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UNIVERSAL q–DIFFERENTIAL CALCULUS AND

q–ANALOG OF HOMOLOGICAL ALGEBRA

M. DUBOIS-VIOLETTE1 and R. KERNER2

Abstract. We recall the definition of q-differential algebras and discuss some rep-
resentative examples. In particular we construct the q-analog of the Hochschild
coboundary. We then construct the universal q-differential envelope of a unital as-
sociative algebra and study its properties. The paper also contains general results
on dN = 0.

1. Introduction and Algebraic Preliminaries

At the origin of this paper there is the long-standing physically-motivated in-

terest of one of the authors (R.K.) on Z3-graded structures and differential calculi

[RK] although here the point of view is somehow different. There is also the

observation that the simplicial (co)-homology admits ZN versions leading to cy-

clotomic homology [Sark] and that, more generally, this suggests that one can

introduce “q-analog of homological algebra” for each primitive root q of the unity

[Kapr]. Moreover the occurrence of various notions of “q-analog” in connection

with quantum groups suggests to include in the formulation the general case where

q is not necessarily a root of unity but is an arbitrary invertible complex number

[Kapr]. It is our aim here to go further in this direction.

Throughout this paper, we shall be interested in complex associative graded

algebras equipped with endomorphisms d of degree 1 satisfying a twisted Leibniz

rule, the q-Leibniz rule, of the form d(αβ) = d(α)β+q∂ααd(β), where q is a given

complex number distinct of 0 and where ∂α denotes the degree of α. Furthermore,

whenever qN = 1, for an integer N ≥ 1, we shall add the rule dN = 0. We

shall refer to d as the q-differential of the graded algebra. Thus an ordinary

differential on a graded algebra is just a (−1)-differential in this terminology. Our

aim is to produce universal objects in this class. Before entering the subject we

want to discuss two problems connected with the case qN = 1, i.e. the case where

q is a primitive root of the unity.
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We shall be concerned here with the case of N-graded algebras. However when

qN = 1, it is very natural to consider graduation over ZN = Z/NZ instead of over

N. So let us recall how one can identify a ZN -graded algebra with a N-graded one.

Let A = ⊕p∈ZN A
p be a ZN -graded algebra and let n 7→ p(n) be the canonical

projection of N onto ZN . We associate to A a N-graded algebra p∗A = ⊕
n∈N

p∗An

in the following manner. A homogeneous element of p∗A is a pair (n, α) ∈ N× A
of an integer n ∈ N and an homogeneous element α of A such that ∂α = p(n)

and we identify p∗An = (n,Ap(n)) with the vector space Ap(n). The product

in p∗A = ⊕p∗An is then defined by (m,α)(n, β) = (m + n, αβ). The canonical

projection π : p∗A→ A defined by π(n, α) = α is an algebra homomorphism which

is graded in the sense that one has π(p∗An) ⊂ Ap(n). The N-graded algebra p∗A

is characterized, up to an isomorphism, by the following universal property: Any

graded homomorphism ϕ of a N-graded algebra Ω into A factorizes through a

unique homomorphism of N-graded algebra ϕ̄ : Ω → p∗A as ϕ = π ◦ ϕ̄. Let D be

a homogeneous linear mapping of A into itself and let k be the unique positive

integer strictly smaller than N such that p(k) is the degree of D. Then there is a

unique linear mapping p∗(D) of p∗A into itself which is homogeneous of degree k

and satisfies π ◦ p∗(D) = D ◦ π. The construction of p∗(D) is obvious.

As already stressed, we impose dN = 0 whenever qN = 1. More generally let

E be a vector space equipped with an endomorphism d satisfying dN = 0, N

being an integer greater than or equal to 2. For each integer k with 0 ≤ k ≤ N ,

one has Im(dN−k) ⊂ ker(dk) so the vector space H(k) = ker(dk)/Im(dN−k) is

well defined. One has H(0) = H(N) = 0 and the H(k) for 1 ≤ k ≤ N − 1 are

the generalized homologies of E. Let ` and m be two positive integers such that

` + m ≤ N . The inclusion i` : ker(dm) ⊂ ker(d`+m) induces a linear mapping

[i`] : H(m) → H(`+m) since Im(dN−m) ⊂ Im(dN−(`+m)). On the other hand, one

has dm(ker(d`+m)) ⊂ ker(d`) and dm(Im(dN−(`+m))) ⊂ Im(dN−`) and therefore

dm induces a linear mapping [dm] : H(`+m) → H(`). One has the following result.

Lemma 1. The hexagon (H`,m) of homomorphisms

H(`+m) //[dm]

H(`)

''

[iN−(`+m)]

NNNNNNNNNNN

H(m)

::
[i`]

uuuuuuuuu
H(N−m)

ww [dl]ppppppppppp

H(N−`)

dd

[dN−(`+m)]

IIIIIIIII

H(N−(`+m))oo [im]

is exact.

