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RESCALING OF MARKOV SHIFTS

T. WARD

Abstract. Given a Zd topological Markov shift Σ and a d × d integer matrix M
with det(M) 6= 0, we introduce the M-rescaling of Σ, denoted Σ(M). We show that
some (internal) power of the Zd-action on Σ(M) is isomorphic to some (Cartesian,
or external) power of Σ, and deduce that the two Markov shifts have the same
topological entropy. Several examples from the theory of group automorphisms are
discussed. Full shifts in any dimension are shown to be invariant under rescaling,
and the problem of whether the reverse is true is interpreted as a higher-dimensional
analogue of William’s problem.

1. Introduction

Let A be a compact metric space, and let AZ
d

be the set of all functions x : Zd →
A, endowed with the product topology. For any set F ⊂ Zd, let ρF : AZ

d

→ AF

denote the restriction map, sending x to x|F ∈ AF . Denote by σ the natural shift

action of Zd on AZ
d

,

(1.1) σn(x)m = xn+m.

A closed, σ-invariant subset Σ ⊂ AZ
d

is called a (topological) Markov shift if there

exists a finite set F ⊂ Zd and a subset P ⊂ AF for which

(1.2) Σ = Σ(F,P ) = {x ∈ AZ
d

| ρF (σnx) ∈ P for all n ∈ Zd}.

The shift action σ restricts to a shift action σ(F,P ) of Zd on Σ(F,P ). For brevity,

we shall use Σ(F,P ) to denote both the set (1.2) and the Zd topological dynamical

system (Σ(F,P ), σ
(F,P )) For a discussion of this definition and some examples, see

[S2, Chapter 5].

Let M be a d × d integer matrix with det(M) 6= 0, and let e1, . . . , ed be the

standard basis for Zd. For a finite set F ⊂ Zd, let M(F ) = {nM | n ∈ F}. For

P ⊂ AF , define M(P ) ⊂ AM(F ) as follows. The map x : M(F )→ A is in M(P ) if

and only if y : F → A is in P , where y(n) = x(nM).
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The M-rescaling of the Markov shift Σ(F,P ) is then defined to be

(1.3) Σ
(M)
(F,P ) = Σ(M(F ),M(P )),

with associated Zd-action σ(M(F ),M(P )).

Notice that the rescaled shift is well-defined in the following sense: if Σ(F,P )

and Σ(G,Q) are topologically conjugate Markov shifts then, for any M , so too are

Σ
(M)
(F,P ) and Σ

(M)
(G,Q).

We shall see that Σ and Σ(M) are not in general topologically conjugate, though

they have the same entropy; the first theorem in Section 2 exhibits a more direct

connection.

2. Rescaled Markov Shifts

Consider a topological Markov shift (Σ(F,P ), σ
(F,P )) and let M be a d×d integer

matrix with det(M) 6= 0.

Theorem 2.1. The Zd-action n 7→ σ
(M(F ),M(P ))
nM is topologically conjugate to

the |det(M)|-fold Cartesian product σ(F,P ) × · · · × σ(F,P ).

Notice that if d = 1, then M = [m] is a non-zero integer, and the action

n 7→ σ
(M(F ),M(P ))
nM is then simply the usualm-fold power or iterate of σ(M(F ),M(P )).

Proof. Let k = |det(M)|, and choose coset representatives r1, . . . , rk for the

subgroup ZdM ⊂ Zd. Define a map θ : Σ(M(F ),M(P )) →
(
Σ(F,P )

)k
by

(2.1) θ(x) = (ρZdM+r1
(x), ρZdM+r2

(x), . . . , ρZdM+rk(x)).

