . . , aj , bj+1, . . . , bn) ∼ (b1, . . . , bj , aj+1, . . . , an),

(a1, . . . , aj , cj+1, . . . , cn) ∼ (c1, . . . , cj, aj+1, . . . , an).
(2)

Within two steps, we will reduce now the general Thomsen Condition to the two-

dimensional Thomsen Condition. By general solvability, there exist b′n, c
′
n ∈ Mn

such that

(b1, . . . , bj , cj+1, . . . , cn) ∼ (b1, . . . , bj, aj+1, . . . , an−1, c
′
n),

(c1, . . . , cj , bj+1, . . . , bn) ∼ (c1, . . . , cj , aj+1, . . . , an−1, b
′
n).

Using independence, we obtain also

(a1, . . . , aj, bj+1, . . . , bn) ∼ (a1, . . . , aj , aj+1, . . . , an−1, b
′
n),

(a1, . . . , aj , cj+1, . . . , cn) ∼ (a1, . . . , aj , aj+1, . . . , an−1, c
′
n).
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Analogously, we can find b′1, c
′
1 ∈M1 such that

(a1, . . . , aj, bj+1, . . . , bn) ∼ (a1, a2, . . . , aj , aj+1, . . . , an−1, b
′
n),

(a1, . . . , aj , cj+1, . . . , cn) ∼ (a1, a2, . . . , aj , aj+1, . . . , an−1, c
′
n),

(b1, . . . , bj , aj+1, . . . , an) ∼ (b′1, a2, . . . , aj , aj+1, . . . , an−1, an),

(b1, . . . , bj , cj+1, . . . , cn) ∼ (b′1, a2, . . . , aj , aj+1, . . . , an−1, c
′
n),

(c1, . . . , cj , aj+1, . . . , an) ∼ (c′1, a2, . . . , aj , aj+1, . . . , an−1, an),

(c1, . . . , cj , bj+1, . . . , bn) ∼ (c′1, a2, . . . , aj , aj+1, . . . , an−1, b
′
n).

Considering this together with the equivalences (2), we can apply Proposition 3.1

for the factors M1 and Mn. We obtain

(b1, . . . , bj, cj+1, . . . , cn) ∼ (b′1, a2, . . . , aj , aj+1, . . . , an−1, c
′
n)

∼ (c′1, a2, . . . , aj, aj+1, . . . , an−1, b
′
n)

∼ (c1, . . . , cj, bj+1, . . . , bn)

what completes the proof. �

4. Dedekind-MacNeille Completions

In order to construct the order-completion of an additive conjoint structure, we

start with the construction of a complete lattice from a quasi-ordered set. The

background of this construction comes from Formal Concept Analysis (see [5]),

but in this paper we elaborate the theory only with respect to our needs. For the

entire framework and the proofs, the reader is referred to [2] and [5]. For any

quasi-ordered set (M,.) and any A ⊆M , we define

A. := {m ∈M | a . m for all a ∈ A} and

A& := {m ∈M | a & m for all a ∈ A}

Further, D(M,.) denotes the set of all pairs (A,B) with A,B ⊆M and A. = B,

B& = A.

Theorem 4.1. Let (M,.) be a quasi-ordered set. An order relation ≤ is de-

fined by

(A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2 (⇐⇒ B1 ⊇ B2)

for (A1, B1), (A2, B2) ∈ D(M,.). Then D(M,.) := (D(M,.),≤) is a complete

lattice, called the Dedekind-MacNeille Completion of (M,.). Infima and
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suprema in D(M,.) are given by

∧
t∈T

(At, Bt) =

⋂
t∈T

At,

(⋃
t∈T

Bt

)&. and

∨
t∈T

(At, Bt) =

(⋃
t∈T

At

).&
,
⋂
t∈T

Bt

 .

The name “Dedekind-MacNeille Completion” is motivated by the following the-

orem.

Theorem 4.2. For every quasi-ordered set (M,.), a quasi-embedding ι of

(M,.) into (D(M,.) is defined by ι(m) := (m&,m.) for all m ∈ M . If ϕ is

also a quasi-embedding of (M,.) into some complete lattice L, then there is a

lattice embedding ψ of D(M,.) into L such that ϕ = ψ ◦ ι.

