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MAXIMAL PENTAGONAL PACKINGS

A. ČERNÝ, P. HORÁK, A. ROSA and Š. ZNÁM

Abstract. For n ≥ 5, a pentagonal packing of size t is a set of t edge-disjoint
pentagons (cycles of length five) in the complete graph Kn. A pentagonal packing
P is maximal, denoted as MPP (n), if the complement of the union of all pentagons
from P is pentagon-free. The spectrum S(5)(n) for maximal pentagonal packings is
the set of all possible sizes of MPP (n). We formulate a conjecture on the structure
of the spectrum S(5)(n), and prove the conjecture for all n = 40k + 3, k ≥ 2.

1. Introduction

Let Kn be a complete graph on n vertices. By a pentagonal packing P , shortly

PP or PP (n) we understand a set of edge-disjoint pentagons (cycles of length

five) in Kn. The size of P is the number of pentagons in P . The leave L(P) of

P is the graph which is the complement of the union of pentagons of P . A PP is

maximal, shortly MPP , if its leave is pentagon-free. The spectrum for MPP is

defined to be the set

S(5)(n) = {t : there exists an MPP of Kn of size t}.

The extremes of S(5)(n) are denoted by m(5)(n) and M (5)(n), respectively:

m(5)(n) = minS(5)(n), M (5)(n) = maxS(5)(n).

The values of m(5)(n) and M (5)(n) have been determined in [3]. In this paper

we concentrate on studying the structure of S5(n). Clearly, S(5)(n) is a subset of

the interval [m(5)(n),M (5)(n)]. We believe that the following conjecture is true:

Conjecture 1. For any n ≥ 6, there is a number zn (for n ≥ 45, zn−m(5)(n) ≥
n/5− 5), so that

i) if t ∈ [m(5)(n), zn], then t ∈ S(5)(n) iff t has the same parity as m(5)(n).

ii) all integers from the interval [zn,M
(5)(n)] belong to S(5)(n).

To support our conjecture we first show that i) is true for all n ≥ 45. In order

to obtain this result we will need to determine the maximum number of edges in
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a pentagon-free, non-bipartite graph whose all vertices are of even (odd) degree.

Since we believe this result is of some interest on its own we also determine all

extremal graphs. For n = 40k + 3, k ≥ 2, we prove the conjecture in full, i.e. for

these values of n we prove also the part ii). It seems to us that a complete proof

of the conjecture (if true) for all n ∈ N would require an excessive number of ad

hoc constructions.

2. Pentagon-Free Non-Bipartite Graphs

The maximum possible size of a pentagon-free graph has been determined in [3].

The graphs where this maximum size is achieved are bipartite. We determine here

the maximum possible size of non-bipartite pentagon-free eulerian (the degrees of

all vertices are even) and antieulerian (the degrees of all vertices are odd) graphs

and describe all maximal graphs of these types. We make use of the following

bounds from [2] and [3].

Theorem 1 ([2]). For n ≥ 7 the maximum size of a graph without pentagons

is bn2/4c.

Theorem 2 ([3]). For n ≥ 11 the maximum size of a non-bipartite graph

without pentagons is bn2/4c − n+ 4.

Let G be a graph. We denote by V (G), E(G) the set of all vertices and the

set of all edges of G, respectively, by e(G) the number of edges in G, and, for

V ′ ⊂ V (G), by 〈V ′〉 the subgraph of G induced by V ′.

Let the function gE be defined for positive integers and the function gA for

positive even integers as follows.

gE(n) = (n2 − 4n+ 12)/4 if n ≡ 0 (mod 4)

= (n2 − 6n+ 17)/4 if n ≡ 1 (mod 4)

= (n2 − 4n+ 16)/4 if n ≡ 2 (mod 4)

= (n2 − 6n+ 21)/4 if n ≡ 3 (mod 4)

gA(n) = (n2 − 8n+ 40)/4 if n ≡ 0 (mod 4)

= (n2 − 8n+ 44)/4 if n ≡ 2 (mod 4)

We define, for n ≥ 22, two classes GEn and GAn of C5-free non-bipartite graphs

on n vertices. All graphs in GEn are eulerian, all graphs in GAn are antieulerian (and

therefore defined just for even n).

Assume first that n is odd. Set n1 = n2 = 3 for n ≡ 3 (mod 4), and n1 = 1,

n2 = 5 for n ≡ 1 (mod 4). The class GEn contains two different types of graphs. A

graph of type A consists of n− 7 vertices inducing a complete bipartite subgraph
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K(n−n1−4)/2,(n−n2−4)/2 and 7 vertices v1, v2, . . . , v7. There are two subtypes of

this type. In a graph of subtype A1 the subgraph induced by the 7 vertices is C7.

All vertices from one part of the bipartite subgraph are adjacent to v2 and v4, and

some even number of vertices from the other part to v1 and v3 and the remaining

ones from the same part to v3 and v5. In a graph of subtype A2 vertices v1, v2, v3

induce a triangle, v4 and v5 are adjacent to v2 and to all vertices of one part of

the bipartite subgraph, v6 and v7 are adjacent to v3 and to all vertices of the

other part. A graph of type B consists of a bipartite graph of size n− 2 and two

vertices of degree 2 inducing a triangle with one vertex of the bipartite graph. The

parts are of size (n− n1 + 2)/2 and (n− n2)/2, or (n− n1)/2 and (n− n2 + 2)/2,

the degree of each vertex is even, and each vertex from the part being of even

size is adjacent to all vertices but one from the other part. (A graph of type B

may contain in the bipartite subgraph one isolated vertex x, while the remaining

vertices in that subgraph form a complete bipartite graph — in a particular case

the graph consists of an isolated triangle and a complete bipartite graph. From a

graph of this shape other graphs in GEn can be obtained by repeatedly replacing a

pair of edges vw′, vw′′, with v always taken from the part of the bipartite graph

containing x, by xw′, xw′′.)