We claim that θ is a topological conjugacy. By (1.3), θ is well-defined (each

ρZdM+rj (x) is an allowed point in Σ(F,P )). Moreover, every k-tuple of allowed

words appears as the image of a unique point under θ in Σ(M(F ),M(P )). Thus θ is

a homeomorphism. It is clear that θ intertwines the actions. �

Let h(σ) denote the topological entropy of the Zd shift. (For a definition,

see footnote to page 56 of [S2] or Appendix A of [LSW]. When the alphabet

A is finite, the entropy is given by h(σ) = lim supn→∞
1
nd

log |{ρR(n)(Σ)}| where

R(n) = [0, n)d ∩ Zd.)

Corollary 2.2. Topological entropy is invariant under rescaling.

Proof. This follows from two quite general facts.

Firstly, for any Zd-actions α and β on compact metric spaces X and Y by

homeomorphisms, we have h(α × β) = h(α) + h(β). This may be proved by

an easy extension of the argument in [AKM] from single maps to Zd-actions.

Alternatively, notice that this is true for measure-theoretic entropy of amenable
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group actions by the increasing Martingale theorem (see Lemma 4.1 of [WZ]); the

variational principle (see [E]) for Zd-actions then shows h(α × β) ≥ h(α) + h(β).

The reverse inequality is clear. It follows that

(2.2) h(σ(F,P ) × · · · × σ(F,P )) = k h(σ(F,P )).

Secondly, if α is any action by homeomorphisms of a compact metric space X

then h(n 7→ αnM ) = |det(M)|h(α). When d = 1 and M = [m], m > 0, this

is the usual power rule ([AKM], Theorem 2). The extension to Zd-actions is

straightforward. It follows that

(2.3) h(n 7→ σ
(M(F ),M(P ))
nM ) = k h(σ(M(F ),M(P ))).

By Theorem 2.1, h(n 7→ σ
(M(F ),M(P ))
nM ) = h(σ(F,P ) × · · · × σ(F,P )); since k 6= 0

we deduce from (2.2) and (2.3) that h(σ(M(F ),M(P ))) = h(σ(F,P )). �

When the alphabet A is finite and d = 1, it follows that rescaling does not take

one outside the finite equivalence class of the original shift (see [P1] and [P2]).

We now show how the number of periodic points is affected by rescaling. A

period for a Zd-action α is a lattice of full rank Λ ⊂ Zd; the set of Λ-periodic

points is defined by

FΛ(α) = {x | αnx = x for all n ∈ Λ}.

When d = 1, we shall write Fn for FnZ. The symbol Λ will always be used for a

lattice of full rank.

Lemma 2.3. The number of Λ-periodic points in Σ
(M)
(F,P ) is given by

∣∣∣FΛ

(
Σ

(M)
(F,P )

)∣∣∣ =
∣∣∣FH(Λ)

(
Σ(F,P )

)∣∣∣|Zd/(Λ+ZdM)|
,

where H(Λ) is the kernel of the map n 7→ nM + (Λ + ZdM) from Zd to Zd/(Λ +

ZdM).

Corollary 2.4. If d = 1 and M = [m], then∣∣∣Fn(Σ
(M)
(F,P ))

∣∣∣ =
∣∣∣Fn/(n,m)(Σ(F,P ))

∣∣∣(n,m)

,

where (n,m) denotes the highest common factor of n and m.

Proof of Lemma 2.3. This is a simple counting argument. Let x be a Λ-periodic

point in Σ
(M)
(F,P ). For each coset r+Λ of Λ in Zd, look at the co-ordinates of x along

the coset r +ZdM . These form an element of Σ(F,P ) with period H(Λ); moreover

there are
∣∣Zd/(Λ + ZdM)

∣∣ ways to extract such a point. The result follows. �
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Remark 2.5. The rescaling construction may be applied to any Zd action (by

homeomorphisms or measure-preserving transformations) to produce an action

of the same type. Let α be a Zd action on a set X, and let M be a d × d

integer matrix with non-zero determinant. Choose a set of coset representatives

L = {`1, . . . , `| det(M)|} for Zd/ZdM , let c(n) = `j if `j + ZdM = n + ZdM and

let s(j) = `j . Then define a Zd-action α(M) on X | det(M)| by setting

α(M)
n (x1, . . . , x| det(M)|)

= (α(n−c(n))M−1xc(s(1)+n), . . . , α(n−c(n))M−1xc(s(| det(M)|)+n)).