This theorem says that, in the sense of embeddings, D(M,.) is the smallest

complete lattice in which (M,.) can be quasi-embedded. The elements of this

lattice are the Dedekind cuts of the quasi-ordered set. We finish this section by

stating some technical facts we need in the further development.

Lemma 4.1. Let (M,.) be a quasi-ordered set and let A,B ⊆M . Then

(1) A ⊆ A.& and B ⊆ B&.,

(2) A. = A.&. and B& = B&.&,

(3) A ⊆ B implies B. ⊆ A. and B& ⊆ A&,

(4) A ⊆ B implies A.& ⊆ B.& and A&. ⊆ B&.,

(5) (A.&, A.) and (B&, B&.) are always elements of D(M,.).

5. A Synthetical Completion of Additive Conjoint Structures

Now, we start to construct the order-completion of an additive conjoint struc-

ture. We will assume that always I := {1, . . . , n}, n ≥ 3, and that M :=

((Mi)i∈I ,.) is an n-component additive conjoint structure. Our aim is to intro-

duce a linear quasi-order on the product of the Dedekind-MacNeille Completions of

the factors, such that we obtain a new order-complete n-component additive con-

joint structure in which M can be quasi-embedded. Proposition 2.1 already shows

that we have to be careful with the least and greatest elements of the Dedekind-

MacNeille Completions. If there are infinite standard sequences on a factor Mi,

then we will have problems with the least or the greatest element of D(Mi,.{i}).
On the other hand, if there are no such sequences, it makes sense to include the

least and greatest elements of the completion. As an example, let us consider the

case where each factor Mi is the open unit interval (0, 1). As the completion of an

Mi we want to have the closed unit interval [0, 1], which clearly makes it neccessary
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to include the least and the greatest elements of the Dedekind-MacNeille Comple-

tion. In order to cover this problem, we will complete the structure in two steps.

In the first step, we will add all “internal” infima and suprema and will worry only

about the greatest elements of the factors. By dualizing our argumentation, we

will add the least elements in a second step, whenever this is possible.

For every i ∈ I, let M↑i := D(Mi,.{i}) \ {(∅,Mi)} if every strictly lower

bounded standard sequence on the factor Mi is finite; else, let M↑i := D(Mi,.{i})\
{(∅,Mi), (Mi, ∅)}. With this definition we achieve that we have no greatest ele-

ment (Mi, ∅) in (M↑i ,.{i}) which may cause trouble. In either case, a least element

is there if and only if (Mi,.{i}) already has a least element, since (∅,Mi) is the

least element of D(Mi,.{i}) if and only if (Mi,.{i}) has no least element. A

binary relation @∼ on
∏n
i=1M

↑
i is defined by

((Ai, Bi))
n
i=1
@
∼ ((Ci, Di))

n
i=1 :⇐⇒

(
n∏
i=1

Ai

).&
⊆

(
n∏
i=1

Ci

).&
.

Further, let M↑ := ((M↑i ))ni=1,@∼). Our aim is to prove that M↑ is an n-component

additive conjoint structure in which M can be quasi-embedded. As a first step,

we make the relation @∼ accessible on a more elementary level.

Lemma 5.1. For ((Ai, Bi))
n
i=1, ((Ci, Di))

n
i=1 ∈

∏n
i=1 M

↑
i , the following are

equivalent:

(1) ((Ai, Bi))
n
i=1
@
∼ ((Ci, Di))

n
i=1.

(2) Let (z1, . . . , zn) ∈
∏n
i=1 Mi be arbitrary. If (c1, . . . , cn) . (z1, . . . , zn)

holds for all (c1, . . . , cn) ∈
∏n
i=1 Ci, then (a1, . . . , an) . (z1, . . . , zn) holds

for all (a1, . . . , an) ∈
∏n
i=1Ai.

Proof. By definition and Lemma 4.1, condition (1) is equivalent to(
n∏
i=1

Ci

).
⊆

(
n∏
i=1

Ai

).
,

which is precisely the assertion of (2). �
Lemma 5.2. @∼ is a linear quasi-order.

Proof. Obviously, @∼ is transitive. Since . was linear, the complete lattice

D(
∏n
i=1 Mi,.) is a linear ordered set. Thus, @∼ is connected. �

Lemma 5.3. Let ((Ai, Bi))
n
i=1 @ ((Ci, Di))

n
i=1. Then there is some (c1, . . . , cn)

∈
∏n
i=1Ci such that (a1, . . . , an) < (c1, . . . , cn) holds for all (a1, . . . , an) ∈∏n

i=1Ai.