Let now n be even; set n1 = n2 = 2 for n ≡ 2 (mod 4), and n1 = 0, n2 = 4

for n ≡ 0 (mod 4). A graph belongs to GEn if it consists of n− 2 vertices inducing

a complete bipartite subgraph K(n−n1)/2,(n−n2)/2 and two vertices of degree 2

inducing, with one vertex of the bipartite graph, a triangle. All graphs in GAn
contain 4 vertices inducing a subgraph H isomorphic to K4, while the subgraph

induced by the remaining vertices is bipartite with the partition (A,B), |A| ≥ |B|.
One vertex of H is adjacent to all vertices of A, no other vertex in H has a

neighbour off H. Each vertex of B is adjacent to |A|−1 vertices of A. Each vertex

in A is adjacent to an even number of vertices of B. For n ≡ 0 (mod 4), there are

two types of graphs in GAn , one with |A| = |B| = n/2−2, the other with |A| = n/2,

|B| = n/2 − 4. For n ≡ 2 (mod 4) there is just one type with |A| = n/2 − 1,

|B| = n/2− 3. (A graph in GAn may contain one fixed vertex x in A not adjacent

to any vertex in B, while 〈A ∪ (B − {x})〉 is a complete bipartite graph. From a

graph of this shape, other graphs in GAn can be obtained by repeatedly replacing

a pair of edges vw′, vw′′, with v ∈ B − {x}, by xw′, xw′′.)

Theorem 3. The maximum number of edges in a C5-free non-bipartite graph

on n ≥ 22 vertices is gE(n), if G is eulerian, and is gA(n), if G is antieulerian.

The extremal graphs are exactly the graphs from the classes GEn, GAn , respectively.

Proof. Let G = (V,E) be a non-bipartite C5-free graph on n vertices, n ≥ 22,

either eulerian or antieulerian. Clearly, if G is antieulerian then n is even. We

will deal with eulerian graphs on even number of vertices separately in the very

last part of the proof. For the time being we assume that if G is eulerian then n

is odd. Let g, fE , fA be defined by g(n) = gE(n) if n is odd, g(n) = gA(n) if n is
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even, fE = (n2 − 6n+ 17)/4, and fA(n) = (n2 − 8n+ 40)/4; hence g(n) ≥ fA(n),

gE(n) ≥ fE(n).

Throughout the proof, we will frequently specify a subset K of the vertex set

V , |K| = vK , and a subset EK of E, |EK | = eK , such that (i) 〈K〉 is an empty

graph in G − EK , and (ii) each vertex from V − K is adjacent to at most mK

vertices in K, mK being an absolute constant. For n ≥ vK + 7, the total number

of edges in G can be then estimated by

(1) e(G) ≤ eK +mK(n− vK) + (n− vK)2/4.

The first term on the right hand side of (1) is the number of edges in EK , the

second term provides an upper bound on the number of edges having one endvertex

in V −K and the other in K, and the third term gives, according to Theorem 1,

the maximum number of edges of the C5-free subgraph 〈V −K〉. Hence

g(n)− e(G) > (fA(n)− 1/4)− (eK +mK(n− vK) + (n− vK)2/4)

= (vK/2−mK − 2)n− ((v2
K − 39)/4−mKvK + eK).

(2)

In the case the graph 〈V −K〉 is non-bipartite, we can apply Theorem 2 in the

same way as Theorem 1 in (1), getting for n ≥ vK + 11

g(n)− e(G) > (fA(n)− 1/4)

− (eK +mK(n− vK) + (n− vK)2/4− (n− vK) + 4)(3)

= (vK/2−mK − 1)n− ((v2
K − 23)/4− (mK − 1)vK + eK).

For eulerian graphs, since gE(n) > g(n), we can get the following finer estimates:

gE(n)− e(G) > (fE(n)− 1/4)− (eK +mK(n− vK) + (n− vK)2/4)

= ((vK − 3)/2−mK)n− (v2
K/4−mKvK + eK − 4).

(4)

and, if 〈V −K〉 is not bipartite,

gE(n)− e(G) > (fE(n)− 1/4)

− (eK +mK(n− vK) + (n− vK)2/4− (n− vK) + 4)

= ((vK − 1)/2−mK)n− (v2
K/4− (mK − 1)vK + eK).

(5)

It is easy to observe that if G ∈ (GEn ∪ G
A
n ) then e(G) = g(n). We will prove

now that if G /∈ (GEn ∪G
A
n ) then e(G) < g(n).