Proof. It is clearly sufficient to show that the sequences H(m) [i`]
−→H(`+m)

[dm]
−→H(`) and H(`+m) [dm]

−→H(`)[i(N−(`+m))]
−→ H(N−m) are exact. It is straightforward
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that [dm] ◦ [i`] is the zero mapping of H(m) into H(`) and that [iN−(`+m)] ◦ [dm]

is the zero mapping of H(`+m) into H(N−m). Let c ∈ ker(d(`+m)) be such that

dmc = dN−`c′ for some c′ ∈ E; Then dm(c− dN−(`+m)c′) = 0 i.e. [c] ∈ H(`+m) is

in [i`](H(m)) which achieves the proof of the exactness of the first sequence. Let

c ∈ ker(d`) be such that c = dmc′ for some c′ ∈ E; then one has d`+mc′ = 0 which

means that [c] ∈ H(`) is in [dm](H(`+m)) which achieves the proof of the exactness

of the second sequence. �

Notice that the content of this lemma is nontrivial only if ` ≥ 1, m ≥ 1 and

N − (` + m) ≥ 1 which implies N ≥ 3. In the case N = 3 the only nontrivial

choice is (`,m) = (1, 1) so, in this case there is only one (nontrivial) hexagon,

namely (H1,1). In the case N = 4, there are 3 possible choices for (`,m) namely

(`,m) = (1, 1), (`,m) = (1, 2) and (`,m) = (2, 1). However it is readily seen that,

(for N = 4), (H1,1), (H1,2) and (H2,1) are identical; one passes from one to the

others by applying “rotations of 2π/3”. Thus, for a given integer N ≥ 3, it is not

completely obvious to count the number of independent nontrivial hexagons. In

any case, this lemma is very useful for the computations. Practically we shall apply

it in the graded case where E = ⊕n∈ZEn is a Z-graded vector space and where d

is homogeneous of degree 1, (i.e. d(En) ⊂ En+1). In this case, the hexagon (H`,m)

of the lemma splits into N long exact sequences (S`,mp ), p ∈ {0, 1, . . . , N − 1}.

· · · −→ H(m),Nr+p [i`]
−→ H(`+m),Nr+p [dm]

−→ H(`),Nr+p+m(S`,mp )

[iN−(`+m)]
−→ H(N−m),Nr+p+m [d`]

−→ H(N−(`+m)),Nr+p+`+m

[im]
−→ H(N−`),Nr+p+`+m [dN−(`+m)]

−→ H(m),N(r+1)+p [i`]
−→ · · ·

where H(k),n = {x ∈ En|dk(x) = 0}/dN−k(En+k−N ). Notice that, if instead of

being graded over Z, E is graded over ZN then the N exact sequences (S`,mp ) are

again N exact hexagons because in ZN one has Nr + p = N(r + 1) + p = p.

In degree 0, the q-Leibniz rule reduces to the ordinary Leibniz rule. Thus a q-

differential induces a derivation of the subalgebra of elements of degree 0 into the

space of elements of degree 1 which is a bimodule over the algebra of elements of

degree 0. In this context, let us recall the construction of the universal derivation

[CE]. Let A be a unital associative algebra and let Ω1(A) be the kernel of the

product m : A ⊗ A → A of A, m(x ⊗ y) = xy. The mapping m is a bimodule

homomorphism so Ω1(A) is a bimodule over A. One defines a derivation d of A
into Ω1(A) by d(x) = 1 ⊗ x − x ⊗ 1 for x ∈ A. The derivation d is universal

in the sense that for any derivation X of A into a bimodule M over A,

there is a unique bimodule homomorphism iX of Ω1(A) intoM such that

X = iX ◦ d. This universal property characterizes the pair (Ω1(A), d) uniquely,

up to an isomorphism. We proceed now to recall the construction of the universal

differential calculus over A [Kar]. Set Ω0(A) = A and Ωn(A) = ⊗nAΩ1(A).
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The direct sum Ω(A) = ⊕nΩn(A) is an associative graded algebra for the tensor

product over A; it is in fact the tensor algebra over A of the bimodule Ω1(A).

The derivation d : A → Ω1(A) extends uniquely into a differential (i.e. a (−1)-

differential) of Ω(A) which will be again denoted by d. Thus, Ω(A) is a graded

differential algebra, (i.e. a graded (−1)-differential algebra in the sense of the

definition of next section). This graded differential algebra is characterized, up to

an isomorphism, by the following universal property: Any homomorphism of

associative unital algebra ϕ of A into the algebra A0 of the elements of

degree 0 of a graded differential algebra A = ⊕n∈NAn extends uniquely

into a homomorphism of graded differential algebra ϕ̄ : Ω(A)→ A. This is

why Ω(A) is called the universal differential envelope of A or the universal

differential calculus over A. It is one of the aims of this paper to generalize

this construction (corresponding to q = −1) for the q-differential calculus.

2. q-differential Calculus

In the rest of the paper q is a complex number with q 6= 0 and we shall use the

following definition.