Proof. Suppose, for all (c1, . . . , cn) ∈
∏n
i=1 Ci there is some (a1, . . . , an) ∈∏n

i=1Ai with (c1, . . . , cn) . (a1, . . . , an). By Lemma 5.1 we get ((Ci, Di))
n
i=1
@
∼
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((Ai, Bi))
n
i=1. Since @∼ is a quasi-order by Lemma 5.2, this contradicts the assump-

tion. �

Now we are ready to start the proof that M↑ is an additive conjoint structure.

Lemma 5.4. @∼ is independent.

Proof. First we consider J ⊆ I with |J | = n − 1; w.l.o.g., let J := {2, . . . , n}.
Further, let ((Ai, Bi))

n
i=2
@
∼J ((Ci, Di))

n
i=2. Then there is (E,F ) ∈M↑1 such that

(3) ((E,F ), (A2, B2), . . . , (An, Bn)) @∼ ((E,F ), (C2, D2), . . . , (CD, Dn)).

Suppose there would be (G,H) ∈M↑1 with

(4) ((G,H), (A2, B2), . . . , (An, Bn)) 6 @∼ ((G,H), (C2, D2), . . . , (CD, Dn)).

By Lemma 5.1, there would be (u1, . . . , un) ∈
∏n
i=1Mi and (g, a2, . . . , an) ∈ G ×∏n

i=2Ai such that (g̃, c2, . . . , cn) . (u1, . . . , un) < (g, a2, . . . , an) holds for all

(g̃, c2, . . . , cn) ∈ G×
∏n
i=2Ci. Especially, we have

(g, c2, . . . , cn) . (u1, . . . , un) < (g, a2, . . . , an)

for all (c2, . . . , cn) ∈
∏n
i=2Ci. By Definition 1.3, we may assume u1 = g. From

the independence of ., we conclude

(x, c2, . . . , cn) . (x, u2, . . . , un) < (x, a2, . . . , an)

for all (x, c2, . . . , cn) ∈M1 ×
∏n
i=2Ci. Furthermore,

(c2, . . . , cn) .J (u2, . . . , un) <J (a2, . . . , an)

holds for all (c2, . . . , cn) ∈
∏n
i=2Ci. Now, we fix e ∈ E. We want to prove that

there is ē ∈ E with (e, a2, . . . , an) . (ē, u2, . . . , un). By (3) and Lemma 5.1,

there is (ẽ, c̃2, . . . , c̃n) ∈ E×
∏n
i=2Ci with (e, u2, . . . , un) < (ẽ, c̃2, . . . , c̃n), because

otherwise (e, u2, . . . , un) would be an upper bound of E ×
∏n
i=2Ci, but not of

E×
∏n
i=2Ai. Since we have (c̃2, . . . , c̃n) .J (u2, . . . , un), this implies e <{1} ẽ and

therefore (e, a2, . . . , an) < (ẽ, a2, . . . , an). Thus, (e, a2, . . . , an) cannot be an upper

bound of E ×
∏n
i=2 Ai. With the same argument as before, we conclude from this

that there is (ē, c̄2, . . . , c̄n) ∈ E×
∏n
i=2Ci with (e, a2, . . . , an) < (ē, c̄2, . . . , c̄n). This

implies (e, a2, . . . , an) . (ē, u2, . . . , un) because of (c̄2, . . . , c̄n) .J (u2, . . . , un).

Now we are able to construct a stricly lower bounded standard sequence in E.

For this, let e0 ∈ E be arbitrary. By the above, there is ē0 ∈ E such that

(e0, u2, . . . , un) < (e0, a2, . . . , an) . (ē0, u2, . . . , un),
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and by restricted solvability we get e1 ∈M1 with (e0, a2, . . . , an) ∼ (e1, u2, . . . , un).