Being non-bipartite, G contains an odd cycle. Denote the length of the shortest

odd cycle in G by l. Because of minimality of l, any vertex off such a cycle can

be adjacent to at most 2 vertices on the cycle. If l ≥ 9, for K consisting of any

9 vertices of the cycle, vK = 9, eK ≤ 9, mK = 2 we get from (2) g(n) − e(G) >
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(2n − 3)/2 > 0 (since n ≥ 22). Let l = 7 and C be a cycle of length 7 in G. If

〈V − V (C)〉 is non-bipartite, from (3) for K = V (C), vK = 7, eK = 7, mK = 2 we

get g(n)−e(G) > (n−13)/2 > 0. Let 〈V − V (C)〉 be bipartite with the bipartition

(A,B), where |A| = a = (n − 7)/2 + c, |B| = b = (n − 7)/2 − c. Let a be odd.

If G is antieulerian, then b is even and the degree of each vertex of A is odd, i.e.

less than b + 2. If G is eulerian, then b is odd and the degree of each vertex of

A is even, i.e. again less than b + 2. We get e(G) ≤ 7 + 2b+ a(b + 1). A routine

calculation shows g(n)− e(G) = g(n)− ((7 + a+ b) + ab+ b) = g(n)− (n+ ((n−
7)2/4− c2) + ((n − 7)/2− c)) > (c + 1/2)2 ≥ 0. Let a be even. We may assume

that G is eulerian, otherwise we interchange A and B obtaining the previous case.

Hence b is even; we get e(G) ≤ 7 + 2(n − 7) + ab = (n2 − 6n + 17)/4 + 1 − c2.

Since c is odd for n ≡ 1 (mod 4) and is even otherwise, we get e(G) ≤ gE(n).

The equality takes place iff c = 0 or c = 1, 〈V − V (C)〉 is a complete bipartite

graph, and each its vertex is adjacent to exactly 2 vertices of C, i.e. iff G is a graph

of type A1 from GEn. In the rest of the proof we therefore assume l = 3, i.e. G

contains a triangle.

Let x, y be two adjacent vertices of G such that the set Vx,y of all vertices of

G adjacent to both x and y, is of a maximum possible size t ≥ 1. Let M =

Vx,y ∪{x, y}. Since M is C5-free, no vertex of V −M is adjacent to more than one

vertex in M , and for t ≥ 3 no two vertices of Vx,y can be adjacent. If n − 8 ≤ t

(≤ n− 2), then 〈V −M〉 contains at most 6 vertices and 15 edges, hence e(G) ≤
(2t + 1) + 6 + 15 ≤ 2n + 18 < g(n) (for n ≥ 22). If 5 ≤ t ≤ n − 9, then (2) can

be applied for K = M , vK = t+ 2, eK = 2t+ 1,mK = 1; we get (since n ≥ t+ 9)

g(n) − e(G) > (t/2 − 2)(t + 9) − (t2 + 8t − 39)/4 = ((t + 1)2 − 34)/4 > 0. If

t = 4, let z be one vertex from Vx,y if G is antieulerian, otherwise let z be the

vertex x. Then, because of degree parity, there is a vertex nz ∈ V −M adjacent

to z. Let K = M ∪ {nz}. Any vertex from V −K adjacent to two vertices in K

must be adjacent to z and nz; there are at most t = 4 such vertices. For vK = 7,

eK ≤ 9 + 4, mK = 1, (2) implies g(n)− e(G) > (n− 17)/2 > 0.

For t ≤ 3 we will prove the assertion of the theorem separately for antieulerian

and eulerian graphs.

Let G be antieulerian. If t = 3, then, because of degree parity, there are

two distinct vertices nx, ny in V − M adjacent to x, y, respectively. Let K =

M ∪ {nx, ny}. If a vertex from V −K is adjacent to two vertices of K, then these

are either x and nx or y and ny. There are at most t = 3 vertices of each kind,

therefore, after removing 6 edges not in 〈K〉, we have mK = 1. For vK = 7,

eK ≤ 9 + 6, (2) implies g(n)− e(G) > (n− 21)/2 ≥ 0. Postponing the case t = 2,

let us assume t = 1. Let Vx,y = {z}. As G is antieulerian, each of x, y, z has

at least one neighbour in V − M ; let these distinct neighbours be nx, ny, nz,

respectively, and let V6 = {x, y, z, nx, ny, nz}. There are at most three vertices

in V − V6 adjacent to two vertices of V6 (at most one to each of the pairs x, nx;
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y, ny; z, nz). If there is such a vertex u, choose K = V6 ∪ {u}. After removing at

most 2 edges not in 〈K〉 we have mK = 1. For vK = 7, eK ≤ 8 + 2, (2) implies

g(n) − e(G) > (n − 11)/2 > 0. If there is no such vertex u, choose K = V6. For

vK = 6, eK = 6, mK = 1, (2) implies g(n) − e(G) > 3/4. As the last possibility,

assume t = 2, i.e. Vx,y = {u, z}, where u, z are two distinct, possibly adjacent,

vertices.

Assume first that a vertex v ∈M forms a triangle with two vertices v1, v2 ∈
V −M . Let w be the vertex v1 if v is adjacent to all the remaining three vertices

of M , otherwise let w be the vertex v. Then, because of degree parity, there is

one additional vertex w′ ∈ V −M adjacent to w. Denote K = M ∪ {v1, v2, w
′}.

