MAXIMAL PENTAGONAL PACKINGS

A. ČERNÝ, P. HORÁK, A. ROSA AND Š. ZNÁM

Abstract

For $n \geq 5$, a pentagonal packing of size t is a set of t edge-disjoint pentagons (cycles of length five) in the complete graph K_{n}. A pentagonal packing \mathcal{P} is maximal, denoted as $M P P(n)$, if the complement of the union of all pentagons from \mathcal{P} is pentagon-free. The spectrum $S^{(5)}(n)$ for maximal pentagonal packings is the set of all possible sizes of $\operatorname{MPP}(n)$. We formulate a conjecture on the structure of the spectrum $S^{(5)}(n)$, and prove the conjecture for all $n=40 k+3, k \geq 2$.

1. Introduction

Let K_{n} be a complete graph on n vertices. By a pentagonal packing \mathcal{P}, shortly $P P$ or $P P(n)$ we understand a set of edge-disjoint pentagons (cycles of length five) in K_{n}. The size of \mathcal{P} is the number of pentagons in \mathcal{P}. The leave $L(\mathcal{P})$ of \mathcal{P} is the graph which is the complement of the union of pentagons of \mathcal{P}. A $P P$ is maximal, shortly $M P P$, if its leave is pentagon-free. The spectrum for $M P P$ is defined to be the set

$$
S^{(5)}(n)=\left\{t: \text { there exists an } M P P \text { of } K_{n} \text { of size } t\right\}
$$

The extremes of $S^{(5)}(n)$ are denoted by $m^{(5)}(n)$ and $M^{(5)}(n)$, respectively:

$$
m^{(5)}(n)=\min S^{(5)}(n), M^{(5)}(n)=\max S^{(5)}(n)
$$

The values of $m^{(5)}(n)$ and $M^{(5)}(n)$ have been determined in [3]. In this paper we concentrate on studying the structure of $S^{5}(n)$. Clearly, $S^{(5)}(n)$ is a subset of the interval $\left[m^{(5)}(n), M^{(5)}(n)\right]$. We believe that the following conjecture is true:

Conjecture 1. For any $n \geq 6$, there is a number z_{n} (for $n \geq 45, z_{n}-m^{(5)}(n) \geq$ $n / 5-5)$, so that
i) if $t \in\left[m^{(5)}(n), z_{n}\right]$, then $t \in S^{(5)}(n)$ iff t has the same parity as $m^{(5)}(n)$.
ii) all integers from the interval $\left[z_{n}, M^{(5)}(n)\right]$ belong to $S^{(5)}(n)$.

To support our conjecture we first show that i) is true for all $n \geq 45$. In order to obtain this result we will need to determine the maximum number of edges in

[^0]a pentagon-free, non-bipartite graph whose all vertices are of even (odd) degree. Since we believe this result is of some interest on its own we also determine all extremal graphs. For $n=40 k+3, k \geq 2$, we prove the conjecture in full, i.e. for these values of n we prove also the part ii). It seems to us that a complete proof of the conjecture (if true) for all $n \in N$ would require an excessive number of ad hoc constructions.

2. Pentagon-Free Non-Bipartite Graphs

The maximum possible size of a pentagon-free graph has been determined in [3]. The graphs where this maximum size is achieved are bipartite. We determine here the maximum possible size of non-bipartite pentagon-free eulerian (the degrees of all vertices are even) and antieulerian (the degrees of all vertices are odd) graphs and describe all maximal graphs of these types. We make use of the following bounds from [2] and [3].

Theorem 1 ([2]). For $n \geq 7$ the maximum size of a graph without pentagons is $\left\lfloor n^{2} / 4\right\rfloor$.

Theorem 2 ([3]). For $n \geq 11$ the maximum size of a non-bipartite graph without pentagons is $\left\lfloor n^{2} / 4\right\rfloor-n+4$.

Let G be a graph. We denote by $V(G), E(G)$ the set of all vertices and the set of all edges of G, respectively, by $e(G)$ the number of edges in G, and, for $V^{\prime} \subset V(G)$, by $\left\langle V^{\prime}\right\rangle$ the subgraph of G induced by V^{\prime}.

Let the function $g^{\mathcal{E}}$ be defined for positive integers and the function $g^{\mathcal{A}}$ for positive even integers as follows.

$$
\begin{aligned}
g^{\mathcal{E}}(n) & =\left(n^{2}-4 n+12\right) / 4 \text { if } n \equiv 0(\bmod 4) \\
& =\left(n^{2}-6 n+17\right) / 4 \text { if } n \equiv 1(\bmod 4) \\
& =\left(n^{2}-4 n+16\right) / 4 \text { if } n \equiv 2(\bmod 4) \\
& =\left(n^{2}-6 n+21\right) / 4 \text { if } n \equiv 3(\bmod 4) \\
g^{\mathcal{A}}(n) & =\left(n^{2}-8 n+40\right) / 4 \text { if } n \equiv 0(\bmod 4) \\
& =\left(n^{2}-8 n+44\right) / 4 \text { if } n \equiv 2(\bmod 4)
\end{aligned}
$$

We define, for $n \geq 22$, two classes $\mathcal{G}_{n}^{\mathcal{E}}$ and $\mathcal{G}_{n}^{\mathcal{A}}$ of C_{5}-free non-bipartite graphs on n vertices. All graphs in $\mathcal{G}_{n}^{\mathcal{E}}$ are eulerian, all graphs in $\mathcal{G}_{n}^{\mathcal{A}}$ are antieulerian (and therefore defined just for even n).

Assume first that n is odd. Set $n_{1}=n_{2}=3$ for $n \equiv 3(\bmod 4)$, and $n_{1}=1$, $n_{2}=5$ for $n \equiv 1(\bmod 4)$. The class $\mathcal{G}_{n}^{\mathcal{E}}$ contains two different types of graphs. A graph of type \mathbf{A} consists of $n-7$ vertices inducing a complete bipartite subgraph
$K_{\left(n-n_{1}-4\right) / 2,\left(n-n_{2}-4\right) / 2}$ and 7 vertices $v_{1}, v_{2}, \ldots, v_{7}$. There are two subtypes of this type. In a graph of subtype $\mathbf{A 1}$ the subgraph induced by the 7 vertices is C_{7}. All vertices from one part of the bipartite subgraph are adjacent to v_{2} and v_{4}, and some even number of vertices from the other part to v_{1} and v_{3} and the remaining ones from the same part to v_{3} and v_{5}. In a graph of subtype $\mathbf{A 2}$ vertices v_{1}, v_{2}, v_{3} induce a triangle, v_{4} and v_{5} are adjacent to v_{2} and to all vertices of one part of the bipartite subgraph, v_{6} and v_{7} are adjacent to v_{3} and to all vertices of the other part. A graph of type \mathbf{B} consists of a bipartite graph of size $n-2$ and two vertices of degree 2 inducing a triangle with one vertex of the bipartite graph. The parts are of size $\left(n-n_{1}+2\right) / 2$ and $\left(n-n_{2}\right) / 2$, or $\left(n-n_{1}\right) / 2$ and $\left(n-n_{2}+2\right) / 2$, the degree of each vertex is even, and each vertex from the part being of even size is adjacent to all vertices but one from the other part. (A graph of type \mathbf{B} may contain in the bipartite subgraph one isolated vertex x, while the remaining vertices in that subgraph form a complete bipartite graph - in a particular case the graph consists of an isolated triangle and a complete bipartite graph. From a graph of this shape other graphs in $\mathcal{G}_{n}^{\mathcal{E}}$ can be obtained by repeatedly replacing a pair of edges $v w^{\prime}, v w^{\prime \prime}$, with v always taken from the part of the bipartite graph containing x, by $x w^{\prime}, x w^{\prime \prime}$.)