This implies e0 <{1} e1 .{1} ē0. Since e1 .{1} ē0, we have e1 ∈ E. From e1 we

construct e2 ∈ E in the same fashion, etc., and get an infinite sequence

e0 <{1} e1 <{1} e2 <{1} . . .

in E. We claim that the sequence {el | l ∈ N} is a strictly lower bounded standard

sequence on the factor M1. In order to see this, consider the elements y :=

(a2, . . . , an) and z := (u2, . . . , un). Now we distinguish two cases:

(i) If F 6= ∅, there is f ∈ F with el .{1} f for all l ∈ N. In fact, we

have el <{1} f , because el0 ∼{1} f for some l0 ∈ N would imply f <{1}
el0+1. Hence, {el | l ∈ N} is a strictly bounded standard sequence on the

factor M1, and therefore finite, in contradiction to the construction of the

sequence.

(ii) If F = ∅, then {el | l ∈ N} has to be finite by the definition of M↑1 .

Thus, in every case, (4) leads to a contradiction, what completes the proof of the

case |J | = n− 1.

Now, let |J | < n − 1, w.l.o.g., let J := {j + 1, . . . , n} for some j ≥ 2. Let

((Ai, Bi))
n
i=j+1

@
∼J ((Ci, Di))

n
i=j+1. Then there is ((Ei, Fi))

j
i=1 ∈

∏j
i=1M

↑
i where

((E1, F1), . . . , (Ej , Fj), (Aj+1, Bj+1), . . . , (An, Bn))

@
∼ ((E1, F1), . . . , (Ej , Fj), (Cj+1, Dj+1), . . . , (Cn, Dn)).

The first part of the proof yields now that

((G1,H1),(E2, F2), . . . , (Ej , Fj), (Aj+1, Bj+1), . . . , (An, Bn))

@
∼ ((G1,H1), (E2, F2), . . . , (Ej , Fj), (Cj+1, Dj+1), . . . , (Cn, Dn))

holds for all (G1,H1) ∈M↑1 . By induction, we get

((G1,H1), . . . , (Gj ,Hj), (Aj+1, Bj+1), . . . , (An, Bn))

@
∼ ((G1,H1), . . . , (Gj ,Hj), (Cj+1, Dj+1), . . . , (Cn, Dn))

for all ((Gi,Hi))
j
i=1 ∈

∏j
i=1 M

↑
i . This proves that @∼ is independent. �

Before we continue to prove that M↑ is an additive conjoint structure, we

consider the link between M and M↑. It will turn out in the further development

of the proof that it is convenient to do this right now.

Lemma 5.5. For all i = 1, . . . , n, let Ai ⊆Mi be such that (A
.{i}&{i}
i , A

.{i}
i ) ∈

M↑i . Then (z1, . . . , zn) ∈
∏n
i=1Mi is an upper bound of

∏n
i=1Ai with respect to .

if and only if (z1, . . . , zn) is an upper bound of
∏n
i=1 A

.{i}&{i}
i .

Proof. Let (z1, . . . , zn) be an upper bound of
∏n
i=1 Ai. First we prove that

(z1, . . . , zn) is also an upper bound of A
.{1}&{1}
1 ×

∏n
i=2 Ai. Suppose that this is
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not the case. Then there would be (a2, . . . , an) ∈
∏n
i=2 Ai and a ∈ A

.{1}&{1}
1 such

that

(ã, ã2, . . . , ãn) . (z1, . . . , zn) < (a, a2, . . . , an)

for all (ã, ã2, . . . , ãn) ∈
∏n
i=1Ai. By restricted solvability, we would have z ∈ M1

with (z, a2, . . . , an) ∼ (z1, . . . , zn). This implies ã .{1} z <{1} a for all ã ∈ A1, i.e.,

z ∈ A
.{1}
1 and therefore a /∈ A

.{1}&{1}
1 , what is a contradiction. Thus, (z1, . . . , zn)

must be an upper bound of A
.{1}&{1}
1 ×

∏n
i=2 Ai. Analogously, we prove now that

(z1, . . . , zn) is an upper bound of A
.{1}&{1}
1 ×A

.{2}&{2}
2 ×

∏n
i=3 Ai, etc., until we

get that (z1, . . . , zn) is an upper bound of
∏n
i=1A

.{i}&{i}
i .

The converse assertion is an immediate consequence of
∏n
i=1Ai ⊆∏n

i=1A
.{i}&{i}
i (cf. Lemma 4.1). �

The next lemma defines the quasi-embedding what we are searching for.