Either w′ is adjacent to two or three of the vertices v, v1, v2, or there may be at

most t = 2 vertices in V −M adjacent to both w and w′, and at most one adjacent

to two or three of the vertices v, v1, v2. Every other vertex in V −K is adjacent

to at most one vertex in K. For vK = 7, eK ≤ (6 + 3) + 4,mK = 1, (2) implies

g(n) − e(G) > (n − 7)/2 > 0. Let there now be no triangle of G having just one

vertex in M .

If 〈V −M〉 is non-bipartite, then it contains a shortest odd cycle C. If the

length of C is at least 7, take for K the set M together with any 7 vertices of C.

Each of the 7 vertices is a neighbour of at most one vertex in M . Each vertex in

V −K is a neighbour of at most one vertex in M and, because of minimality of

C, of at most two vertices in C. For vK = 11, eK ≤ 6 + 7 + 7,mK = 3, (2) implies

g(n) − e(G) > (n − 15)/2 > 0. If C is a triangle, then, since G is C5-free and no

triangle has just one vertex in M , there is at most one edge incident with both

M and C. Since G is antieulerian, either there are at least two edges incident

with both M and V −M , or no such edge exists. In the former case there is a

vertex v ∈ V − (M ∪ V (C)) adjacent to M . Choose K = M ∪ {v}. 〈V −K〉 is

non-bipartite since it contains C. (3) can be applied for vK = 5, eK ≤ 7, mK = 1

yielding g(n) − e(G) > (n − 15)/2 > 0. In the latter case 〈M〉 is K4. Choose

K = M ∪V (C). At most one vertex of V −K can be adjacent to two vertices of C

(in that case it may be adjacent to all three of them). For vK = 7, eK ≤ 6 + 3 + 2,

mK = 1, (2) implies g(n)− e(G) > (n− 13)/2 > 0.

If 〈V −M〉 is bipartite, let the bipartition be (A,B), |A| = a = (n− 4)/2 + c,

|B| = b = (n − 4)/2 − c, hence ab = f(n) − 6 − c2. Let d = e(〈M〉) (i.e. d = 6

if 〈M〉 is K4, otherwise d = 5) and denote by A1 (by B1) the set of vertices in A

(in B) adjacent to M . Let a1 = |A1|, b1 = |B1|, and assume a1 ≥ b1. No vertex

of A1 ∪ B1 can be adjacent to two vertices of M . No two vertices of A1 ∪B1 are

adjacent, otherwise G contains either C5 or a triangle with just one vertex in M .

We obtain

e(G) ≤ d+ (a1 + b1) + (ab− a1b1) = (d+ 1) + ab− (a1 − 1)(b1 − 1)

= f(n) + (d− 5)− c2 − (a1 − 1)(b1 − 1).
(6)

For a1 ≥ b1 ≥ 3, (6) implies e(G) < g(n). Suppose 2 ≥ b1.
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Let us first assume that a and b are odd. We will show that e(G) ≤ f(n)− c2.

Since c is odd for n ≡ 0 (mod 4) and is even otherwise, the assertion implies

e(G) < g(n). If b1 is even then no vertex in A1 can be adjacent to all vertices

of B − B1; we get (since a1 ≥ b1) e(G) ≤ d + (a1 + b1) + (ab − a1b1) − a1 =

d + ab + b1(1 − a1) ≤ d + ab ≤ f(n) − c2. If b1 is odd, i.e. a ≥ b1 ≥ 1, let

vb ∈ B1. If d = 5 or c ≥ 1, then the assertion follows from (6). If c = 0 and

d = 6 (i.e. 〈M〉 = K4), then, because of degree parity in M , there is a vertex

va ∈ A1 adjacent to the same vertex of M as vb. Since c = 0, there exist vertices

v′a ∈ A− A1, v
′
b ∈ B −B1. One of the edges vav

′
b, v
′
bv
′
a, v
′
avb cannot be present in

G, otherwise there is a C5 in G. Therefore there is one less edge in G than given

by (6) and e(G) ≤ f(n)− c2.

Let now a, b be even. Let 2 ≥b1 ≥ 1. For degree-parity reason, no vertex of

B − B1 can be adjacent to all vertices of A, i.e. G contains by at least b− b1 less

edges than given by (6). Then e(G) ≤ f(n)+(d−5+b1)−c2−b ≤ (d−3)+f(n)−(c−
1/2)2−(2n−9)/2 < g(n). Let b1 = 0. No vertex of B can be adjacent to all vertices

of A. In this case e(G) ≤ d+a1 +(a−1)b ≤ 6+ab+a−b = (d−5)+f(n)−(c−1)2.

If n ≡ 0 (mod 4), then c is even. For c 6= 0, 2 we get e(G) < g(n). If c = 0,

then a = b = n/2 − 2. If c = 2, then a = n/2, b = n/2 − 4. In both cases the

equality e(G) = g(n) implies d = 6 (i.e. 〈H〉 = K4), A1 = A and all vertices of A

are connected to the same vertex of H (otherwise C5 would be present). If n ≡ 2

(mod 4), then c is odd. For c 6= 1 we get e(G) < g(n). If c = 1, then a = n/2− 1,

b = n/2− 3. The equality e(G) = g(n) implies d = 6, A1 = A and all vertices of A

are connected to the same vertex of H. Therefore the equality takes place exactly

for the graphs from GAn . The assertion of the theorem on antieulerian graphs is

proved.