Let now n be even; set $n_{1}=n_{2}=2$ for $n \equiv 2(\bmod 4)$, and $n_{1}=0, n_{2}=4$ for $n \equiv 0(\bmod 4)$. A graph belongs to $\mathcal{G}_{n}^{\mathcal{E}}$ if it consists of $n-2$ vertices inducing a complete bipartite subgraph $K_{\left(n-n_{1}\right) / 2,\left(n-n_{2}\right) / 2}$ and two vertices of degree 2 inducing, with one vertex of the bipartite graph, a triangle. All graphs in $\mathcal{G}_{n}^{\mathcal{A}}$ contain 4 vertices inducing a subgraph H isomorphic to K_{4}, while the subgraph induced by the remaining vertices is bipartite with the partition $(A, B),|A| \geq|B|$. One vertex of H is adjacent to all vertices of A, no other vertex in H has a neighbour off H. Each vertex of B is adjacent to $|A|-1$ vertices of A. Each vertex in A is adjacent to an even number of vertices of B. For $n \equiv 0(\bmod 4)$, there are two types of graphs in $\mathcal{G}_{n}^{\mathcal{A}}$, one with $|A|=|B|=n / 2-2$, the other with $|A|=n / 2$, $|B|=n / 2-4$. For $n \equiv 2(\bmod 4)$ there is just one type with $|A|=n / 2-1$, $|B|=n / 2-3$. (A graph in $\mathcal{G}_{n}^{\mathcal{A}}$ may contain one fixed vertex x in A not adjacent to any vertex in B, while $\langle A \cup(B-\{x\})\rangle$ is a complete bipartite graph. From a graph of this shape, other graphs in $\mathcal{G}_{n}^{\mathcal{A}}$ can be obtained by repeatedly replacing a pair of edges $v w^{\prime}, v w^{\prime \prime}$, with $v \in B-\{x\}$, by $x w^{\prime}, x w^{\prime \prime}$.)

Theorem 3. The maximum number of edges in a C_{5}-free non-bipartite graph on $n \geq 22$ vertices is $g^{\mathcal{E}}(n)$, if G is eulerian, and is $g^{\mathcal{A}}(n)$, if G is antieulerian. The extremal graphs are exactly the graphs from the classes $G_{n}^{\mathcal{E}}, G_{n}^{\mathcal{A}}$, respectively.

Proof. Let $G=(V, E)$ be a non-bipartite C_{5}-free graph on n vertices, $n \geq 22$, either eulerian or antieulerian. Clearly, if G is antieulerian then n is even. We will deal with eulerian graphs on even number of vertices separately in the very last part of the proof. For the time being we assume that if G is eulerian then n is odd. Let $g, f^{\mathcal{E}}, f^{\mathcal{A}}$ be defined by $g(n)=g^{\mathcal{E}}(n)$ if n is odd, $g(n)=g^{\mathcal{A}}(n)$ if n is
even, $f^{\mathcal{E}}=\left(n^{2}-6 n+17\right) / 4$, and $f^{\mathcal{A}}(n)=\left(n^{2}-8 n+40\right) / 4 ;$ hence $g(n) \geq f^{\mathcal{A}}(n)$, $g^{\mathcal{E}}(n) \geq f^{\mathcal{E}}(n)$.

Throughout the proof, we will frequently specify a subset K of the vertex set $V,|K|=v_{K}$, and a subset E_{K} of $E,\left|E_{K}\right|=e_{K}$, such that (i) $\langle K\rangle$ is an empty graph in $G-E_{K}$, and (ii) each vertex from $V-K$ is adjacent to at most m_{K} vertices in K, m_{K} being an absolute constant. For $n \geq v_{K}+7$, the total number of edges in G can be then estimated by

$$
\begin{equation*}
e(G) \leq e_{K}+m_{K}\left(n-v_{K}\right)+\left(n-v_{K}\right)^{2} / 4 \tag{1}
\end{equation*}
$$

The first term on the right hand side of (1) is the number of edges in E_{K}, the second term provides an upper bound on the number of edges having one endvertex in $V-K$ and the other in K, and the third term gives, according to Theorem 1, the maximum number of edges of the C_{5}-free subgraph $\langle V-K\rangle$. Hence

$$
\begin{align*}
g(n)-e(G) & >\left(f^{\mathcal{A}}(n)-1 / 4\right)-\left(e_{K}+m_{K}\left(n-v_{K}\right)+\left(n-v_{K}\right)^{2} / 4\right) \tag{2}\\
& =\left(v_{K} / 2-m_{K}-2\right) n-\left(\left(v_{K}^{2}-39\right) / 4-m_{K} v_{K}+e_{K}\right)
\end{align*}
$$

In the case the graph $\langle V-K\rangle$ is non-bipartite, we can apply Theorem 2 in the same way as Theorem 1 in (1), getting for $n \geq v_{K}+11$

$$
\begin{align*}
g(n)-e(G)> & \left(f^{\mathcal{A}}(n)-1 / 4\right) \\
& -\left(e_{K}+m_{K}\left(n-v_{K}\right)+\left(n-v_{K}\right)^{2} / 4-\left(n-v_{K}\right)+4\right) \tag{3}\\
= & \left(v_{K} / 2-m_{K}-1\right) n-\left(\left(v_{K}^{2}-23\right) / 4-\left(m_{K}-1\right) v_{K}+e_{K}\right) .
\end{align*}
$$

For eulerian graphs, since $g^{\mathcal{E}}(n)>g(n)$, we can get the following finer estimates:

$$
\begin{align*}
g^{\mathcal{E}}(n)-e(G) & >\left(f^{\mathcal{E}}(n)-1 / 4\right)-\left(e_{K}+m_{K}\left(n-v_{K}\right)+\left(n-v_{K}\right)^{2} / 4\right) \tag{4}\\
& =\left(\left(v_{K}-3\right) / 2-m_{K}\right) n-\left(v_{K}^{2} / 4-m_{K} v_{K}+e_{K}-4\right)
\end{align*}
$$

and, if $\langle V-K\rangle$ is not bipartite,

$$
\begin{align*}
g^{\mathcal{E}}(n)-e(G)> & \left(f^{\mathcal{E}}(n)-1 / 4\right) \\
& -\left(e_{K}+m_{K}\left(n-v_{K}\right)+\left(n-v_{K}\right)^{2} / 4-\left(n-v_{K}\right)+4\right) \tag{5}\\
= & \left(\left(v_{K}-1\right) / 2-m_{K}\right) n-\left(v_{K}^{2} / 4-\left(m_{K}-1\right) v_{K}+e_{K}\right)
\end{align*}
$$

It is easy to observe that if $G \in\left(G_{n}^{\mathcal{E}} \cup G_{n}^{\mathcal{A}}\right)$ then $e(G)=g(n)$. We will prove now that if $G \notin\left(G_{n}^{\mathcal{E}} \cup G_{n}^{\mathcal{A}}\right)$ then $e(G)<g(n)$.