Lemma 5.6. Let ι↑ :
∏n
i=1 Mi −→

∏n
i=1M

↑
i be defined by ι↑((xi)

n
i=1) :=

((x
&{i}
i , x

.{i}
i ))ni=1. Then ι↑ is a quasi-embedding of M into M↑.

Proof. In M, we have (xi)
n
i=1 . (yi)

n
i=1 if and only if every upper bound of

(yi)
n
i=1 is also an upper bound of (xi)

n
i=1. By Lemma 5.5 and Lemma 5.1, this is

equivalent to ((x
&{i}
i , x

.{i}
i ))ni=1

@
∼ ((y

&{i}
i , y

.{i}
i ))ni=1. �

The following lemma shows that the restriction of the quasi-order @∼ to a factor

is precisely the order of the Dedekind-MacNeille Completion of that factor. This

means that our construction is compatible with the completions and that, in the

end, the factors will be complete lattices as we desire (modulo the restrictions for

least and greatest elements).

Lemma 5.7. (A,B) @∼{i} (C,D) is equivalent to A ⊆ C for all (A,B),

(C,D) ∈M↑i .

Proof. We suppose, w.l.o.g., that i = 1. If A = C, then obviously (A,B) ∼{1}
(C,D) holds. Hence, let A ⊂ C. Then there are b ∈ B and c ∈ C such that

a .{1} b <{1} c for all a ∈ A. For any (z2, . . . , zn) ∈
∏n
i=2Mi, this implies

(a, z2, . . . , zn) . (b, z2, . . . , zn) < (c, z2, . . . , zn)

for all a ∈ A. Thus, (b, z2, . . . , zn) is an upper bound of A ×
∏n
i=2 z

&{i}
i with

respect to ., but not of C ×
∏n
i=2 z

&{i}
i . By Lemma 5.5, we conclude

((A,B),(z
&{2}
2 , z

.{2}
2 ), . . . , (z

&{n}
n , z

.{n}
n ))

@ ((C,D), (z
&{2}
2 , z

.{2}
2 ), . . . , (z

&{n}
n , z

.{n}
n ))

and therefore (A,B) @{1} (C,D).

Using contraposition, we get also that (A,B) @∼{1}(C,D) implies A ⊆ C, be-

cause @∼ is linear. �
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Lemma 5.8. Every factor M↑i is essential for @∼.

Proof. This is an immediate consequence of Lemma 5.7, since every factor Mi

is essential for .. �

Lemma 5.9. @∼ satisfies restricted solvability.

Proof. We prove restricted solvability on the factor M↑1 . For this, let (A,B),

(C,D) ∈M↑1 , ((Ei, Fi))
n
i=2 ∈

∏n
i=2M

↑
i and ((Gi,Hi))

n
i=1 ∈

∏n
i=1 M

↑
i be such that

((A,B), (E2, F2), . . . , (En, Fn)) @∼ ((Gi,Hi))
n
i=1

@
∼ ((C,D), (E2, F2), . . . , (En, Fn)).

If we have ((A,B), (E2, F2), . . . , (En, Fn)) ∼ ((Gi,Hi))
n
i=1, there is nothing to

prove; likewise, if ((C,D), (E2, F2), . . . , (En, Fn)) ∼ ((Gi,Hi))
n
i=1. Hence, we as-

sume that

((A,B), (E2, F2), . . . , (En, Fn)) @ ((Gi,Hi))
n
i=1(5)

@ ((C,D), (E2, F2), . . . , (En, Fn))

holds. Let us define

K :=
{
k ∈M1

∣∣∣∣ ∀(ei)ni=2 ∈
n∏
i=2

Ei ∃(gi)
n
i=1 ∈

n∏
i=1

Gi :

(k, e2, . . . en) . (g1, . . . , gn)
}
.

We prove now that K is nonempty. By Lemma 5.3, we conclude from (5) that

there is (g1, . . . , gn) ∈
∏n
i=1 Gi such that (a, e2, . . . , en) < (g1, . . . , gn) holds for

all (a, e2, . . . , en) ∈ A ×
∏n
i=2Ei. Hence, A ⊆ K, and K is nonempty, because

A is nonempty by the definition of M↑1 . Furthermore, there is (c, ẽ2, . . . , ẽn) ∈
C ×

∏n
i=2Ei with (g̃1, . . . , g̃n) < (c, ẽ2, . . . , ẽn) for all (g̃1, . . . , g̃n) ∈

∏n
i1
Gi. This

implies c ∈ K.{1} , i.e., also K.{1} is nonempty. Therefore, we have (K.{1}&{1} ,
K.{1}) ∈M↑1 .