Assume that G is eulerian. If t = 3, let Vx,y = {u, v, z}. If 〈M〉 is isolated, then

for K = M , vK = 5, eK = 7, mK = 0 from (2) we get g(n)−e(G) > (n−7)/2 > 0.

If there is a vertex w′ ∈ V −M adjacent to some vertex w ∈ M (w′ cannot be

adjacent to more vertices of M), let K = M ∪ {w′}. A vertex of V −K adjacent

to two vertices of K must be adjacent to w and w′. There are at most t = 3

such vertices. For vK = 6, eK = 8 + 2,mK = 1 from (4) we get gE(n) − e(G) >

(n− 18)/2 > 0.

If t = 2, let Vx,y = {u, z} where u, z are two distinct, possibly adjacent, vertices.

Then, because of the degree parity, there are two distinct vertices nx, ny of V −M
adjacent to x, y, respectively. Let K = M ∪ {nx, ny}. If a vertex of V − K is

adjacent to two vertices of K, then these are either x and nx or y and ny. There

are at most t = 2 vertices of each kind. For vK = 6, eK = 8 + 4, mK = 1 from

(4) we get gE(n) − e(G) > (n − 22)/2 > 0. Finally, let t = 1, i.e. Vx,y = {z}. If

there are two vertices in M , say x and y, not adjacent to any vertex in V −M ,

choose K = {x, y},. If 〈V −K〉 is nonbipartite, then, for vK = 2, eK = 3,mK = 0,

(5) gives g′(n)− e(G) > (n− 12)/2 > 0. If 〈V −K〉 is bipartite, with bipartition
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(A,B), |A| = a = (n − 1)/2 + c, |B| = (n − 3)/2 − c, then a + b = n − 2 is

odd. Assume a is odd. Then no vertex of B can be adjacent to all vertices

of A. Therefore e(G) ≤ 3 + (a − 1)b = (n2 + 6n+ 21)/4− c2. If n ≡ 1 (mod 4),

then c is odd, otherwise c is even. We have e(G) ≤ gE(n), and the equality

takes place for c ∈ {−1, 1} in the former case, and for c = 0 in th latter case,

if the bipartite graph is complete. This is exactly for graphs of type B from

GEn . Suppose now that two vertices in M , say again x and y, are adjacent to

V −M , i.e. there are two distinct (since t = 1) vertices nx, ny ∈ V −M adjacent

to x, y, respectively. Let V5 = M ∪ {nx, ny}. A vertex of V − V5 adjacent to

two vertices of V5 is adjacent either to x and nx, or to y and ny. Let there be

such a vertex v, adjacent, say to x and nx. Let K = V5 ∪ {v}. There is at

most one vertex of V − K adjacent to two vertices of K (to y and ny). For

vK = 6, eK ≤ 7 + 1,mK = 1 from (4) we get gE(n)− e(G) > (n− 22)/2 ≥ 0. Let

there be no such vertex v. Then there are two more vertices mx,my ∈ V −M ,

adjacent to x, y, respectively, such that no two vertices from {mx, nx,my, ny} are

adjacent. Let K = M ∪ {mx, nx,my, ny}. No vertex of V −K can be adjacent

to more than two vertices of K. If 〈V −K〉 is nonbipartite, for vK = 7, eK = 7,

mK = 2, (5) gives gE(n)− e(G) > (4n− 49)/4 > 0. Let 〈V −K〉 be bipartite with

the bipartition (A,B) with |A| = a = (n− 7)/2 + c, |B| = (n− 7)/2− c, c ≥ 0. If

a, b are odd, then no vertex of A can be adjacent to all vertices of B and we get

e(G) ≤ 7+2(n−7)+a(b−1) = (n2−6n+16)/4− (c+1/2)2− (n−10)/2 < gE(n).

If a, b are even, we get e(G) ≤ 7 + 2(n− 7) + ab = (n2 − 6n+ 21)/4− c2.

If n ≡ 1 (mod 4) then c is odd, otherwise c is even. In both cases e(G) ≤ gE(n).

The equality takes place for c = 1 in the former case, and for c = 0 in the latter

case, if the bipartite subgraph is complete, and each its vertex is adjacent to 2

vertices of K, i.e. either to mx and nx, or to my and ny. This is true exactly for

graphs of type A2 from GEn .

Now let us return to the possibility that G is eulerian and n is even. Then by

adding one isolated vertex we get a C5-free non-bipartite eulerian graph G′ with

an odd number of vertices. Therefore e(G) = e(G′) ≤ gE(n + 1) = gE(n). The

equality takes place iff G′ is extremal. The only extremal graphs in GEn+1 having

one isolated vertex are of type B. By removing the vertex we get a graph from

GEn . The theorem is proved. �

3. Main Results

First we show that the part i) of the conjecture is satisfied by all n ≥ 45.

Theorem 4. For all n ≥ 45 there is a number zn, zn −m(5)(n) ≥ n/5− 5, so

that if t ∈ [m(5)(n), zn], then t ∈ S(5)(n) iff t has the same parity as m(5)(n).