Being non-bipartite, G contains an odd cycle. Denote the length of the shortest odd cycle in G by l. Because of minimality of l, any vertex off such a cycle can be adjacent to at most 2 vertices on the cycle. If $l \geq 9$, for K consisting of any 9 vertices of the cycle, $v_{K}=9, e_{K} \leq 9, m_{K}=2$ we get from (2) $g(n)-e(G)>$
$(2 n-3) / 2>0$ (since $n \geq 22)$. Let $l=7$ and C be a cycle of length 7 in G. If $\langle V-V(C)\rangle$ is non-bipartite, from (3) for $K=V(C), v_{K}=7, e_{K}=7, m_{K}=2$ we get $g(n)-e(G)>(n-13) / 2>0$. Let $\langle V-V(C)\rangle$ be bipartite with the bipartition (A, B), where $|A|=a=(n-7) / 2+c,|B|=b=(n-7) / 2-c$. Let a be odd. If G is antieulerian, then b is even and the degree of each vertex of A is odd, i.e. less than $b+2$. If G is eulerian, then b is odd and the degree of each vertex of A is even, i.e. again less than $b+2$. We get $e(G) \leq 7+2 b+a(b+1)$. A routine calculation shows $g(n)-e(G)=g(n)-((7+a+b)+a b+b)=g(n)-(n+((n-$ $\left.\left.7)^{2} / 4-c^{2}\right)+((n-7) / 2-c)\right)>(c+1 / 2)^{2} \geq 0$. Let a be even. We may assume that G is eulerian, otherwise we interchange A and B obtaining the previous case. Hence b is even; we get $e(G) \leq 7+2(n-7)+a b=\left(n^{2}-6 n+17\right) / 4+1-c^{2}$. Since c is odd for $n \equiv 1(\bmod 4)$ and is even otherwise, we get $e(G) \leq g^{\mathcal{E}}(n)$. The equality takes place iff $c=0$ or $c=1,\langle V-V(C)\rangle$ is a complete bipartite graph, and each its vertex is adjacent to exactly 2 vertices of C, i.e. iff G is a graph of type $\mathbf{A 1}$ from $G_{n}^{\mathcal{E}}$. In the rest of the proof we therefore assume $l=3$, i.e. G contains a triangle.

Let x, y be two adjacent vertices of G such that the set $V_{x, y}$ of all vertices of G adjacent to both x and y, is of a maximum possible size $t \geq 1$. Let $M=$ $V_{x, y} \cup\{x, y\}$. Since M is C_{5}-free, no vertex of $V-M$ is adjacent to more than one vertex in M, and for $t \geq 3$ no two vertices of $V_{x, y}$ can be adjacent. If $n-8 \leq t$ $(\leq n-2)$, then $\langle V-M\rangle$ contains at most 6 vertices and 15 edges, hence $e(G) \leq$ $(2 t+1)+6+15 \leq 2 n+18<g(n)$ (for $n \geq 22$). If $5 \leq t \leq n-9$, then (2) can be applied for $K=M, v_{K}=t+2, e_{K}=2 t+1, m_{K}=1$; we get (since $n \geq t+9$) $g(n)-e(G)>(t / 2-2)(t+9)-\left(t^{2}+8 t-39\right) / 4=\left((t+1)^{2}-34\right) / 4>0$. If $t=4$, let z be one vertex from $V_{x, y}$ if G is antieulerian, otherwise let z be the vertex x. Then, because of degree parity, there is a vertex $n_{z} \in V-M$ adjacent to z. Let $K=M \cup\left\{n_{z}\right\}$. Any vertex from $V-K$ adjacent to two vertices in K must be adjacent to z and n_{z}; there are at most $t=4$ such vertices. For $v_{K}=7$, $e_{K} \leq 9+4, m_{K}=1,(2)$ implies $g(n)-e(G)>(n-17) / 2>0$.

For $t \leq 3$ we will prove the assertion of the theorem separately for antieulerian and eulerian graphs.

Let G be antieulerian. If $t=3$, then, because of degree parity, there are two distinct vertices n_{x}, n_{y} in $V-M$ adjacent to x, y, respectively. Let $K=$ $M \cup\left\{n_{x}, n_{y}\right\}$. If a vertex from $V-K$ is adjacent to two vertices of K, then these are either x and n_{x} or y and n_{y}. There are at most $t=3$ vertices of each kind, therefore, after removing 6 edges not in $\langle K\rangle$, we have $m_{K}=1$. For $v_{K}=7$, $e_{K} \leq 9+6,(2)$ implies $g(n)-e(G)>(n-21) / 2 \geq 0$. Postponing the case $t=2$, let us assume $t=1$. Let $V_{x, y}=\{z\}$. As G is antieulerian, each of x, y, z has at least one neighbour in $V-M$; let these distinct neighbours be n_{x}, n_{y}, n_{z}, respectively, and let $V_{6}=\left\{x, y, z, n_{x}, n_{y}, n_{z}\right\}$. There are at most three vertices in $V-V_{6}$ adjacent to two vertices of V_{6} (at most one to each of the pairs x, n_{x};
$y, n_{y} ; z, n_{z}$). If there is such a vertex u, choose $K=V_{6} \cup\{u\}$. After removing at most 2 edges not in $\langle K\rangle$ we have $m_{K}=1$. For $v_{K}=7$, $e_{K} \leq 8+2$, (2) implies $g(n)-e(G)>(n-11) / 2>0$. If there is no such vertex u, choose $K=V_{6}$. For $v_{K}=6, e_{K}=6, m_{K}=1$, (2) implies $g(n)-e(G)>3 / 4$. As the last possibility, assume $t=2$, i.e. $V_{x, y}=\{u, z\}$, where u, z are two distinct, possibly adjacent, vertices.

Assume first that a vertex $v \in M$ forms a triangle with two vertices $v_{1}, v_{2} \in$ $V-M$. Let w be the vertex v_{1} if v is adjacent to all the remaining three vertices of M, otherwise let w be the vertex v. Then, because of degree parity, there is one additional vertex $w^{\prime} \in V-M$ adjacent to w. Denote $K=M \cup\left\{v_{1}, v_{2}, w^{\prime}\right\}$. Either w^{\prime} is adjacent to two or three of the vertices v, v_{1}, v_{2}, or there may be at most $t=2$ vertices in $V-M$ adjacent to both w and w^{\prime}, and at most one adjacent to two or three of the vertices v, v_{1}, v_{2}. Every other vertex in $V-K$ is adjacent to at most one vertex in K. For $v_{K}=7, e_{K} \leq(6+3)+4, m_{K}=1$, (2) implies $g(n)-e(G)>(n-7) / 2>0$. Let there now be no triangle of G having just one vertex in M.