3. Group Automorphisms

If α is an expansive action of Zd by automorphisms of a compact group X

(or, more generally, an action satisfying the descending chain condition on closed

invariant subgroups), then α is a Markov shift in the above sense ([KS1]). If

the group is abelian, then the system is determined by a module L over the ring

Rd = Z[u±1
1 , . . . , u±1

d ]: the module L as an additive group is the dual X̂ of X, with

multiplication by the variable ui the automorphism of L dual to the automorphism

αei of X. See [KS1] or [LSW] for a detailed discussion of this correspondence.

In the case of a cyclic module L = Rd/〈f1, . . . , f`〉, the correspondence takes

the following form. The Zd-action αL on XL is the shift action on

(3.1) XL =

{
x ∈ TZ

d

|
∑
m

xn+mcj,m = 0 mod 1, for j = 1, . . . , `,n ∈ Zd
}
,

which is a closed, shift-invariant subgroup of the compact group TZd . Here we have

written each polynomial fj(u1, . . . , ud) as
∑
cj,mum, where um = um1

1 . . . umdd .

It is clear from Section 1 that the M -rescaling of αRd/〈f1,...,f`〉 is the Zd-action

corresponding to the module Rd/〈f1(um1 , . . . ,umd), . . . , f`(u
m1 , . . . ,umd)〉 where

M = [mt
1 | · · · |m

t
d].

Example 3.1. Consider α = αRd/〈f〉 (f non-zero). By [LSW], the topological

entropy of α is given by

h(α) = log M(f) =

∫ 1

0

· · ·

∫ 1

0

log |f(e2πis1 , . . . , e2πisd)| ds1 . . . dsd

where M(f) is the Mahler measure of f . It follows from Corollary 2.2 that

(3.2) M (f(u1, . . . , ud)) = M (f(um1 , . . . ,umd))

whenever det[mt
1 | · · · | m

t
d] 6= 0. This may of course be seen directly: the endo-

morphism of the d-torus given by the matrix M is Lebesgue measure-preserving.
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Example 3.2. Consider α = αR2/〈1+u1+u2〉. By [S3], α is isomorphic to a

Z2 Bernoulli shift. For any M =

[
a b

c d

]
, ad 6= bc, the M -rescaling α(M) =

αR2/〈1+ua1u
c
2+ub1u

d
2〉 is also a Bernoulli shift by Theorem 2.1 and [OW]. By Corol-

lary 2.2 we deduce that α and α(M) are measurably isomorphic for every non-

singular M . Notice that by [S1], α and α(M) are not topologically conjugate if

M 6=

[
1 0

0 1

]
.

Example 3.3. Consider α = αR2/〈2,1+u1+u2〉. In contrast to 3.2 above, the

rescalings of α are not all measurably isomorphic (for instance, if M =

[
−1 0

0 1

]
,

then α(M) is not isomorphic to α; see [KS2, Examples 4.3(1)]).

Example 3.4. Let f(u) = un + an−1u
n−1 + · · ·+ a1u± 1. As shown in [KS1],

αR1/〈f〉 is algebraically isomorphic to the automorphism α of the n-torus Tn de-

termined by the matrix A companion to f . The M = [m]-rescaling of α is alge-

braically isomorphic to the automorphism β of the mn-torus Tmn determined by

the companion matrix to the polynomial f(um). By Corollary 2.2 and [K], α and

β are measurably isomorphic (though they are not topologically conjugate unless

m = 1). By Theorem 1.1, βm is algebraically isomorphic to the m-fold Cartesian

product of α. This observation is nothing more than the following matrix lemma:

if A is the companion matrix to f(u), and B is the companion matrix to f(um),

then Bm is conjugate in GL(n,Z) to A⊕ · · · ⊕A (m times).