Definition 1. A graded q-differential algebra is a N-graded unital C-algebra

A = ⊕
n∈N
An equipped with an endomorphism d of degree one satisfying d(αβ) =

d(α)β + qaαd(β), ∀α ∈ Aa and ∀β ∈ A, and such that dN = 0 whenever qN = 1

for N ∈ N with N 6= 0. Let A be a unital C-algebra. A q-differential calculus

over A is a graded q-differential algebra A = ⊕
n
An such that A is a subalgebra

of A0.

Notice that a graded 1-differential algebra is just a N-graded algebra (d = 0),

that a graded (−1)-differential algebra is just a N-graded differential algebra in

the usual sense and that, if A = ⊕An is a q-differential calculus over A with q 6= 1,

then the restriction of d to A is just a derivation of A into the bimodule A1 over A.

Let us introduce, as usual, the q-analogs of basic numbers, of factorials and of

binomial coefficients

[n]q =
1− qn

1− q
= 1 + q + · · ·+ qn−1,

[n!]q = [1]q[2]q . . . [n]q and[
n

p

]
q

=
[n!]q

[p!]q[(n− p)!]q

where n, p ∈ N and n ≥ p. By induction on n, it follows from the q-Leibniz rule

d(αβ) = d(α)β + qaαd(β) that one has:

(1) dn(αβ) =
n∑
p=0

qap
[
n

p

]
q

dn−p(α)dp(β)
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for α ∈ Aa and β ∈ A, (n ∈ N). It is worth noticing here that the consistency of

dN = 0 whenever qN = 1 with the q-Leibniz rule follows from the fact that (1)

implies for qN = 1 that one has dN (αβ) = dN (α)β + αdN (β).

There is an obvious notion of homomorphism of q-differential algebra. Given

a unital algebra A, a morphism of a q-differential calculus over A into another

one is a homomorphism of the corresponding q-differential algebra which induces

the identity mapping of A onto itself. It is the aim of Section 4 to produce an

initial object in the category of q-differential calculi over A, (i.e. a universal graded

q-differential envelope for A). In the remaining part of this section, we present

some examples.

Example 1: Matrix Algebra MN (C)

Let N ∈ N with N ≥ 2 and let q be a primitive N -root of the unity, (e.g.

q = exp
(

2πi
N

)
). Let us introduce the usual standard basis Ek` , (k, ` ∈ {1, . . . , N}),

of the matrix algebra MN(C) defined by (Ek` )ij = δkj δ
i
`. One has the relations

(2) Ek`E
r
s = δksE

r
` and

N∑
n=1

Enn = 1

It follows from (2) that MN(C) is a ZN -graded algebra if one equips it with the

ZN -graduation defined by giving the degree k − ` (mod(N)) to Ek` ; MN(C) =

⊕
p∈ZN

(MN (C))p. Let e = λ1E
2
1 + · · · + λN−1E

N
N−1 + λNE

1
N , (λi ∈ C), be an

arbitrary element of degree 1, (e ∈ (MN (C))1), i.e.

e =



0 λ1 0 . . . 0

0 0 0
...

...

0 0

0 λN−1

λN 0 0 . . . 0


One has in view of (2)

(3) eN = λ1λ2 . . . λN1.

One defines a linear mapping of degree 1 of MN (C) into itself by setting d(A) =

eA− qaAe for A ∈ (MN (C))a. The linear mapping d satisfies the q-Leibniz rule

d(AB) = d(A)B + qaAd(B), ∀A ∈ (MN (C))a,∀B ∈MN (C).

Moreover (3) implies that dN = 0, (since dN = ad(eN ) as easily verified). Thus

MN (C) = ⊕
p

(MN (C))p equipped with d satisfies the axioms of graded q-differential
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algebra except that it is ZN -graded instead of being N-graded. However the N-

graded covering p∗MN (C) equipped with p∗(d), (see in Section 1), is a graded

q-differential algebra. The algebra (p∗MN(C))0 = (MN (C))0 of diagonal matrices

identifies with the algebra CN of complex functions on a set with N elements and

therefore the above graded q-differential algebra is a q-differential calculus over the

commutative algebra CN . Notice that for N = 2, p∗M2(C) is an ordinary graded

differential algebra which is isomorphic to the universal differential envelope Ω(C2)

of the commutative algebra C2 whenever λ1λ2 6= 0.

Example 2: Hochschild Cochains

Let A be a unital associative C-algebra and let M be a bimodule over A.

Recall that aM-valued Hochschild cochain of degree n ∈ N is a n-linear mapping

of A× · · · × A︸ ︷︷ ︸
n

into M, (i.e. a linear mapping of ⊗nA into M). The vector space

ofM-valued Hochschild cochains of degree n is denoted by Cn(A,M). The vector

space C(A,M) = ⊕
n∈N

Cn(A,M) of allM-valued Hochshild cochains is a N-graded

vector space. If M′ is another bimodule over A, one defines a graded bilinear

mapping of C(A,M) × C(A,M′) into C(A,M⊗
A
M′), (α,α′) 7→ α ∪ α′, the cup

product, by setting for α ∈ Ca(A,M) and α′ ∈ Ca
′
(A,M′)

(α ∪ α′)(x1, . . . , xa+a′) = α(x1, . . . , xa)⊗
A
α′(xa+1, . . . , xa+a′), ∀xi ∈ A.