It remains to prove that ((K.{1}&{1} ,K.{1}), (E2, F2), . . . , (En, Fn)) ∼
((Gi,Hi))

n
i=1 holds. If (z1, . . . , zn) ∈

∏n
i=1 Mi is an upper bound of

∏n
i=1 Gi, then

(z1, . . . , zn) is an upper bound of K ×
∏n
i=2 Ei by definition of K. Conversely, let

(z1, . . . , zn) be an upper bound of K ×
∏n
i=2Ei and suppose that it would not be

an upper bound of
∏n
i=1 Gi. Then there would be some (g1, . . . , gn) ∈

∏n
i=1Gi

such that

(6) (k, e2, . . . , en) . (z1, . . . , zn) < (g1, . . . , gn) < (c, ẽ2, . . . , ẽn)

holds for all (k, e2, . . . , en) ∈ K×
∏n
i=2Ei and for (c, ẽ2, . . . , ẽn) from the preceeding

paragraph. Now, we distinguish two cases:
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(i) If there is (k̄, ē2, . . . , ēn) ∈ K×
∏n
i=2 Ei such that (z1, . . . , zn) ∼ (k̄, ē2, . . . , ēn),

then also (k̄, e2, . . . , en) . (k̄, ē2, . . . , ēn) holds for all (e2, . . . , en) ∈
∏n
i=2Ei,

i.e., (ē2, . . . , ēn) is the greatest element of
∏n
i=2Ei. Thus, we have (c, ẽ2,

. . . , ẽn) . (c, ē2, . . . , ēn) and therefore

(k̄, ē2, . . . , ēn) < (g1, . . . , gn) < (c, ē2, . . . , ēn)

because of (6). By restricted solvability, we get some k̃ ∈ M1 such that

(g1, . . . , gn) ∼ (k̃, ē2, . . . , ēn). But then (k̃, e2, . . . , en) . (g1, . . . , gn) holds for

all (e2, . . . en) ∈
∏n
i=2Ei, which implies k̃ ∈ K. By (6) we get (k̃, ē2, . . . , ēn) .

(z1, . . . , zn), in contradiction to (z1, . . . , zn) < (g1, . . . , gn) ∼ (k̃, ē2, . . . , ēn).

(ii) If (k, e2, . . . , en) < (z1, . . . , zn) holds for all (k, e2, . . . , en) ∈ K×
∏n
i=2 Ei, then

we set (e2,0, . . . , en,0) := (ẽ2, . . . , ẽn). By restricted solvability, we conclude

from (6) that there is k0 ∈ M1 such that (k0, e2,0, . . . , en,0) ∼ (z1, . . . , zn).

By assumption, we have k0 /∈ K. Hence, there is (ē2, . . . , ēn) ∈
∏n
i=2Ei

with (g1, . . . , gn) < (k0, ē2, . . . , ēn). Now Lemma 3.1 implies the existence of

(e2,1, . . . , en,1) ∈
∏n
i=2 Ei such that (k0, e2,1, . . . , en,1) ∼ (g1, . . . , gn). Thus, we

get (e2,0, . . . , en,0) <{2,...,n} (e2,1, . . . , en,1). Again using (6), we obtain k1 ∈
M1 \K with (k1, e2,1, . . . , en,1) ∼ (z1, . . . , zn). Similar as above, we construct

(e2,2, . . . , en,2), etc., and eventually obtain infinite sequences {kl | l ∈ N0} and

{(e2,l, . . . , en,l) | l ∈ N0} such that the conditions

k0 >{1} k1 >{1} k2 >{1} . . . ,

(e2,0, . . . , en,0) <{2,...,n} (e2,1, . . . , en,1) <{2,...,n} (e2,2, . . . , en,2)

<{2,...,n} . . . ,

(kl, e2,l, . . . , en,l) ∼ (kl+1, e2,l+1, . . . , en,l+1) for all l ∈ N,(7)