Example 3.5. Consider the group endomorphism α (the invertible case may be

dealt with by an easy extension) given by the module Z[u]/〈u− 2〉. This is simply

the map x 7→ 2x mod 1 on the circle T. By the above remarks, the endomorphism

β of the 2-torus T2 given by the 2-rescaling of α (i.e. by the module Z[u]/〈u2−2〉)
is measurably isomorphic to α. Off a countable set, the map θ : T→ T×T sending

t = t1
2 + t2

4 + t3
8 + . . . to

(
t1
2 + t3

4 + t5
8 + . . . , t22 + t4

4 + t6
8 + . . .

)
is an invertible

measure-preserving map, and intertwines the two N-actions. To see this, notice

that the 2-rescaling of α is given by the action of

[
0 1

2 0

]
on T× T, and

θ−1

[
0 1

2 0

] [
t1
2 + t3

4 + t5
8 + . . .

t2
2 + t4

4 + t6
8 + . . .

]
= θ−1

[
t2
2 + t4

4 + t6
8 + . . .

t3
2 + t5

4 + t7
8 + · · ·

]
=
t2

2
+
t3

4
+ . . . .

4. Other Examples

Now consider a one-dimensional subshift of finite type Σ = ΣA, where A = (aij)

is a 0-1 valued square k × k matrix. The subshift is the shift map on

ΣA = {x ∈ {1, 2, . . . , k}Z | axnxn+1 = 1 for all n ∈ Z}.

For the definition of the zeta function, see [BL].
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Example 4.1. The rescalings of the golden mean shift give an infinite family

of topologically distinct subshifts of finite type with the same entropy. Let A =[
1 1

1 0

]
, and let Σ = ΣA be the corresponding subshift of finite type. An easy

calculation shows that Σ(2) is given by the matrix

A(2) =


1 1 0 0

0 0 1 1

1 0 0 0

0 0 1 0

 ,
Σ(3) is given by the matrix

A(3) =



1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0


,

and so on. All the shifts have the same entropy. By Theorem 2.1, Fn
(
Σ(n)

)
=

F1 (Σ)
n

= 1; it follows that Σ(n) cannot be topologically conjugate to Σ for n 6= 1.

Similar considerations show that Σ(n) and Σ(m) have the same zeta function (and

therefore can only be topologically conjugate) if n = m, so this is an infinite

family of topologically distinct subshifts of finite type all with topological entopy

log
(

1+
√

5
2

)
. The first few zeta functions are given by:

ζΣ(z) =
1

1 + z − z2
, ζΣ(2)(z) =

1

(1 + z − z2)(1 + z2)
,

and

ζΣ(3)(z) =
1

(1 + z − z2)(1− z3 − z6)
.

Example 4.2. By Corollary 2.4, the zeta function of a rescaling of any subshift

of finite type is computable from the zeta function of the original subshift of

finite type. This means no additional invariants of topological conjugacy can be

extracted from the periodic points of the rescalings of a subshift of finite type.

As an illustration, we show how to find the zeta function of Σ(2) when the zeta

function of Σ is given by

ζΣ(z) =
∏

i=1,...,s

1

1− λiz
.
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By Corollary 1.4,

ζΣ(2)(z) = exp

(
∞∑
n=1

z2n+1

2n+ 1

(
λ2n+1

1 + · · ·+ λ2n+1
s

)
+
∞∑
m=1

z2m

2m
(λm1 + · · ·+ λms )2

)

= exp

 ∞∑
n=1

zn

n
(λn1 + · · ·+ λns ) +

∞∑
m=1

z2m

2m

(
2
∑
i<j

λmi λ
m
j

)
so that

(4.1) ζΣ(2)(z) =
∏

i=1,...,s

1

1− λiz
×
∏
i<j

1

1− λiλjz2
.