The cup product if associative in the sense that if M′′ is a third bi-module over

A, one has for α ∈ C(A,M), α′ ∈ C(A,M′) and α′′ ∈ C(A,M′′): (α∪α′)∪α′′ =

α ∪ (α′ ∪ α′′). By taking M =M′ = A(=M′′) and by making the identification

A⊗
A
A = A, one sees that, equipped with the cup product, C(A,A) is a unital

N-graded algebra with C0(A,A) = A. Let q be a complex number with q 6= 0.

One defines a linear endormorphism δq of degree one of C(A,M) by setting for

ω ∈ Cn(A,M), δ1ω = 0 and, for q 6= 1:

δq(ω)(x0, . . . , xn) = x0ω(x1, . . . , xn) +
n∑
k=1

qkω(x0, . . . , xk−1xk, . . . , xn)(4)

− qnω(x0, . . . , xn−1)xn

∀xi ∈ A. One verifies that δNq = 0 whenever qN = 1 (N 6= 0) and that, if

β ∈ C(A,M′), one has: δq(ω ∪ β) = δq(ω) ∪ β + qnω ∪ δq(β). This implies in

particular that C(A,A) equipped with δq is a graded q-differential algebra and

that it is a q-differential calculus over A. Notice that δ(−1) is the usual Hochschild

coboundary δ so, when qN = 1 (N ≥ 2), the H(k)(C(A,M), δq) defined as in

Section 1 are q-analog of Hochschild cohomology.
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Example 3: q-differential Dual of a Product

Let A be an associative C-algebra and let C(A) = ⊕
n∈N

Cn(A) be the graded

vector space of multilinear forms on A; i.e. Cn(A) = (⊗nA)∗ is the (C-) dual of

⊗nA and C0(A) = C. By making the natural identifications Cn(A) ⊗ Cm(A) ⊂
Cn+m(A) one sees that C(A) is canonically a N-graded unital C-algebra, (the

product being the tensor product over C). By duality, the product m : A⊗A → A
of A gives a linear mapping m∗ of A∗ into (A⊗A)∗ i.e. m∗ : C1(A)→ C2(A). For

q ∈ C\{0, 1}, m∗ extends into a linear mapping m∗q : C(A)→ C(A) which satisfies

the graded q-Leibniz rule with

(5) m∗q(ω)(x0, . . . , xn) =
n∑
k=1

qk−1ω(x0, . . . , xk−1xk, . . . , xn)

for ω ∈ Cn(A) and xi ∈ A. It follows then from the associativity of the product

of A that one has (m∗q)
N = 0 whenever qN = 1, N ∈ N\{0}. Thus C(A) equipped

with m∗q is a graded q-differential algebra. It is worth noticing here that the δq
defined by (4) on C(A,M) in Example 2 is up to a factor q the m∗q defined by (5),

(i.e. “the dual” of the product of A) combined with a “q-twisted bimodule action”

onM. It should also be stressed that the results in Example 2 are true if A is not

unital except that then C(A,A) is also not unital.

Let us now drop the assumption that A is associative, i.e. let A be a complex

vector space equipped with a bilinear product (x, y) 7→ xy. Then the formula

(5) still defines a homogeneous linear mapping m∗q of degree 1 of C(A) into itself

satisfying the q-Leibniz rule which extends the dual of the product, but now qN = 1

does not imply (m∗q)
N = 0. Let q be a N -th primitive root of the unity with N ≥ 2.

For N = 2, (m∗(−1))
2 = 0 is equivalent to the associativity of the product of A.

For N ≥ 3, (m∗q)
N = 0 is equivalent to a generalization of degree N + 1 of the

associativity of the product of A which is of the form Rq(x0 ⊗ x1 ⊗ · · · ⊗ xN ) = 0,

∀xi ∈ A, whereRq is a linear mapping of⊗N+1A intoA. However, it was remarked

by Peter W. Michor [PWM] that, if A has a unit, then the relation Rq = 0 implies

the associativity of the product of A, i.e. R(−1) = 0. Let us prove this fact. So

let us assume that there is a 1 ∈ A such that 1x = x1 = x, ∀x ∈ A, and let q be

a N -th primitive root of the unity with N ≥ 3. Then one has for x, y, z ∈ A and

ω ∈ C1(A)(= A∗), (m∗q)
Nω(x, y,1, . . . ,1︸ ︷︷ ︸

N−2

, z) = [N − 2]qq
N−2ω((x, y)z − x(yz)).