Proof. Consider a PP (n) P . Then the degrees of all vertices of L(P) have the

same parity as n− 1. As the number of edges in a bipartite graph equals the sum
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of degrees in either of its two parts we get:

If the leaves of some two PP (n) P ′ and P ′′ are bipartite

then their sizes have the same parity.
(*)

Suppose now that a MPP (n) P has a nonbipartite leave. From Theorem 4 the

size of P is at least zn =
⌈
(n(n− 1)/2− gE(n))/5

⌉
. Thus, there is no MPP (n) of

size strictly less than zn having the same parity as m(5)(n). A routine calculation

shows that zn −m(5)(n) ≥ n/5− 5. To finish the proof we provide a construction

of MPP (n) of size m(5)(n) + 2i, i = 1, . . . , bn/10c.
From [3] follows that for arbitrary n ≥ 11 there exists an MPP (n) such that

L(MPP (n)) is a bipartite graph G(X,Y ), where |X ∩ Y | ≤ 1, |X| ≥ |Y |, |X| −
|Y | ≤ 6 and we can get G(X,Y ) from the complete bipartite graph K|X|,|Y | by

removing edges which are incident with at most 4 vertices in Y .

Take a set P of bn/10c pentagons of MPP with all vertices in X, a set V of

3 bn/10c distinct vertices of Y other than the 4 vertices mentioned above. Suppose

C = x1x2x3x4x5x1 is a pentagon from P and a, b, c are three distinct vertices of V .

Then it is possible to replace C by three new pentagons x1x2x3x4ax1, x4bx2cx5x4,

x5bx3cx5. After such a replacement the PP remains maximal. As we can carry

out the above construction for arbitrary number of pentagons in P , it is possible

to increase the initial total number of pentagons in the MPP , initially equal to

m(5)(n), by any number 2i, i = 1, . . . , bn/10c. �
Finally, we prove that the conjecture is valid for all n = 40k + 3, k ≥ 2.

Theorem 5. For any n = 40k + 3, k ≥ 2, the structure of S(5)(n) is as in the

conjecture with zn =
⌈
(n(n− 1)/2− gE(n))/5

⌉
= m(5)(n)+8k−1 < m(5)(n)+n/5.

Proof. One can easily observe that the assertion of the Theorem can be obtained

by combining the assertions of the following Lemmas 1–5. �
Throughout the paragraph we consider n = 40k + 3, k ≥ 1, and employ the

following notation. T = {t1, t2, t3},X ′ = {x1, . . . , x10k}, X ′′ = {x10k+1, . . . , x20k},
X = X ′ ∪X ′′, Y = {y1, . . . , y20k} will be sets of vertices. If we consider, for an

even t, K∗t = Kt−F on a set of vertices with indices i = 1, . . . , t then the 1-factor

F comprises edges with endvertices of indices 2j − 1 and 2j, j = 1, . . . , t/2.

Lemma 1. There is a resolvable decomposition FV of K∗10m on V = {v1, . . . ,

v10m} into 10m2− 2m pentagons which contains a 2-factor ZV made up of cycles

v10i+1v10i+3v10i+5v10i+7v10i+9v10i+1 and v10i+2v10i+4v10i+6v10i+8v10i+10v10i+2,

i = 0, . . . ,m− 1.

In addition, the pentagon v1v8v9v3v7 belongs to FV .

Proof. In view of [1] there exists a resolvable decomposition of K∗10m, m 6= 2,

into pentagons such that four 2-factors comprise a resolvable decomposition of
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m ·K∗10, the other 2-factors comprise a resolvable decomposition of the m-partite

graph K10,10,...,10. So to prove our lemma it suffices to find a resolvable decompo-

sition of K∗10 with the given properties. One such a decomposition (described for

the vertex set {1, . . . , 10}) consists of Z{1,...,10} : (1 3 5 7 9)&(2 4 6 8 10), and of the

2-factors (1 8 9 3 7)&(2 7 10 4 8), (1 6 7 4 5)&(2 5 8 3 6), (1 4 9 5 10)&(2 3 10 6 9).�
Now we introduce two PP (20k + 3), PS and P ∗S . Let V = {v1, . . . , v20k},

k > 1, S = V ∪ T . Let FV and ZV be as in Lemma 1. Then P ∗V = FV ∪
{v2i−1v2it2v2i+10kt1v2i−1; i = 1, . . . , 5k} ∪ {v2i−1v2it3v2i−10kt1v2i−1; i = 5k +

1, . . . , 10k}, PV = (P ∗V − {v10i+1v10i+3v10i+5v10i+7v10i+9v10i+1; i = 0, 1, . . . , k −
1}) ∪ ({v10i+jt2v10i+j+10kt3v10i+((j+2) mod 5)v10i+j ; i = 0, 1, . . . , k − 1; j = 1, 3, 5,

7, 9}.
Note that L(P ∗V ) = {tjv2i−1; j = 2, 3; i = 1, . . . 10k} ∪ {t1t2, t1t3, t2t3}, i.e.

L(P ∗S) is C5-free, and |P ∗V | = 40k2 + 6k, while L(PV ) = {t1t2, t1t3, t2t3} and

|PV | = 40k2 + 10k.

Lemma 2. Odd numbers in the interval
〈
80k2 + 12k + 1, 80k2 + 20k + 1

〉
be-

long to S(5)(n), n = 40k + 3, k > 2.