Example 4.3. If σ is a Zd topological Markov shift, then the k-fold Cartesian

product σ × · · · × σ has kth roots of every kind for any k 6= 0. (For d = 1 a kth

root of σ is a subshift of finite type φ with the property that φk is topologically

conjugate to σ; for d > 1 we say that σ has kth roots of every kind if for any

integer matrix M with det(M) = k, there is a Zd topological Markov shift φ with

the property that the action n 7→ φnM is topologically conjugate to σ). For the

given matrix M , take φ to be the shift σ(M) and apply Theorem 2.1.

Example 4.4. For any N ≥ 1 there is a Zd topological Markov shift with no

points of period Λ with |Zd/Λ| ≤ N . Enumerate the distinct subgroups with index

not exceeding N as Λ1, . . . ,Λk. Define a Zd Markov shift as follows:

Σ0 =
{

x ∈ {1, 2, 3}Z
d

| ax(n),x(n+ei) = 1 ∀ n ∈ Zd, i = 1, . . . , d
}

where A is the matrix

A =

 0 1 1

1 0 1

1 1 0


and e1, . . . , ed are basis vectors for Zd. Then Σ0 is a shift with no fixed points

(points invariant under the whole action). For each j = 1, . . . , k, let Mj be an

integer matrix with ZdMj = Λj . Then the Mj-rescaled shift Σj = Σ
(M)
0 has no

points with period Λj by Lemma 2.3. It follows that the shift

Σ = Σ0 × Σ1 × · · · × Σk

has the required property.
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5. Shifts Invariant Under Rescaling

Let (Σ, σ) be a Zd topological Markov shift, assumed throughout this section

to have only finitely many fixed points. Then (Σ, σ) is said to be invariant under

rescaling if for any integer matrix M with det(M) 6= 0, the rescaled shift σ(M) is

topologically conjugate to σ.

Lemma 5.1. If σ is the full d-dimensional shift on s symbols, then σ is invari-

ant under rescaling.

Notice that Lemma 5.1 is obvious: in the notation of Section 1, the full shift

on s symbols may be defined by taking A = {1, 2, . . . , s}, F = {0} and P = A.

Lemma 5.2. If σ is a Zd Markov shift that is invariant under rescaling, then,

for any lattice Λ ⊂ Zd,

|FΛ(σ)| = s|Z
d/Λ|

where s is the number of points fixed by σ.

That is, if σ is invariant under rescaling, then it has the same periodic point

data as a full shift.

Proof. By Lemma 2.3 and rescaling invariance,

|FΛ(σ(M))| = |FΛ(σ)| = |FH(Λ)(σ)||Z
d/(Λ+ZdM)|.

Pick M so that ZdM = Λ. Then

|FΛ(σ(M))| = |FΛ(σ)| = |FZd(σ)|| det(M)|.

The proof is completed by noting that s = |FZd(σ)| is the number of points fixed

by σ, and |det(M)| = |Zd/Λ|. �

Corollary 5.3. If σ is invariant under rescaling, then the topological entropy

of σ is greater than or equal to log s, where s is the number of points fixed by σ.

Corollary 5.4. If σ is a one-dimensional subshift of finite type that is invariant

under rescaling, then it is shift equivalent to a full shift.

Proof. By Lemma 5.2, the dynamical zeta function of σ is given by ζσ(z) =
1

1−sz . It follows that some power of σ is topologically conjugate to a full shift (see

Theorem B in [W]). �

For definitions and results used above, see the survey paper [P2].

Problem. If σ is a Zd Markov shift that is invariant under rescaling, is σ

topologically conjugate to a full shift?
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[WZ] Ward T. and Zhang Q., The Abramov-Rokhlin entropy addition formula for amenable

group actions, Monatshefte für Math. 114 (1992), 317–329.
[W] Williams R. F., Classification of subshifts of finite type, Annals of Math. 98 (1973),

120–153; Errata 99 (1974), 380–381.

T. Ward, School of Mathematics, University of East Anglia, Norwich NR4 7TJ, U.K.