Since ω is arbitrary this shows that (m∗q)
N = 0 implies the associativity of the

product of A, (we already know that the associativity of the product of A implies

(m∗q)
N = 0 whenever qN = 1, q 6= 1 and N ∈ N\{0}).

3. The Tensor Algebra over A of A ⊗ A

In this section A is a unital associative C-algebra. The tensor product (over C)
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A ⊗ A is in a natural way a bimodule over A. The tensor algebra over A of the

bimodule A ⊗ A will be denoted by T(A) = ⊕
n∈N
Tn(A). This is a unital graded

algebra with Tn(A) = ⊗n+1A and product defined by

(x1⊗· · ·⊗xm)(y1⊗· · ·⊗yn) = x1⊗· · ·⊗xm−1⊗xmy1⊗y2⊗· · ·⊗yn for xi, yj ∈ A.

In particular A coincides with the subalgebra T0(A). As a tensor algebra over

A, T(A) satisfies a universal property. Here, since A is unital, A ⊗ A is the

free bimodule generated by τ = 1 ⊗ 1. Hence T(A) is the N-graded algebra

generated by A in degree 0 and by a free generator τ of degree 1. In fact one has

x0 ⊗ · · · ⊗ xn = x0τx1 . . . τxn, ∀xi ∈ A. Thus the graded algebra T(A) is also

characterized by the following property.

Lemma 2. Let A = ⊕An be a unital N-graded C-algebra, then for any ho-

momorphism ϕ : A → A0 of unital algebras and for any α ∈ A1, there is a

unique homorphism Tϕ,α : T(A) → A of graded algebras which extends ϕ, (i.e.

Tϕ,α � A = ϕ), and is such that Tϕ,α(τ) = α.

As an example of application of this lemma, let us take A = C(A,A), i.e.

the algebra of A-valued cochains of A (see Example 2 of Section 2), take for ϕ

the identity mapping of A onto itself considered as a homomorphism of A into

C0(A,A) and take (again) for α the identity mapping of A onto itself considered

as an element of C1(A,A). Let Ψ = Tϕ,α : T(A)→ C(A,A) be the corresponding

graded-algebra homomorphism. This homomorphism which was considered in

[Mas] is given by

(6) Ψ(x0 ⊗ · · · ⊗ xn)(y1, . . . , yn) = x0y1x1 . . . ynxn

We now equip T(A) with a structure of graded q-differential algebra. Let q be

a complex number different from 0 and 1. One has the following lemma

Lemma 3. There is a unique linear mapping dq : T(A) → T(A) homogeneous

of degree 1 satisfying the q-Leibniz rule such that

dq(x) = 1⊗ x− x⊗ 1 = τx− xτ, ∀x ∈ A,

and

dq(τ) = τ2, (i.e. dq(1⊗ 1) = 1⊗ 1⊗ 1).

Moreover dq satisfies dNq = 0 whenever qN = 1 for N ≥ 2, N ∈ N.

Proof. It follows from the very structure of T(A) that for any derivation D

of A into the bimodule T1(A) = A ⊗ A and for any µ ∈ T2(A) = A ⊗ A ⊗ A,

there is a unique Dq : T(A) → T(A) satisfying the q-Leibniz rule and such that

Dq(x) = D(x) for x ∈ A and Dq(τ) = µ. The first part of the lemma follows since
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ad (τ) is a derivation of A into T1(A). On the other hand, by induction on N ∈ N
with N ≥ 1, one has for x ∈ A

(7) dNq (x) = [N !]qτ
N−1dq(x) and dNq (τ) = [N !]qτ

N+1

so the remaining part of the lemma follows from [N ]q = 0 whenever qN = 1 for

N ∈ N with N ≥ 2. �

Thus T(A) equipped with dq is a graded q-differential algebra and, in fact a

q-differential calculus over A. One verifies that, if C(A,A) is equipped with the

δq given by (4), then the above homomorphism Ψ: T(A)→ C(A,A) given by (6)

is an homomorphism of graded q-differential algebra, i.e. one has Ψ ◦ dq = δq ◦Ψ.

This generalizes the result of [Mas] which is the case q = −1.

Remark 1. There is another natural q-differential d′q on T(A) which is defined

to be the unique linear mapping of T(A) into itself satisfying the q-Leibniz rule

such that d′q(x) = dq(x) = τx− xτ for x ∈ A and d′q(τ) = −qτ2. One verifies that

d′Nq = 0 whenever qN = 1 for N ≥ 2, N ∈ N. Correspondingly, there is another

q-differential δ′q on C(A,A) which, instead of formula (4), is given by

δ′q(ω)(x0, . . . , xn) = x0ω(x1, . . . , xn)−
n∑
k=1

qk−1ω(x0, . . . , xk−1xk, . . . , xn)

− qnω(x0, . . . , xn−1)xn

and is such that Ψ ◦ d′q = δ′q ◦ Ψ. The same formula gives, more generally, an

endomorphism of C(A,M) for any bimoduleM which has the same properties as

δq. Notice that all these definitions coincide when q = −1.