Proof. Follows directly from Theorem 4 and the fact (see [3] that m5(n) =

80k2 + 12k + 1 for n = 40k + 3. �
Lemma 3. For any even number b in the interval

〈
52k2, 100k2

〉
, there is a

pentagonal packing R∗ of Hk = (X ′ ∨X ′′) ∨ Y with b pentagons, such that L(R∗)

is a subgraph of X ∨Y (i.e. L(R∗) is C5-free and all edges of X ′ ∨X ′′ are covered

by pentagons of R∗) and

a) for 52k2 + 100k ≤ b ≤ 100k2 the vertices y1, . . . , y20 are isolated vertices in

L(R∗)

b) for 52k2 ≤ b ≤ 52k2 + 100k there are vertices x ∈ X, y′, y′′ ∈ Y such that

the path y′xy′′ ∈ L(R∗) and y′, y′′ have odd indices in Y .

Proof. We prove the statement by induction with respect to k.

Case k = 1:

For the sake of convenience we use, only in this part of the proof, a different

notation for vertices of X and Y . Namely, we partition X,Y into subsets Xi =

{xij , j = 0, . . . , 4}, Yi = {yij, j = 0, . . . , 4}, i = 1, 2, 3, 4, and X1 ∪X2 = X ′,X3 ∪
X4 = X ′′. Our graph H1 has 500 edges. At the beginning we decompose H1 into

100 pentagons. For each of the edges e = x′x′′ of X ′ ∨X ′′ we form a x′–x′′ path

in X ∨ Y of length four so that all 100 paths will be mutually edge disjoint. For

1 ≤ i, j ≤ 5,

to the edge x1
i x

3
j we assign the path x1

i y
1
jx

2
i y

3
i+jx

3
j ,

to the edge x2
i x

3
j we assign the path x2

i y
2
jx

4
i y

4
i+jx

3
j ,

to the edge x1
i x

4
j we assign the path x1

i y
2
jx

3
i y

1
i+jx

4
j ,

to the edge x2
i x

4
j we assign the path x2

i y
4
jx

1
i y

3
i+jx

4
j ,
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the subscripts are taken (mod 5). Thus we get a decomposition of H1 into pen-

tagons.

Now, starting from the above decomposition R∗, we will gradually decrease the

number of pentagons in R∗ by two, by the following process. Take 3 edges of X ′∨
X ′′ which form a path, say x′x′′x′x′′, and omit the pentagons Cx′x′′ , Cx′′x′ , Cx′x′′

of R∗ covering the edges. The choice of edges is made so that there is y ∈ Y with

edges x′y ∈ Cx′x′′ , yx
′′ ∈ Cx′x′′ . By adding y to the path, we form the pentagon

x′x′′x′x′′yx′ and the other edges of Cx′x′′ ∪ Cx′′x′ ∪ Cx′x′′ will belong to L(R∗).

To the path x1
i x

3
i+1x

1
i+2x

4
4 we add the vertex y1

i+1,

to the path x1
i x

3
i+2x

1
i+4x

4
3 we add the vertex y1

i+2,

to the path x2
i x

4
i+1x

2
i+2x

3
4 we add the vertex y4

i+1,

to the path x2
i x

4
i+2x

2
i+4x

3
3 we add the vertex y4

i+2,

where i = 1, 2, . . . , 5, the subscripts taken (mod 5). We construct four more

pentagons in a similar way, however, this time the edge x′y, or yx′′ may originate

from some of the 60 previously omitted pentagons, e.g. the edge y1
0x

1
1 will be taken

from the pentagon originally covering the edge x3
i+1x

1
i+2, i = 5.

To the path x4
0x

1
0x

4
1x

1
1 we add the vertex y1

0,

to the path x4
0x

1
2x

4
2x

1
3 we add the vertex y1

2,

to the path x3
0x

2
0x

3
1x

2
1 we add the vertex y4

0,

to the path x3
0x

2
2x

3
2x

2
3 we add the vertex y4

2.

Note that all new 24 pentagons are mutually edge disjoint, so we are able to

replace gradually 3t pentagons, t = 1, . . . , 24 by t pentagons.

Case k > 1:

Let Xi = {x10i+j , j = 1, . . . , 10}, i = 0, . . . , 2k−1, Yi = {y20i+j , j = 1, . . . , 20}, i =

0, . . . , k − 1. Thus
⋃k−1
i=0 Xi = X ′,

⋃2k−1
i=k Xi = X ′′,

⋃k−1
i=0 Yi = Y . Partition the

edges of Hk into k2 induced subgraphs isomorphic to H1. For example, such a par-

tition is given by the sets Xi ∪Xj ∪ Yi+j−1 (mod k), i = 1, . . . , k, j = k+ 1, . . . , 2k.

In each particular subgraph we can construct from 52 up to 100 pentagons, there-

fore in Hk we are able to form from 52k2 to 100k2 pentagons, and the leave is a

subgraph of X ∨ Y . If for b ≥ 52k2 + 100k we take 100 pentagons in each sub-

graph generated by a set of vertices containing Y0, then clearly R∗ has property

a). Property b) is straightforward. �
Lemma 4. Odd numbers in the interval

〈
80k2 + 16k + 1, 112k2 + 16k + 1

〉
and

even numbers in the interval
〈
80k2 + 20k, 112k2 + 20k

〉
belong to S(5)(n), n =

40k + 3, k > 1.

Proof. First we form (for k > 1) two MPP (40k + 3) A and B, of cardinalities

80k2 + 16k + 1 and 80k2 + 20k, respectively. Put A = P ∗Y ∪ {t2t3y1x1y3t2} ∪
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PX , B = PX ∪ PY . Clearly, A and B have the required cardinalities, L(B) =

{t1t2, t2t3, t1t3} ∪X ∨ Y . L(A) is a subgraph of a bipartite graph (X ∪ {t2, t3})∨
(Y ∪ {t1}), i.e. L(A) is C5-free.