If $\langle V-M\rangle$ is non-bipartite, then it contains a shortest odd cycle C. If the length of C is at least 7 , take for K the set M together with any 7 vertices of C. Each of the 7 vertices is a neighbour of at most one vertex in M. Each vertex in $V-K$ is a neighbour of at most one vertex in M and, because of minimality of C, of at most two vertices in C. For $v_{K}=11, e_{K} \leq 6+7+7, m_{K}=3,(2)$ implies $g(n)-e(G)>(n-15) / 2>0$. If C is a triangle, then, since G is C_{5}-free and no triangle has just one vertex in M, there is at most one edge incident with both M and C. Since G is antieulerian, either there are at least two edges incident with both M and $V-M$, or no such edge exists. In the former case there is a vertex $v \in V-(M \cup V(C))$ adjacent to M. Choose $K=M \cup\{v\} .\langle V-K\rangle$ is non-bipartite since it contains C. (3) can be applied for $v_{K}=5, e_{K} \leq 7, m_{K}=1$ yielding $g(n)-e(G)>(n-15) / 2>0$. In the latter case $\langle M\rangle$ is K_{4}. Choose $K=M \cup V(C)$. At most one vertex of $V-K$ can be adjacent to two vertices of C (in that case it may be adjacent to all three of them). For $v_{K}=7, e_{K} \leq 6+3+2$, $m_{K}=1,(2)$ implies $g(n)-e(G)>(n-13) / 2>0$.

If $\langle V-M\rangle$ is bipartite, let the bipartition be $(A, B),|A|=a=(n-4) / 2+c$, $|B|=b=(n-4) / 2-c$, hence $a b=f(n)-6-c^{2}$. Let $d=e(\langle M\rangle)$ (i.e. $d=6$ if $\langle M\rangle$ is K_{4}, otherwise $d=5$) and denote by A_{1} (by B_{1}) the set of vertices in A (in B) adjacent to M. Let $a_{1}=\left|A_{1}\right|, b_{1}=\left|B_{1}\right|$, and assume $a_{1} \geq b_{1}$. No vertex of $A_{1} \cup B_{1}$ can be adjacent to two vertices of M. No two vertices of $A_{1} \cup B_{1}$ are adjacent, otherwise G contains either C_{5} or a triangle with just one vertex in M. We obtain

$$
\begin{align*}
e(G) & \leq d+\left(a_{1}+b_{1}\right)+\left(a b-a_{1} b_{1}\right)=(d+1)+a b-\left(a_{1}-1\right)\left(b_{1}-1\right) \tag{6}\\
& =f(n)+(d-5)-c^{2}-\left(a_{1}-1\right)\left(b_{1}-1\right)
\end{align*}
$$

For $a_{1} \geq b_{1} \geq 3$, (6) implies $e(G)<g(n)$. Suppose $2 \geq b_{1}$.

Let us first assume that a and b are odd. We will show that $e(G) \leq f(n)-c^{2}$. Since c is odd for $n \equiv 0(\bmod 4)$ and is even otherwise, the assertion implies $e(G)<g(n)$. If b_{1} is even then no vertex in A_{1} can be adjacent to all vertices of $B-B_{1}$; we get (since $\left.a_{1} \geq b_{1}\right) e(G) \leq d+\left(a_{1}+b_{1}\right)+\left(a b-a_{1} b_{1}\right)-a_{1}=$ $d+a b+b_{1}\left(1-a_{1}\right) \leq d+a b \leq f(n)-c^{2}$. If b_{1} is odd, i.e. $a \geq b_{1} \geq 1$, let $v_{b} \in B_{1}$. If $d=5$ or $c \geq 1$, then the assertion follows from (6). If $c=0$ and $d=6$ (i.e. $\langle M\rangle=K_{4}$), then, because of degree parity in M, there is a vertex $v_{a} \in A_{1}$ adjacent to the same vertex of M as v_{b}. Since $c=0$, there exist vertices $v_{a}^{\prime} \in A-A_{1}, v_{b}^{\prime} \in B-B_{1}$. One of the edges $v_{a} v_{b}^{\prime}, v_{b}^{\prime} v_{a}^{\prime}, v_{a}^{\prime} v_{b}$ cannot be present in G, otherwise there is a C_{5} in G. Therefore there is one less edge in G than given by (6) and $e(G) \leq f(n)-c^{2}$.

Let now a, b be even. Let $2 \geq b_{1} \geq 1$. For degree-parity reason, no vertex of $B-B_{1}$ can be adjacent to all vertices of A, i.e. G contains by at least $b-b_{1}$ less edges than given by (6). Then $e(G) \leq f(n)+\left(d-5+b_{1}\right)-c^{2}-b \leq(d-3)+f(n)-(c-$ $1 / 2)^{2}-(2 n-9) / 2<g(n)$. Let $b_{1}=0$. No vertex of B can be adjacent to all vertices of A. In this case $e(G) \leq d+a_{1}+(a-1) b \leq 6+a b+a-b=(d-5)+f(n)-(c-1)^{2}$. If $n \equiv 0(\bmod 4)$, then c is even. For $c \neq 0,2$ we get $e(G)<g(n)$. If $c=0$, then $a=b=n / 2-2$. If $c=2$, then $a=n / 2, b=n / 2-4$. In both cases the equality $e(G)=g(n)$ implies $d=6$ (i.e. $\langle H\rangle=K_{4}$), $A_{1}=A$ and all vertices of A are connected to the same vertex of H (otherwise C_{5} would be present). If $n \equiv 2$ $(\bmod 4)$, then c is odd. For $c \neq 1$ we get $e(G)<g(n)$. If $c=1$, then $a=n / 2-1$, $b=n / 2-3$. The equality $e(G)=g(n)$ implies $d=6, A_{1}=A$ and all vertices of A are connected to the same vertex of H. Therefore the equality takes place exactly for the graphs from $\mathcal{G}_{n}^{\mathcal{A}}$. The assertion of the theorem on antieulerian graphs is proved.

Assume that G is eulerian. If $t=3$, let $V_{x, y}=\{u, v, z\}$. If $\langle M\rangle$ is isolated, then for $K=M, v_{K}=5, e_{K}=7, m_{K}=0$ from (2) we get $g(n)-e(G)>(n-7) / 2>0$. If there is a vertex $w^{\prime} \in V-M$ adjacent to some vertex $w \in M$ (w^{\prime} cannot be adjacent to more vertices of M), let $K=M \cup\left\{w^{\prime}\right\}$. A vertex of $V-K$ adjacent to two vertices of K must be adjacent to w and w^{\prime}. There are at most $t=3$ such vertices. For $v_{K}=6, e_{K}=8+2, m_{K}=1$ from (4) we get $g^{\mathcal{E}}(n)-e(G)>$ $(n-18) / 2>0$.