Remark 2. It is worth noticing here that both q-differentials dq and d′q on T(A)

coincide on A = T0(A) with the universal derivation d : A → Ω1(A) ⊂ T1(A), (see

in Section 1). This is natural in view of the fact that we shall represent the

universal q-differential envelope of A as a q-differential subalgebra of T(A). Now

given an arbitrary µ ∈ T2(A) there is a unique d̃ on T(A) satisfying the q-Leibniz

rule which extends the universal derivation d and is such that d̃(τ) = µ. However

in general one does not have d̃N = 0 when q is a N -th primitive root of the unity.

The choices µ = 1⊗ 1⊗ 1 = τ2 and µ = −q1⊗ 1⊗ 1 = −qτ2 are the two choices

for which this generically holds.

Remark 3. As a graded algebra, the universal differential envelope Ω(A) of A
is a graded subalgebra of T(A). The space Ωn(A) is the subspace of Tn(A) which

is annihilated by applying the multiplication m of A to two consecutive arguments.

On the other hand, for q = −1, d(−1) is an ordinary differential on T(A) for which

Ω(A) is stable. In fact, Ω(A) is the smallest differential subalgebra of T(A)

equipped with d(−1) which contains A. We shall generalize this result by
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showing that the universal q-differential envelope of A can be identified with the

smallest q-differential subalgebra of T(A) equipped with dq which contains A (i.e.

the q-differential subalgebra of T(A) generated by A).

4. Universal q-differential Envelope

In this section A is a unital associative C-algebra with unit denoted by 1 and

q ∈ C\{0} as before. If q is a root of the unity, we define N to be the smallest

strictly positive integer such that qN = 1, otherwise we set N =∞. Let dk(A) for

k ∈ {1, 2, . . . , N − 1} be N − 1 copies of the vector space A/C1, dk : A → dk(A)

being the corresponding canonical projections. We extend d : A → d(A) as a

linear mapping, again denoted by d, of A ⊕ d(A) ⊕ d2(A) ⊕ · · · ⊕ dN−1(A) into

itself by defining d : dk(A) → dk+1(A) to be the canonical isomorphism for k =

1, 2, . . . , N−2 and by d(dN−1(A)) = 0. The spaceA⊕⊕N−1
k=1 d

k(A) is equipped with

a structure of graded vector space by giving the degree 0 to the elements of A and

the degree k to the elements of dk(A) for k = 1, 2, . . . , N−1. The endomorphism d

is homogeneous of degree 1 and the graded subspace E = ⊕N−1
k=1 d

k(A) is preserved

by d. Notice that the canonical projection dk : A → dk(A) coincides then with

d ◦ · · · ◦ d︸ ︷︷ ︸
k

: A → dk(A), etc. so the notations are coherent. Let T (E) be the tensor

algebra over the graded vector space E = ⊕N−1
k=1 d

k(A). On T (E) there is a unique

graduation compatible with the graduation of E such that it is a graded algebra

and on this graded algebra there is a unique extension, again denoted by d, of

the endormorphism d of E which satisfies the q-Leibniz rule. Namely one has for

xi ∈ A and ki ∈ {1, . . . , N − 1}

∂(dk1(x1) . . . dkn(xn)) = k1 + · · ·+ kn,

d(dk1(x1) . . . dkn(xn)) =
n∑
i=1

qk1+···+ki−1dk1(x1) . . . dki−1(xi+1)

× dki+1(xi)d
ki+1(xi+1) . . . dkn(xn)

where ∂ denotes the degree and the product is the tensor product. Formula (1) is

satisfied therefore, for N < ∞, dN = d ◦ · · · ◦ d︸ ︷︷ ︸
N

is a derivation which vanishes on

T (E) since it vanishes on E . Thus T (E) is a graded q-differential algebra.

Let Ωq(A) be defined by Ωq(A) = A ⊗ T (E). The space Ωq(A) is a graded

vector space with graduation given by ∂(x⊗ t) = ∂(t) for x ∈ A and t ∈ T (E). It

is also canonically a left A-module and a graded right T (E)-module for the above

graduation. One extends all the previous definitions of d to Ωq(A) by setting

d(x⊗ t) = 1⊗ d(x)t + x⊗ d(t) = d(x)t + xd(t) for x ∈ A, t ∈ T (E) and where in

the last equality 1⊗ T (E) and T (E) are identified. The endomorphism d satisfies
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in Ωq(A) d((x ⊗ t)t′) = d(x ⊗ t)t′ + q∂(x⊗t)(x ⊗ t)d(t′) for x ⊗ t ∈ Ωq(A) and

t′ ∈ T (E) (⊂ Ωq(A)). Identifying A with A⊗ 1 ⊂ Ωq(A), one has the following.

Lemma 4. There is a unique associative product on Ωq(A) which extends its

structure of (A, T (E))-bimodule, for which Ωq(A) is a graded algebra and for which

d satisfies the q-Leibniz rule. Then Ωq(A) equipped with d is a graded q-differential

algebra, (i.e. dN = 0 for N <∞).

