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MINIMAL AND MAXIMAL SETS OF BELL–TYPE

INEQUALITIES HOLDING IN A LOGIC

H. LÄNGER and M. MACZYŃSKI

Dedicated to the memory of Prof. Milan Kolibiar

Abstract. It is shown that for every integer n > 1 the poset ({{f : 2{1,... ,n} →
Z |
∑
I⊆{1,... ,n} f(I)p(

∧
i∈I ai) ∈ [0, 1] for all states p on L and all a1, . . . , an ∈

L} |L : ortholattice} , ⊆) possesses a smallest and a greatest element. The functions
in this poset are interpreted as Bell-type inequalities holding in L.

1. Introduction

Consider a quantum mechanical (physical) system whose event space (the so-

called logic) is described by an ortholattice L. By performing experiments and by

measuring relative frequencies of events and relative frequencies of intersections of

certain events (so-called correlations) one obtains some informations concerning

the structure of L. For instance, if there exist a state p on L and events a, b of L

such that 0 ≤ p(a) + p(b) − p(a ∧ b) ≤ 1 is not satisfied (as it is the case e.g. for

L = MO2) then L cannot be a Boolean algebra, i.e., the corresponding physical

system cannot be a classical one. Inequalities of the above type are called Bell-

type inequalities. A Bell-type inequality is said to hold in L if it holds for every

state p on L and for every elements a1, . . . , an of L. It is shown that there exists a

smallest and a greatest (both with respect to set-theoretical inclusion) set of Bell-

type inequalities (with integer coefficients) holding in an ortholattice. Sufficient

and necessary conditions in order that for a given L these sets are smallest or

greatest are discussed. The cardinalities of these sets are estimated.

2. Basic Notions and Results

By a logic we mean an ortholattice, that is an algebra (L,∨,∧,′ , 0, 1) of type

(2,2,1,0,0) satisfying the following conditions:
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(i) (L,∨,∧, 0, 1) is a bounded lattice,

(ii) (a ∨ b)′ = a′ ∧ b′ for all a, b ∈ L,

(iii) a ∨ a′ = 1 for all a ∈ L,

(iv) (a′)′ = a for all a ∈ L.

In the following let L, L1, L2 denote fixed logics.

L is called orthomodular if b = a ∨ (b ∧ a′) for all a, b ∈ L with a ≤ b. a, b ∈ L
are called mutually orthogonal (in signs a ⊥ b) if a ≤ b′.

By a state on L we mean a mapping p : L → [0, 1] satisfying the following

conditions:

(i’) p(1) = 1,

(ii’) if a, b ∈ L and a ⊥ b then p(a ∨ b) = p(a) + p(b).

Let S(L) denote the set of all states on L.

Remark 1. By using an induction argument it can be shown that (ii’) implies

finite additivity of p.

Remark 2. If a, b ∈ L and a ≤ b then a ⊥ b′ and hence p(a∨ b′) = p(a) + p(b′)

whence p(b ∧ a′) = 1− p(a ∨ b′) = 1− p(a)− p(b′) = p(b)− p(a).

We say that a state p1 on L1 can be derived from a state p2 on L2 if there exists

a homomorphism ϕ from L1 to L2 with p2 ◦ ϕ = p1.

L is called nearly Boolean if for every p ∈ S(L) there exists a Boolean algebra

B and a q ∈ S(B) such that p can be derived from q.

Obviously, every Boolean algebra is nearly Boolean.

• p ∈ L is called subadditive if p(a ∨ b) ≤ p(a) + p(b) for all a, b ∈ L.

• p ∈ S(L) is said to have the Jauch-Piron property if p(a∧b) = 1 whenever

a, b are elements of L with p(a) = p(b) = 1.

• S ⊆ S(L) is called separating if for all a, b ∈ L with a 6= b there exists a

p ∈ S with p(a) 6= p(b).

• S ⊆ S(L) is called full if a ≤ b whenever a, b are elements of L with

p(a) ≤ p(b) for all p ∈ S(L).

Obviously, every full set of states is separating.

In the following let n denote an arbitrary fixed positive integer and put N :=

{1, . . . , n}.

For every a ∈ Ln and every i ∈ N let ai denote the i-th component of a.

For every I ⊆ N let aI denote the element b ∈ Ln with bi = 1 for i ∈ I and

bi = 0 otherwise. pa(I) := p(
∧
i∈I ai) for all p ∈ S(L), a ∈ Ln and I ⊆ N (where∧

i∈∅ ai := 1 as usual). f∗(I) :=
∑
K⊆I f(K) for all f : 2N → Z and I ⊆ N .