If $t=2$, let $V_{x, y}=\{u, z\}$ where u, z are two distinct, possibly adjacent, vertices. Then, because of the degree parity, there are two distinct vertices n_{x}, n_{y} of $V-M$ adjacent to x, y, respectively. Let $K=M \cup\left\{n_{x}, n_{y}\right\}$. If a vertex of $V-K$ is adjacent to two vertices of K, then these are either x and n_{x} or y and n_{y}. There are at most $t=2$ vertices of each kind. For $v_{K}=6, e_{K}=8+4, m_{K}=1$ from (4) we get $g^{\mathcal{E}}(n)-e(G)>(n-22) / 2>0$. Finally, let $t=1$, i.e. $V_{x, y}=\{z\}$. If there are two vertices in M, say x and y, not adjacent to any vertex in $V-M$, choose $K=\{x, y\}$, . If $\langle V-K\rangle$ is nonbipartite, then, for $v_{K}=2, e_{K}=3, m_{K}=0$, (5) gives $g^{\prime}(n)-e(G)>(n-12) / 2>0$. If $\langle V-K\rangle$ is bipartite, with bipartition
$(A, B),|A|=a=(n-1) / 2+c,|B|=(n-3) / 2-c$, then $a+b=n-2$ is odd. Assume a is odd. Then no vertex of B can be adjacent to all vertices of A. Therefore $e(G) \leq 3+(a-1) b=\left(n^{2}+6 n+21\right) / 4-c^{2}$. If $n \equiv 1(\bmod 4)$, then c is odd, otherwise c is even. We have $e(G) \leq g^{\mathcal{E}}(n)$, and the equality takes place for $c \in\{-1,1\}$ in the former case, and for $c=0$ in th latter case, if the bipartite graph is complete. This is exactly for graphs of type \mathbf{B} from $\mathcal{G}_{n}^{\mathcal{E}}$. Suppose now that two vertices in M, say again x and y, are adjacent to $V-M$, i.e. there are two distinct (since $t=1$) vertices $n_{x}, n_{y} \in V-M$ adjacent to x, y, respectively. Let $V_{5}=M \cup\left\{n_{x}, n_{y}\right\}$. A vertex of $V-V_{5}$ adjacent to two vertices of V_{5} is adjacent either to x and n_{x}, or to y and n_{y}. Let there be such a vertex v, adjacent, say to x and n_{x}. Let $K=V_{5} \cup\{v\}$. There is at most one vertex of $V-K$ adjacent to two vertices of K (to y and n_{y}). For $v_{K}=6, e_{K} \leq 7+1, m_{K}=1$ from (4) we get $g^{\mathcal{E}}(n)-e(G)>(n-22) / 2 \geq 0$. Let there be no such vertex v. Then there are two more vertices $m_{x}, m_{y} \in V-M$, adjacent to x, y, respectively, such that no two vertices from $\left\{m_{x}, n_{x}, m_{y}, n_{y}\right\}$ are adjacent. Let $K=M \cup\left\{m_{x}, n_{x}, m_{y}, n_{y}\right\}$. No vertex of $V-K$ can be adjacent to more than two vertices of K. If $\langle V-K\rangle$ is nonbipartite, for $v_{K}=7, e_{K}=7$, $m_{K}=2,(5)$ gives $g^{\mathcal{E}}(n)-e(G)>(4 n-49) / 4>0$. Let $\langle V-K\rangle$ be bipartite with the bipartition (A, B) with $|A|=a=(n-7) / 2+c,|B|=(n-7) / 2-c, c \geq 0$. If a, b are odd, then no vertex of A can be adjacent to all vertices of B and we get $e(G) \leq 7+2(n-7)+a(b-1)=\left(n^{2}-6 n+16\right) / 4-(c+1 / 2)^{2}-(n-10) / 2<g^{\mathcal{E}}(n)$. If a, b are even, we get $e(G) \leq 7+2(n-7)+a b=\left(n^{2}-6 n+21\right) / 4-c^{2}$.

If $n \equiv 1(\bmod 4)$ then c is odd, otherwise c is even. In both cases $e(G) \leq g^{\mathcal{E}}(n)$. The equality takes place for $c=1$ in the former case, and for $c=0$ in the latter case, if the bipartite subgraph is complete, and each its vertex is adjacent to 2 vertices of K, i.e. either to m_{x} and n_{x}, or to m_{y} and n_{y}. This is true exactly for graphs of type A2 from $\mathcal{G}_{n}^{\mathcal{E}}$.

Now let us return to the possibility that G is eulerian and n is even. Then by adding one isolated vertex we get a C_{5}-free non-bipartite eulerian graph G^{\prime} with an odd number of vertices. Therefore $e(G)=e\left(G^{\prime}\right) \leq g^{\mathcal{E}}(n+1)=g^{\mathcal{E}}(n)$. The equality takes place iff G^{\prime} is extremal. The only extremal graphs in $\mathcal{G}_{n+1}^{\mathcal{E}}$ having one isolated vertex are of type \mathbf{B}. By removing the vertex we get a graph from $\mathcal{G}_{n}^{\mathcal{E}}$. The theorem is proved.

3. Main Results

First we show that the part i) of the conjecture is satisfied by all $n \geq 45$.
Theorem 4. For all $n \geq 45$ there is a number $z_{n}, z_{n}-m^{(5)}(n) \geq n / 5-5$, so that if $t \in\left[m^{(5)}(n), z_{n}\right]$, then $t \in S^{(5)}(n)$ iff t has the same parity as $m^{(5)}(n)$.

Proof. Consider a $P P(n) \mathcal{P}$. Then the degrees of all vertices of $L(\mathcal{P})$ have the same parity as $n-1$. As the number of edges in a bipartite graph equals the sum
of degrees in either of its two parts we get:

> If the leaves of some two $P P(n) \mathcal{P}^{\prime}$ and $\mathcal{P}^{\prime \prime}$ are bipartite then their sizes have the same parity.

Suppose now that a $M P P(n) \mathcal{P}$ has a nonbipartite leave. From Theorem 4 the size of \mathcal{P} is at least $z_{n}=\left\lceil\left(n(n-1) / 2-g^{\mathcal{E}}(n)\right) / 5\right\rceil$. Thus, there is no $\operatorname{MPP}(n)$ of size strictly less than z_{n} having the same parity as $m^{(5)}(n)$. A routine calculation shows that $z_{n}-m^{(5)}(n) \geq n / 5-5$. To finish the proof we provide a construction of $M P P(n)$ of size $m^{(5)}(n)+2 i, i=1, \ldots,\lfloor n / 10\rfloor$.

From [3] follows that for arbitrary $n \geq 11$ there exists an $M P P(n)$ such that $L(M P P(n))$ is a bipartite graph $G(X, Y)$, where $|X \cap Y| \leq 1,|X| \geq|Y|,|X|-$ $|Y| \leq 6$ and we can get $G(X, Y)$ from the complete bipartite graph $K_{|X|,|Y|}$ by removing edges which are incident with at most 4 vertices in Y.

Take a set P of $\lfloor n / 10\rfloor$ pentagons of $M P P$ with all vertices in X, a set V of $3\lfloor n / 10\rfloor$ distinct vertices of Y other than the 4 vertices mentioned above. Suppose $C=x_{1} x_{2} x_{3} x_{4} x_{5} x_{1}$ is a pentagon from P and a, b, c are three distinct vertices of V. Then it is possible to replace C by three new pentagons $x_{1} x_{2} x_{3} x_{4} a x_{1}, x_{4} b x_{2} c x_{5} x_{4}$, $x_{5} b x_{3} c x_{5}$. After such a replacement the $P P$ remains maximal. As we can carry out the above construction for arbitrary number of pentagons in P, it is possible to increase the initial total number of pentagons in the $M P P$, initially equal to $m^{(5)}(n)$, by any number $2 i, i=1, \ldots,\lfloor n / 10\rfloor$.

Finally, we prove that the conjecture is valid for all $n=40 k+3, k \geq 2$.
Theorem 5. For any $n=40 k+3, k \geq 2$, the structure of $S^{(5)}(n)$ is as in the conjecture with $z_{n}=\left\lceil\left(n(n-1) / 2-g^{\mathcal{E}}(n)\right) / 5\right\rceil=m^{(5)}(n)+8 k-1<m^{(5)}(n)+n / 5$.