We proceed in both cases the same way. We choose 8k2 + 1 pentagons of A (B)

and show how to replace independently any 8k2 of them by 5 pentagons and the

remaining one by 3 pentagons, which will finish the proof.

Take arbitrary 2k of the 2-factors of FX (we recall that FX is a part of PX
and each factor in FX consists of 4k pentagons) which differ from the 2-factor

ZX and such that the edge x2x8 does not belong to U ′, the union of the chosen

2-factors. Consider one more pentagon C = x2x4x6x8x10x2. C is the pentagon

which is to be replaced by 3 pentagons. One of the three pentagons is the pentagon

C′ = x2x4x6x8y8x2. Set U = U ′ ∪ {x2x10, x8x10}. To each edge e = xixj of U

we form an xi–xj path of length 4 in X ∨ Y such that all 40k2 + 2 paths will be

mutually edge disjoint with the path x8y8x2. This way we obtain the other new

pentagons.

Let the xi-xj path be xiyjxeyixj . Call edges of the path incident with the vertex

xe inner edges, the other edges will be called outer edges of the path. Clearly, all

80k2+4 outer edges are distinct. In order to guarantee that all 80k2+4 inner edges

are distinct, and that the sets of inner and outer edges are disjoint, we have to

choose the vertex xe such that a) if e and e′ are adjacent edges of U then xe 6= xe′ ,

b) xe /∈ NU(xi)∪NU (xj), where NU(x) is the neighbourhood of x in U . Associate

with each e = xixj ∈ U a set Le = X − (NU (xi) ∪ NU(xj)). As ∆(U) = 4k + 2,

we get |Le| ≥ 20k − (8k + 4) = 12k − 4. To assign to each vertex e ∈ U a vertex

xe satisfying a) and b), we have to find a regular edge coloring of Uassigning to e

a color xe ∈ Le. Since, for k > 1, |Le| ≥ 2∆(U)− 1, such a coloring can be found

by applying a straightforward greedy algorithm. �
Lemma 5. Odd numbers in the interval

〈
112k2 + 16k + 1, 160k2 + 20k − 1

〉
and even numbers in the interval

〈
112k2 + 20k, 160k2 + 20k

〉
belong to S(5)(n),

n = 40k + 3, k > 2.

Proof. Define a PP (20k + 3) S on T ∪X by

S = (FX′ ∪ FX′′ − {x10i+1x10i+3x10i+5x10i+7x10i+9x10i+1; i = 0, 1, . . . , k − 1})

∪ {x2i−1x2it2x2i+10kt1x2i−1; i = 1, . . . , 5k}

∪ {x2i−1x2it3x2i−10kt1x2i−1; i = 5k + 1, . . . , 10k}

∪ ({x10i+jt2x10i+j+10kt3x10i+((j+2) mod 10)x10i+j ; j = 1, 3, 5, 7, 9}.

Then L(S) = {t1t2, t1t3, t2t3} ∪ (X ′ ∨X ′′), and |S| = 20k2 + 10k.

To get the part of the statement for even numbers, it suffices to take MPP (n)

Q of the form Q = S ∪ PY ∪ R∗ where R∗ is as in Lemma 3, because |Q| =

20k2 + 10k + 40k2 + 10k + |R∗| and |R∗| ranges over all even numbers of the

interval
〈
52k2, 100k2

〉
.
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To show that the odd numbers b ∈
〈
112k2 + 16k + 1, 160k2 + 16k + 1

〉
belong

to S(5)(40k + 3) we take MPP (40k+ 3) Q = S ∪ P ∗Y ∪R
∗ ∪ {t2t3y′xy′′t2}, where

52k2 ≤ |R∗| ≤ 52k2 + 100k and y′, x, y′′ are as in Lemma 3 (note that L(Q) is a

subgraph of a bipartite graph (X ∪ {t2, t3}) ∨ (Y ∪ {t1}).
To get a MPP (40k + 3) Q′ with 112k2 + 116k + 3 pentagons we omit from

Q the cycles y1y3y5y7y9y1; y1y8y9y3y7y1 and t2t3y
′xy′′t2 and add five cycles:

yjt2y10k+jt3yj+2yj , j = 1, 3, 5, 7, and y9t2t3y1y8y9. The leave L(Q′) contains the

quadrangle y1y7y3y9y1 but is again a bipartite graph in view of a) of Lemma 3. In

order to form an MPP (40k+ 3) with b pentagons, b is odd, b ∈
〈
112k2 + 16k+ 3,

160k2 + 20k − 1
〉
, we replace a suitable number of k − 1 cycles

y10i+1y10i+3y10i+5y10i+7y10i+9y10i+1, i = 1, . . . , k − 1

by 5 new cycles (every edge yjyj+2 will be contained in the pentagon yjt2y10k+jt3
yj+2yj), and take R∗ satisfying a) of Lemma 3, of appropriate cardinality. The

leave L(Q′) of the MPP (40k+ 3) Q′ with 160k2 + 20k−1 pentagons contains two

quadrangles, y1y7y3y9y1 and t2t1t3y10k+9t2. �
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