(kl, e2,l+1, . . . , en,l+1) ∼ (kl+1, e2,l+2, . . . , en,l+2) for all l ∈ N(8)

hold (see Figure 4). We may interprete the configuration as a multi-dimensio-

nal standard sequence. In fact, we can construct an infinite upper bounded

standard sequence on the factor M1 as follows: . satisfies the generalized

Thomsen Condition (Proposition 3.2). Thus, from (7) and (8) we conclude

(kl+1, e2,l, . . . , en,l) ∼ (kl+2, e2,l+1, . . . , en,l+1) for all l ∈ N0. By induction,

this implies (kl, e2,0, . . . , en,0) ∼ (kl+1, e2,1, . . . , en,1) for all l ∈ N0. Hence,

{kl | l ∈ N} is an infinite strictly upper bounded standard sequence on the

factor M1 (with strict upper bound k0). But since kl ∈ M1 \K for all l ∈ N0

and K 6= ∅, this standard sequence is also strictly lower bounded and has to

be finite, in contradiction to the construction.

We have proved that the upper bounds of K ×
∏n
i=2Ei are exactly the upper

bounds of
∏n
i=1 Gi. By Lemma 5.5, this is equivalent to ((K.{1}&{1} ,K.{1}),

(E2, F2), . . . , (En, Fn)) ∼ ((Gi,Hi))
n
i=1. Hence, @∼ satisfies restricted solvability on

M↑1 , and the other factors are done by symmetry. �
Now we finish the proof that M↑ is an additive conjoint structure.
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Figure 4. A Multi-dimensional standard sequence.

Lemma 5.10. Every strictly bounded standard sequence on a factor M↑i is

finite.

Proof. Suppose, there would be an infinite strictly bounded standard sequence

{(Al, Bl) | l ∈ N} on a factor M↑k , where N is an infinite subsequent subset of Z.

Let (A−, B−) denote a strict lower and (A+, B+) denote a strict upper bound of

the sequence. W.l.o.g., let us assume that k = 1 and 0 ∈ N . By definition, there

are ((Ci, Di))
n
i=2 6∼{2,...,n} ((Ei, Fi))

n
i=2 in

∏n
i=2 M

↑
k such that

(9) ((Al, Bl), (C2, D2), . . . , (Cn, Dn)) ∼ ((Al+1, Bl+1), (E2, F2), . . . , (En, Fn))

holds for all l ∈ N . We may assume that ((Ci, Di))
n
i=2 A{2,...,n} ((Ei, Fi))

n
i=2.

This implies (Al, Bl) @{1} (Al+1, Bl+1) for all l, l+ 1 ∈ N . Furthermore, there are

(z2, . . . , zn) ∈
∏n
i=2 Mi and (c2, . . . , cn) ∈

∏n
i=2 Ci such that (e2, . . . , en) .{2,...,n}

(z2, . . . , zn) <{2,...,n} (c2, . . . , cn) holds for all (e2, . . . , en) ∈
∏n
i=2 Ei. By assump-

tion, we have

((Al, Bl), (E2, F2), . . . , (En, Fn)) @ ((A+, B+), (E2, F2), . . . , (En, Fn)).

Thus, there is (a+, ē2, . . . , ēn) ∈ A+ ×
∏n
i=2 Ei with (al, e2, . . . , en) < (a+, ē2,

. . . , ēn) for all (al, e2, . . . , en) ∈ Al ×
∏n
i=2 Ei and with (al, c2, . . . , cn) < (a+, ē2,

. . . , ēn) for all (al, c2, . . . , cn) ∈ Al ×
∏n
i=2 Ci. Then this implies (al, e2, . . . , en) <

(a+, z2, . . . , zn) and (al, c2, . . . , cn) < (a+, z2, . . . , zn). We distinguish two cases

(which may occur both the same time).

(i) If N is infinitely increasing (i.e., N ⊆ N), we choose some a0 ∈ A0 \ A−.

Then (a0, z2, . . . , zn) < (a0, c2, . . . , cn) < (a+, z2, . . . , zn) holds. By restricted

solvability, there is a1 ∈ M1 such that (a1, z2, . . . , zn) ∼ (a0, c2, . . . , cn). This

implies (a1, e2, . . . , en) . (a0, c2, . . . , cn) for all (e2, . . . , en) ∈
∏n
i=2 Ei. Now,
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by (9) and Lemma 5.1, we get a1 ∈ A1. Analogously, we construct a2 ∈ A2,

etc. By choosing any a− ∈ A−, we obtain an infinite strictly bounded standard

sequence

a− < a0 < a1 < a2 < · · · < a+

on the factor M1, in contradiction to the assumption.