Proof. What is needed is a product on the right by elements of A. If the

q-Leibniz is satisfied for d, one must have (formula (1))

dn(x)b = dn(xb) −
n∑
p=1

[
n

p

]
q

dn−p(x)dp(b) ∈ Ωq(A), ∀x, b ∈ A

and ∀n ≥ 1, from which the uniqueness of the product follows if it exists. Define

(ydn(x))b for y, x, b ∈ A and n ≥ 1 by the above formula i.e.

(ydn(x))b = ydn(xb)−
n∑
p=1

[
n

p

]
q

ydn−p(x)dp(b).

By definition, one has (ydn(x))b = y(dn(x)b). On the other hand, it follows from

the properties of the q-binomial coefficients that one has for y, x, b, c ∈ A and n ≥ 1

(ydn(x))(bc) = ((ydn(x))b)c and that therefore the product extends uniquely into

an associative one by setting (yt)(y′t′) = ((yt)y′)t′ for y, y′ ∈ A and t, t′ ∈ T (E).

The fact that d satisfies the q-Leibniz rule follows from

dn(x)b = dk(dn−k(x)b)−
k∑
p=1

q(n−k)p

[
k

p

]
q

dn−p(x)dp(b),

for x, b ∈ A and n ≥ k ≥ 1. Furthermore, for N < ∞, one has dN = 0 since dN

vanishes on the generators. Thus Ωq(A) is a graded q-differential algebra. �

Theorem 1. Let A = ⊕
n∈N
An be a graded q-differential algebra and let ϕ : A →

A0 be a homomorphism of unital algebras. Then there is a unique homomorphism

ϕ̄ : Ωq(A)→ A of graded q-differential algebras which induces ϕ.

Proof. In any graded q-differential algebra one has d(1) = 0, therefore one

defines a linear mapping ϕ0 : E → A by setting ϕ0(dkx) = dkϕ(x) for x ∈ A and

k ≥ 1. By the universal property of the tensor algebra ϕ0 extends uniquely into

an algebra homomorphism ϕ1 : T (E)→ A. The homomorphism ϕ1 is obviously a

homomorphism of graded algebras satisfying ϕ1◦d = d◦ϕ1 so it is a homomorphism

of graded q-differential algebras. Define the linear mapping ϕ̄ : Ωq(A) → A by

ϕ̄(xt) = ϕ(x)ϕ1(t) for x ∈ A and t ∈ T (E). One has ϕ̄(x) = ϕ(x) for x ∈ A,



186 M. DUBOIS–VIOLETTE and R. KERNER

ϕ̄((xt)t′) = ϕ̄(xt)ϕ̄(t′) for t, t′ ∈ T (E), ϕ̄ ◦ d = d ◦ ϕ̄ and ϕ̄ is unique under these

conditions. It follows that ϕ̄ is in fact a homomorphism of graded q-differential

algebras which is unique under the condition that ϕ̄ � A = ϕ. �

The graded q-differential algebra Ωq(A) is characterized uniquely up to an iso-

morphism by the universal property stated in Theorem 1, this is why Ωq(A) will

be called the universal q-differential envelope of A or the universal q-

differential calculus over A.

Proposition 1. The canonical homomorphism Id : Ωq(A) → T(A) induced by

the identity mapping of A onto itself (as in Theorem 1) is injective (q 6= 0 and

q 6= 1).

Proof. In T(A) one has (7)

dkq (x) = [k!]q(1
⊗k ⊗ x− 1⊗

k−1

⊗ x⊗ 1) for k ∈ {1, 2, . . . , N − 1}, x ∈ A.

This implies that Id induces an isomorphism of T (E) onto the subalgebra of T(A)

generated by the dkq (x) for k ∈ {1, . . . , N − 1} and x ∈ A. The remaining follows

from the fact that the left A-submodule of T(A) generated by the image of T (E),

is freely generated, i.e. is isomorphic to A⊗ T (E). �

Thus, one can identify Ωq(A) with the q-differential subalgebra of T(A) gen-

erated by A. This generalizes the standard representation of the usual universal

differential envelope of A, [Kar], which is the case q = −1.

There is another approach of the construction of Ωq(A) as q-differential sub-

algebra of T(A) which we now sketch. This approach is based on the universal

Hochschild cocycles [CKMV], [CQ]. Recall that a derivationX ofA into a bimod-

uleM is aM-valued Hochschild 1-cocycle. If Xi : A →Mi are n derivations of A
into bimodulesMi, then their cup productX1∪· · ·∪Xn : ⊗nA →M1⊗A· · ·⊗AMn

is aM1⊗A · · ·⊗AMn-valued Hochschild n-cocycle. This cocycle is normalized in

the sense that it vanishes whenever one of its arguments is the unit 1 of A. Con-

sider in particular the universal derivation d : A → Ω1(A), (see in Section 1). By

taking the cup product n times with itself of d, one obtains a normalized n-cocycle