Proof. One can easily observe that the assertion of the Theorem can be obtained by combining the assertions of the following Lemmas $1-5$.

Throughout the paragraph we consider $n=40 k+3, k \geq 1$, and employ the following notation. $T=\left\{t_{1}, t_{2}, t_{3}\right\}, X^{\prime}=\left\{x_{1}, \ldots, x_{10 k}\right\}, X^{\prime \prime}=\left\{x_{10 k+1}, \ldots, x_{20 k}\right\}$, $X=X^{\prime} \cup X^{\prime \prime}, Y=\left\{y_{1}, \ldots, y_{20 k}\right\}$ will be sets of vertices. If we consider, for an even $t, K_{t}^{*}=K_{t}-F$ on a set of vertices with indices $i=1, \ldots, t$ then the 1-factor F comprises edges with endvertices of indices $2 j-1$ and $2 j, j=1, \ldots, t / 2$.

Lemma 1. There is a resolvable decomposition \mathcal{F}_{V} of $K_{10 m}^{*}$ on $V=\left\{v_{1}, \ldots\right.$, $\left.v_{10 m}\right\}$ into $10 m^{2}-2 m$ pentagons which contains a 2 -factor \mathcal{Z}_{V} made up of cycles

$$
v_{10 i+1} v_{10 i+3} v_{10 i+5} v_{10 i+7} v_{10 i+9} v_{10 i+1} \text { and } v_{10 i+2} v_{10 i+4} v_{10 i+6} v_{10 i+8} v_{10 i+10} v_{10 i+2}
$$

$i=0, \ldots, m-1$.
In addition, the pentagon $v_{1} v_{8} v_{9} v_{3} v_{7}$ belongs to \mathcal{F}_{V}.
Proof. In view of [1] there exists a resolvable decomposition of $K_{10 m}^{*}, m \neq 2$, into pentagons such that four 2-factors comprise a resolvable decomposition of
$m \cdot K_{10}^{*}$, the other 2-factors comprise a resolvable decomposition of the m-partite graph $K_{10,10, \ldots, 10}$. So to prove our lemma it suffices to find a resolvable decomposition of K_{10}^{*} with the given properties. One such a decomposition (described for the vertex set $\{1, \ldots, 10\})$ consists of $\mathcal{Z}_{\{1, \ldots, 10\}}:(13579) \&(246810)$, and of the 2-factors (18937)\&(271048), (16745)\&(25836), (149510)\&(231069),

Now we introduce two $P P(20 k+3), P_{S}$ and P_{S}^{*}. Let $V=\left\{v_{1}, \ldots, v_{20 k}\right\}$, $k>1, S=V \cup T$. Let \mathcal{F}_{V} and \mathcal{Z}_{V} be as in Lemma 1. Then $P_{V}^{*}=\mathcal{F}_{V} \cup$ $\left\{v_{2 i-1} v_{2 i} t_{2} v_{2 i+10 k} t_{1} v_{2 i-1} ; i=1, \ldots, 5 k\right\} \cup\left\{v_{2 i-1} v_{2 i} t_{3} v_{2 i-10 k} t_{1} v_{2 i-1} ; i=5 k+\right.$ $1, \ldots, 10 k\}, P_{V}=\left(P_{V}^{*}-\left\{v_{10 i+1} v_{10 i+3} v_{10 i+5} v_{10 i+7} v_{10 i+9} v_{10 i+1} ; i=0,1, \ldots, k-\right.\right.$ $1\}) \cup\left(\left\{v_{10 i+j} t_{2} v_{10 i+j+10 k} t_{3} v_{10 i+((j+2) \bmod 5)} v_{10 i+j} ; i=0,1, \ldots, k-1 ; j=1,3,5\right.\right.$, $7,9\}$.

Note that $L\left(P_{V}^{*}\right)=\left\{t_{j} v_{2 i-1} ; j=2,3 ; i=1, \ldots 10 k\right\} \cup\left\{t_{1} t_{2}, t_{1} t_{3}, t_{2} t_{3}\right\}$, i.e. $L\left(P_{S}^{*}\right)$ is C_{5}-free, and $\left|P_{V}^{*}\right|=40 k^{2}+6 k$, while $L\left(P_{V}\right)=\left\{t_{1} t_{2}, t_{1} t_{3}, t_{2} t_{3}\right\}$ and $\left|P_{V}\right|=40 k^{2}+10 k$.

Lemma 2. Odd numbers in the interval $\left\langle 80 k^{2}+12 k+1,80 k^{2}+20 k+1\right\rangle$ belong to $S^{(5)}(n), n=40 k+3, k>2$.

Proof. Follows directly from Theorem 4 and the fact (see [3] that $m_{5}(n)=$ $80 k^{2}+12 k+1$ for $n=40 k+3$.

Lemma 3. For any even number b in the interval $\left\langle 52 k^{2}, 100 k^{2}\right\rangle$, there is a pentagonal packing R^{*} of $H_{k}=\left(X^{\prime} \vee X^{\prime \prime}\right) \vee Y$ with b pentagons, such that $L\left(R^{*}\right)$ is a subgraph of $X \vee Y$ (i.e. $L\left(R^{*}\right)$ is C_{5}-free and all edges of $X^{\prime} \vee X^{\prime \prime}$ are covered by pentagons of R^{*}) and
a) for $52 k^{2}+100 k \leq b \leq 100 k^{2}$ the vertices y_{1}, \ldots, y_{20} are isolated vertices in $L\left(R^{*}\right)$
b) for $52 k^{2} \leq b \leq 52 k^{2}+100 k$ there are vertices $x \in X, y^{\prime}, y^{\prime \prime} \in Y$ such that the path $y^{\prime} x y^{\prime \prime} \in L\left(R^{*}\right)$ and $y^{\prime}, y^{\prime \prime}$ have odd indices in Y.

Proof. We prove the statement by induction with respect to k.
Case $k=1$:
For the sake of convenience we use, only in this part of the proof, a different notation for vertices of X and Y. Namely, we partition X, Y into subsets $X_{i}=$ $\left\{x_{j}^{i}, j=0, \ldots, 4\right\}, Y_{i}=\left\{y_{j}^{i}, j=0, \ldots, 4\right\}, i=1,2,3,4$, and $X_{1} \cup X_{2}=X^{\prime}, X_{3} \cup$ $X_{4}=X^{\prime \prime}$. Our graph H_{1} has 500 edges. At the beginning we decompose H_{1} into 100 pentagons. For each of the edges $e=x^{\prime} x^{\prime \prime}$ of $X^{\prime} \vee X^{\prime \prime}$ we form a $x^{\prime}-x^{\prime \prime}$ path in $X \vee Y$ of length four so that all 100 paths will be mutually edge disjoint. For $1 \leq i, j \leq 5$,
to the edge $x_{i}^{1} x_{j}^{3} \quad$ we assign the path $x_{i}^{1} y_{j}^{1} x_{i}^{2} y_{i+j}^{3} x_{j}^{3}$,
to the edge $x_{i}^{2} x_{j}^{3} \quad$ we assign the path $x_{i}^{2} y_{j}^{2} x_{i}^{4} y_{i+j}^{4} x_{j}^{3}$,
to the edge $x_{i}^{1} x_{j}^{4} \quad$ we assign the path $x_{i}^{1} y_{j}^{2} x_{i}^{3} y_{i+j}^{1} x_{j}^{4}$,
to the edge $x_{i}^{2} x_{j}^{4} \quad$ we assign the path $x_{i}^{2} y_{j}^{4} x_{i}^{1} y_{i+j}^{3} x_{j}^{4}$,
the subscripts are taken $(\bmod 5)$. Thus we get a decomposition of H_{1} into pentagons.