(ii) If N is infinitely decreasing, we choose some a0 ∈ A0 \ A−1. Then there is

b−1 ∈ B−1 with b−1 < a0. Therefore

(ã−1, e2, . . . , en) . (b−1, e2, . . . , en) < (a0, e2, . . . , en)

. (a0, z2, . . . , z2) < (a0, c2, . . . , cn)

holds for all (ã−1, e2, . . . , en) ∈ A−1 ×
∏n
i=2Ei. This implies

(ã−2, c2, . . . , cn) . (b−1, e2, . . . , en) < (a0, z2, . . . , z2) < (a0, c2, . . . , cn)

for all ã−2 ∈ A−2, since A−2 ⊂ A−1. Thus, there is a−1 ∈ M1 with (a−1, c2,

. . . , cn) ∼ (a0, z2, . . . , zn), and we have a−1 /∈ A−2. Analogously, we construct

a−2 /∈ A−3, etc. For a− ∈ A− and a+ ∈ A+ \A0, we obtain an infinite strictly

bounded standard sequence

a− < · · · < a−2 < a−1 < a0 < a+

on the factor M1, which again yields a contradiction. �

Now we have shown that M↑ is an n-component order-complete additive con-

joint structure, where all factors have greatest elements, as far as possible. It

is obvious that we can dualize all assertions and proofs in this section, and ob-

tain an order-complete additive conjoint structure M↓ where all factors have least

elements, as far as possible.

6. The Completion Theorem

It remains to collect together the results we have so far. For any n-component

additive conjoint structure M := ((Mi)
n
i=1,.) and any k ∈ {1, . . . , n}, let us define

N↑k and N↓k as follows:

(1) If there is an infinite strictly lower bounded standard sequence on the

factor Mk, let N↑k := {(Mk, ∅)}; otherwise, let N↑k be empty.

(2) If there is an infinite strictly upper bounded standard sequence on the

factor Mk, let N↓k := {(∅,Mk)}; otherwise, let N↓k be empty.

Furthermore, let Mk := D(Mk,.{k}) \ (N↑k ∪N
↓
k ). The “complete” lattice-order

on Mk we denote by ≤k.
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Theorem 6.1. Let M := ((Mi)
n
i=1,.), n ≥ 3, be an n-component additive

conjoint structure. Then a linear quasi-order @∼ on
∏n
i=1 M i can be constructed

such that

(1) M := ((M i)
n
i=1,@∼) is an n-component additive conjoint structure.

(2) A quasi-embedding of M into M is given by

ι((xi)
n
i=1) := ((x

&{i}
i , x

.{i}
i ))ni=1.

(3) (Mk,@∼{k}) is isomorphic to (Mk,≤k).

(4) Every factor (Mk,@∼{k}) has a greatest (least) element if and only if every

strictly lower (upper) bounded standard sequence on Mk is finite.

Proof. By construction, there is a bijective map σ of
∏n
i=1M

↑↓
i onto

∏n
i=1 M i.

By defining @∼ := σ(.), this map σ becomes an isomorphism of M↑↓ onto M.

This proves (1), because by the Lemmata 5.2, 5.4, 5.8, 5.9, and 5.10, we know

that M↑ and, therefore, also M↑↓ are n-component additive conjoint structures.

Since ι = σ ◦ ι↓ ◦ ι↑, we get (2) from Lemma 5.6, whereas Lemma 5.7 immediately

yields (3).

During the construction of M↑k , we obtain a greatest element in (M↑k ,@∼{k}) if

every strictly lower bounded standard sequence on Mk is finite or if (Mk,.{k})
already has a greatest element. Furthermore, (M↑k ,@∼{k}) has a least element if

and only if (Mk,.{k}) has a least element. The dual arguments hold for M↑↓k ,

if we take into consideration that, by the proof of Lemma 5.10, a strictly upper

bounded standard sequence exists on M↑k if and only if such a sequence exists

on Mk. Together with Proposition 2.1, this yields (4). �
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