d∪
n

: ⊗n A → Ωn(A) which is defined by d∪
n

(x1, · · · , xn) = d(x1) · · · d(xn). It

turns out that this normalized n-cocycle is universal, [CKMV], [CQ], in the sense

that for any normalized Hochschild n-cocycle c : ⊗n A → M of A into a

bimodule M, there is a unique bimodule homomorphism ic of Ωn(A)

into M such that c = ic ◦ d∪
n

. Furthermore one can characterize the triviality

of c in terms of the homomorphism ic, [CKMV]. For that one notices that one

has the inclusions of bimodules Ωn(A) ⊂ A⊗ Ωn−1(A) ⊂ Tn(A) for n ≥ 1. More

precisely one has an exact sequence (n ≥ 1)

0→ Ωn(A)
⊂
−→A⊗ Ωn−1(A)

m
−→Ωn−1(A)→ 0.
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where m is the multiplication of Ω(A). The cocycle d∪
n

is non-trivial, however it

is trivial if it is considered as a A⊗Ωn−1(A)-valued cocycle because one has there:

dx1 . . . dxn = −
(
x1 ⊗ dx2 · · · dxn +

n−1∑
k=1

(−1)k1⊗ dx1 . . . d(xkxk+1) . . . dxn

+ (−1)n1⊗ (dx1 . . . dxn+1)xn
)

i.e. d∪
n

= δ(−1⊗ d∪
n−1

) in A⊗ Ωn−1(A), where δ is the Hochschild coboundary

(δ = δ(−1)). Therefore, if theM-valued normalized n-cocycle c is such that ic is the

restriction to Ωn(A) of a bimodule homomorphism ϕ : A ⊗ Ωn−1(A) →M, then

it is trivial because one has c = δ(ϕ(−1⊗d∪
n−1

)). Conversely, if c = δ(c′) then by

setting c′ = ϕ(−1⊗ d∪
n−1

) one defines an extension ϕ of ic to A⊗ Ωn−1(A). Let

us apply this to the construction of Ωq(A). So let q be a complex number different

from 0 and 1 and let A = ⊕An be an arbitrary graded q-differential algebra with

A0 = A. As already stressed, the q-differential dA of A induces a derivation of

A into A1 so one must take Ω1
q(A) = Ω1(A) and the q-differential of Ωq(A) must

induce the universal derivation d : A → Ω1(A). Then the normalized 2-cocycle

dA∪dA induces a unique bimodule homomorphism i2 = idA∪dA of Ω2(A) into A2 so

Ω2(A) ⊂ Ω2
q(A). However the q-Leibniz rules implies d2

A(xy) = xd2
A(y)+d2

A(x)y+

(1 + q)dA(x)dA(y). So if q 6= −1 then dA ∪ dA = δ
(
− 1

1+qd
2
A

)
= δ

(
− 1

[2]q
d2
A

)
.

Therefore (if q 6= −1), by the above discussion, i2 has a unique extension as a

bimodule homomorphism ϕ : A⊗Ω1(A)→ A2 such that d2
A(x) = ϕ([2]q1⊗ d(x)),

∀x ∈ A. It follows that, if q 6= −1, one must take Ω2
q(A) = A⊗ Ω1(A) (⊂ T2(A))

and d2(x) = [2]q1⊗ d(x) = [2]qτd(x) which is, in view of (7), the formula induced

by the q-differential dq of T(A). Although it becomes a little cumbersome, one

can continue the construction of Ωq(A) as q-differential subalgebra of T(A) along

this line, (by using the formula (1) and the universal cocycles, etc).

5. Conclusion

In this paper we have generalized several constructions of ordinary differential

algebra to q-differential algebra. When q is a primitive N -th root of the unity,

(e.g. q = exp
(

2πi
N

)
), with N ≥ 2, it is natural to ask what is the generalized

cohomology H(p),n (p = 1, . . . , N − 1, n ∈ N) of the various graded q-differential

algebras introduced here. The computation of these generalized cohomologies will

be described in a separate paper [D-V], we just give here the results. For the

graded q-differential algebras (C(A),m∗q), (T(A), dq) and Ωq(A) of Example 3, of

Section 3 and of Section 4, these generalized cohomologies are trivial as expected,

i.e. one has H(p),n = 0 for n ≥ 1 and H(p),0 = C, p ∈ {1, 2, . . . , N − 1}. For the

case of the generalized Hochschild cohomology i.e. of (C(A,M), δq) of Example 2

the result is the following: If A is unital, then one has H(p),Nk = H2k and
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H(p),N(k+1)−p = H2(k+1)−1 for p ∈ {1, . . . , N − 1} and k ∈ N, where Hn denotes

the usual Hochschild cohomology, and H(p),r = 0 otherwise i.e. if r 6= 0 mod(N)

and r+p 6= 0 mod(N). Thus, for unital algebras, the information contained in the

generalized Hochschild cohomology is the same as the one of ordinary Hochschild

cohomology.
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