Now, starting from the above decomposition R^{*}, we will gradually decrease the number of pentagons in R^{*} by two, by the following process. Take 3 edges of $X^{\prime} \vee$ $X^{\prime \prime}$ which form a path, say $x^{\prime} x^{\prime \prime} \bar{x}^{\prime} \bar{x}^{\prime \prime}$, and omit the pentagons $C_{x^{\prime} x^{\prime \prime}}, C_{x^{\prime \prime} \bar{x}^{\prime}}, C_{\bar{x}^{\prime} \bar{x}^{\prime \prime}}$ of R^{*} covering the edges. The choice of edges is made so that there is $y \in Y$ with edges $x^{\prime} y \in C_{x^{\prime} x^{\prime \prime}}, y \bar{x}^{\prime \prime} \in C_{\bar{x}^{\prime} \bar{x}^{\prime \prime}}$. By adding y to the path, we form the pentagon $x^{\prime} x^{\prime \prime} \bar{x}^{\prime} \bar{x}^{\prime \prime} y x^{\prime}$ and the other edges of $C_{x^{\prime} x^{\prime \prime}} \cup C_{x^{\prime \prime} \bar{x}^{\prime}} \cup C_{\bar{x}^{\prime} \bar{x}^{\prime \prime}}$ will belong to $L\left(R^{*}\right)$.

To the path $x_{i}^{1} x_{i+1}^{3} x_{i+2}^{1} x_{4}^{4} \quad$ we add the vertex y_{i+1}^{1}, to the path $x_{i}^{1} x_{i+2}^{3} x_{i+4}^{1} x_{3}^{4} \quad$ we add the vertex y_{i+2}^{1}, to the path $x_{i}^{2} x_{i+1}^{4} x_{i+2}^{2} x_{4}^{3} \quad$ we add the vertex y_{i+1}^{4}, to the path $x_{i}^{2} x_{i+2}^{4} x_{i+4}^{2} x_{3}^{3} \quad$ we add the vertex y_{i+2}^{4},
where $i=1,2, \ldots, 5$, the subscripts taken $(\bmod 5)$. We construct four more pentagons in a similar way, however, this time the edge $x^{\prime} y$, or $y x^{\prime \prime}$ may originate from some of the 60 previously omitted pentagons, e.g. the edge $y_{0}^{1} x_{1}^{1}$ will be taken from the pentagon originally covering the edge $x_{i+1}^{3} x_{i+2}^{1}, i=5$.

$$
\begin{array}{llll}
\text { To the path } & x_{0}^{4} x_{0}^{1} x_{1}^{4} x_{1}^{1} & \text { we add the vertex } & y_{0}^{1}, \\
\text { to the path } & x_{0}^{4} x_{2}^{1} x_{2}^{4} x_{3}^{1} & \text { we add the vertex } & y_{2}^{1}, \\
\text { to the path } & x_{0}^{3} x_{0}^{2} x_{1}^{3} x_{1}^{2} & \text { we add the vertex } & y_{0}^{4}, \\
\text { to the path } & x_{0}^{3} x_{2}^{2} x_{2}^{3} x_{3}^{2} & \text { we add the vertex } & y_{2}^{4} .
\end{array}
$$

Note that all new 24 pentagons are mutually edge disjoint, so we are able to replace gradually $3 t$ pentagons, $t=1, \ldots, 24$ by t pentagons.

Case $k>1$:
Let $X_{i}=\left\{x_{10 i+j}, j=1, \ldots, 10\right\}, i=0, \ldots, 2 k-1, Y_{i}=\left\{y_{20 i+j}, j=1, \ldots, 20\right\}, i=$ $0, \ldots, k-1$. Thus $\bigcup_{i=0}^{k-1} X_{i}=X^{\prime}, \bigcup_{i=k}^{2 k-1} X_{i}=X^{\prime \prime}, \bigcup_{i=0}^{k-1} Y_{i}=Y$. Partition the edges of H_{k} into k^{2} induced subgraphs isomorphic to H_{1}. For example, such a partition is given by the sets $X_{i} \cup X_{j} \cup Y_{i+j-1}(\bmod k), i=1, \ldots, k, j=k+1, \ldots, 2 k$. In each particular subgraph we can construct from 52 up to 100 pentagons, therefore in H_{k} we are able to form from $52 k^{2}$ to $100 k^{2}$ pentagons, and the leave is a subgraph of $X \vee Y$. If for $b \geq 52 k^{2}+100 k$ we take 100 pentagons in each subgraph generated by a set of vertices containing Y_{0}, then clearly R^{*} has property a). Property b) is straightforward.

Lemma 4. Odd numbers in the interval $\left\langle 80 k^{2}+16 k+1,112 k^{2}+16 k+1\right\rangle$ and even numbers in the interval $\left\langle 80 k^{2}+20 k, 112 k^{2}+20 k\right\rangle$ belong to $S^{(5)}(n), n=$ $40 k+3, k>1$.

Proof. First we form (for $k>1$) two $M P P(40 k+3) A$ and B, of cardinalities $80 k^{2}+16 k+1$ and $80 k^{2}+20 k$, respectively. Put $A=P_{Y}^{*} \cup\left\{t_{2} t_{3} y_{1} x_{1} y_{3} t_{2}\right\} \cup$
$P_{X}, B=P_{X} \cup P_{Y}$. Clearly, A and B have the required cardinalities, $L(B)=$ $\left\{t_{1} t_{2}, t_{2} t_{3}, t_{1} t_{3}\right\} \cup X \vee Y . L(A)$ is a subgraph of a bipartite graph $\left(X \cup\left\{t_{2}, t_{3}\right\}\right) \vee$ $\left(Y \cup\left\{t_{1}\right\}\right)$, i.e. $L(A)$ is C_{5}-free.

We proceed in both cases the same way. We choose $8 k^{2}+1$ pentagons of $A(B)$ and show how to replace independently any $8 k^{2}$ of them by 5 pentagons and the remaining one by 3 pentagons, which will finish the proof.

Take arbitrary $2 k$ of the 2 -factors of \mathcal{F}_{X} (we recall that \mathcal{F}_{X} is a part of P_{X} and each factor in \mathcal{F}_{X} consists of $4 k$ pentagons) which differ from the 2 -factor Z_{X} and such that the edge $x_{2} x_{8}$ does not belong to U^{\prime}, the union of the chosen 2 -factors. Consider one more pentagon $C=x_{2} x_{4} x_{6} x_{8} x_{10} x_{2}$. C is the pentagon which is to be replaced by 3 pentagons. One of the three pentagons is the pentagon $C^{\prime}=x_{2} x_{4} x_{6} x_{8} y_{8} x_{2}$. Set $U=U^{\prime} \cup\left\{x_{2} x_{10}, x_{8} x_{10}\right\}$. To each edge $e=x_{i} x_{j}$ of U we form an $x_{i}-x_{j}$ path of length 4 in $X \vee Y$ such that all $40 k^{2}+2$ paths will be mutually edge disjoint with the path $x_{8} y_{8} x_{2}$. This way we obtain the other new pentagons.

Let the $x_{i}-x_{j}$ path be $x_{i} y_{j} x_{e} y_{i} x_{j}$. Call edges of the path incident with the vertex x_{e} inner edges, the other edges will be called outer edges of the path. Clearly, all $80 k^{2}+4$ outer edges are distinct. In order to guarantee that all $80 k^{2}+4$ inner edges are distinct, and that the sets of inner and outer edges are disjoint, we have to choose the vertex x_{e} such that a) if e and e^{\prime} are adjacent edges of U then $x_{e} \neq x_{e^{\prime}}$, b) $x_{e} \notin N_{U}\left(x_{i}\right) \cup N_{U}\left(x_{j}\right)$, where $N_{U}(x)$ is the neighbourhood of x in U. Associate with each $e=x_{i} x_{j} \in U$ a set $L_{e}=X-\left(N_{U}\left(x_{i}\right) \cup N_{U}\left(x_{j}\right)\right)$. As $\Delta(U)=4 k+2$, we get $\left|L_{e}\right| \geq 20 k-(8 k+4)=12 k-4$. To assign to each vertex $e \in U$ a vertex x_{e} satisfying a) and b , we have to find a regular edge coloring of U assigning to e a color $x_{e} \in L_{e}$. Since, for $k>1,\left|L_{e}\right| \geq 2 \Delta(U)-1$, such a coloring can be found by applying a straightforward greedy algorithm.

Lemma 5. Odd numbers in the interval $\left\langle 112 k^{2}+16 k+1,160 k^{2}+20 k-1\right\rangle$ and even numbers in the interval $\left\langle 112 k^{2}+20 k, 160 k^{2}+20 k\right\rangle$ belong to $S^{(5)}(n)$, $n=40 k+3, k>2$.

Proof. Define a $P P(20 k+3) S$ on $T \cup X$ by

$$
\begin{aligned}
S & =\left(\mathcal{F}_{X^{\prime}} \cup \mathcal{F}_{X^{\prime \prime}}-\left\{x_{10 i+1} x_{10 i+3} x_{10 i+5} x_{10 i+7} x_{10 i+9} x_{10 i+1} ; i=0,1, \ldots, k-1\right\}\right) \\
& \cup\left\{x_{2 i-1} x_{2 i} t_{2} x_{2 i+10 k} t_{1} x_{2 i-1} ; i=1, \ldots, 5 k\right\} \\
& \cup\left\{x_{2 i-1} x_{2 i} t_{3} x_{2 i-10 k} t_{1} x_{2 i-1} ; i=5 k+1, \ldots, 10 k\right\} \\
& \cup\left(\left\{x_{10 i+j} t_{2} x_{10 i+j+10 k} t_{3} x_{10 i+((j+2) \bmod 10)} x_{10 i+j} ; j=1,3,5,7,9\right\} .\right.
\end{aligned}
$$

Then $L(S)=\left\{t_{1} t_{2}, t_{1} t_{3}, t_{2} t_{3}\right\} \cup\left(X^{\prime} \vee X^{\prime \prime}\right)$, and $|S|=20 k^{2}+10 k$.
To get the part of the statement for even numbers, it suffices to take $M P P(n)$ Q of the form $Q=S \cup P_{Y} \cup R^{*}$ where R^{*} is as in Lemma 3, because $|Q|=$ $20 k^{2}+10 k+40 k^{2}+10 k+\left|R^{*}\right|$ and $\left|R^{*}\right|$ ranges over all even numbers of the interval $\left\langle 52 k^{2}, 100 k^{2}\right\rangle$.

To show that the odd numbers $b \in\left\langle 112 k^{2}+16 k+1,160 k^{2}+16 k+1\right\rangle$ belong to $S^{(5)}(40 k+3)$ we take $M P P(40 k+3) Q=S \cup P_{Y}^{*} \cup R^{*} \cup\left\{t_{2} t_{3} y^{\prime} x y^{\prime \prime} t_{2}\right\}$, where $52 k^{2} \leq\left|R^{*}\right| \leq 52 k^{2}+100 k$ and $y^{\prime}, x, y^{\prime \prime}$ are as in Lemma 3 (note that $L(Q)$ is a subgraph of a bipartite graph $\left(X \cup\left\{t_{2}, t_{3}\right\}\right) \vee\left(Y \cup\left\{t_{1}\right\}\right)$.

To get a $\operatorname{MPP}(40 k+3) Q^{\prime}$ with $112 k^{2}+116 k+3$ pentagons we omit from Q the cycles $y_{1} y_{3} y_{5} y_{7} y_{9} y_{1} ; y_{1} y_{8} y_{9} y_{3} y_{7} y_{1}$ and $t_{2} t_{3} y^{\prime} x y^{\prime \prime} t_{2}$ and add five cycles: $y_{j} t_{2} y_{10 k+j} t_{3} y_{j+2} y_{j}, j=1,3,5,7$, and $y_{9} t_{2} t_{3} y_{1} y_{8} y_{9}$. The leave $L\left(Q^{\prime}\right)$ contains the quadrangle $y_{1} y_{7} y_{3} y_{9} y_{1}$ but is again a bipartite graph in view of a) of Lemma 3. In order to form an $\operatorname{MPP}(40 k+3)$ with b pentagons, b is odd, $b \in\left\langle 112 k^{2}+16 k+3\right.$, $\left.160 k^{2}+20 k-1\right\rangle$, we replace a suitable number of $k-1$ cycles

$$
y_{10 i+1} y_{10 i+3} y_{10 i+5} y_{10 i+7} y_{10 i+9} y_{10 i+1}, \quad i=1, \ldots, k-1
$$

by 5 new cycles (every edge $y_{j} y_{j+2}$ will be contained in the pentagon $y_{j} t_{2} y_{10 k+j} t_{3}$ $y_{j+2} y_{j}$), and take R^{*} satisfying a) of Lemma 3, of appropriate cardinality. The leave $L\left(Q^{\prime}\right)$ of the $M P P(40 k+3) Q^{\prime}$ with $160 k^{2}+20 k-1$ pentagons contains two quadrangles, $y_{1} y_{7} y_{3} y_{9} y_{1}$ and $t_{2} t_{1} t_{3} y_{10 k+9} t_{2}$.

References

1. Alspach B., Schellenberg P. J., Stinson D. R. and Wagner D., The Oberwolfach problem and factors of uniform odd length cycles, J. Combinat. Theory (A) 52 (1989), 20-43.
2. Bondy J. A., Large cycles in graphs, Discrete Math. 1 (1971), 121-132.
3. Rosa A. and Znám Š., Packing pentagons into complete graphs: how clumsy can you get?, Discrete Math. 128 (1994), 305-316.
A. Černý, Department of Mathematics, Faculty of Science, Kuwait University, Kuwait
P. Horák, Department of Mathematics, Faculty of Science, Kuwait University, Kuwait
A. Rosa, Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada

Š. Znám, Department of Algebra and Number Theory, Faculty of Mathematics and Physics, Comenius University, Bratislava, Slovakia

[^0]: Received August 21, 1996.
 1980 Mathematics Subject Classification (1991 Revision). Primary 05C38, 05C70.
 The research of the first and the second author was supported by the Kuwait University Research Grant SM-129.