By a Bell-type inequality (with integer coefficients) of order n we mean an

expression of the form

(1) 0 ≤ 〈f, pa〉 ≤ 1
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where f : 2N → Z, p ∈ S(L) and a ∈ Ln and where 〈f, pa〉 denotes the inner

product ∑
I⊆N

f(I)pa(I)

of f and pa in R2N . (1) is said to hold in L if (1) holds for all p ∈ S(L) and all

a ∈ Ln. Let A(L) denote the set of all f : 2N → Z such that (1) holds in L.

If S(L) = ∅ (it is well-known that such logics L exist; the classical example of

such a logic can be found in [5]) then obviously every Bell-type inequality holds

in L. To avoid this trivial case let us assume that S(L) 6= ∅.

f : 2N → Z is called L-representable if there exists an n-ary term t such that

〈f, p•〉 = p◦tL for all p ∈ S(L) where here and in the following tL denotes the term

function on L corresponding to t. Let R(L) denote the set of all L-representable

functions from 2N to Z.

Put

A0 := {f : 2N → Z | there exist a non-negative integer m and subsets

I1, . . . , Im of N with I1 ⊂ · · · ⊂ Im such that f(Ij) = (−1)j+1

for all j = 1, . . . ,m and f(I) = 0 otherwise},

A1 := {f : 2N → Z | f∗(2N ) ⊆ {0, 1}}.

(Here and in the following ⊂ denotes proper inclusion.)

Theorem 1. Assume that every state on L1 can be derived from some state

on L2. Then R(L2) ⊆ R(L1).

Proof. Let f ∈ R(L2). Then there exists an n-ary term t such that 〈f, p•〉 =

p ◦ tL2 for all p ∈ S(L2). Now let q ∈ S(L1). Since q can be derived from some

state on L2 there exists a state r on L2 and a homomorphism ϕ from L1 to L2

with r ◦ ϕ = q. Now let a ∈ Ln1 and put b := (ϕ(a1), . . . , ϕ(an)). Then

〈f, qa〉 = 〈f, r ◦ ϕa〉 = 〈f, rb〉 = r(tL2(b)) = r(ϕ(tL1(a))) = (q ◦ tL1)(a).

Hence f ∈ R(L1). �

The following lemma shows that states on ortholattices are monotone.

Lemma 2. Let p ∈ S(L) and a, b ∈ L with a ≤ b. Then p(b) = p(a)+p(b∧a′).

Proof. Because of a ⊥ b′ we have p(a) + p(b ∧ a′) = p(a) + 1 − p(a ∨ b′) =

p(a) + 1− p(a)− p(b′) = p(b). �

Theorem 3. A0 ⊆ R(L) ⊆ A(L) ⊆ A1

Proof. Let p ∈ S(L) and b ∈ Ln.
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First assume f ∈ A0. Then there exist a non-negative integer m and subsets

I1, . . . , Im of N with I1 ⊂ · · · ⊂ Im such that f(Ij) = (−1)j+1 for all j = 1, . . . ,m

and f(I) = 0 otherwise. Put

cj :=
∧
i∈Ij

bi

for all j = 1, . . . ,m. Then

〈f, pb〉 =
m∑
j=1

(−1)j+1p(cj).

Using Lemma 1 and the additivity of p we obtain

〈f, pb〉 =

m
2∑

k=1

(p(c2k−1)− p(c2k)) = p(

m
2∨

k=1

(c2k−1 ∧ c
′
2k))

if m is even, and

〈f, pb〉 =

m−1
2∑

k=1

(p(c2k−1)− p(c2k)) + p(cm) = p(

m−1
2∨

k=1

(c2k−1 ∧ c
′
2k) ∨ cm)

if m is odd. (Observe that in the first case the elements c1 ∧ c′2, . . . , cm−1 ∧ c′m
are mutually orthogonal since c1 ≥ . . . ≥ cm and since for 1 ≤ k < l ≤ m

2 we have

2k < 2l − 1 and therefore

c2l−1 ∧ c
′
2l ≤ c2l−1 ≤ c2k ≤ c

′
2k−1 ∨ c2k = (c2k−1 ∧ c

′
2k)′,

i.e., c2l−1 ∧ c′2l ⊥ c2k−1 ∧ c′2k. In the second case it follows analogously that

c1 ∧ c′2, . . . , cm−2 ∧ c′m−1 are mutually orthogonal. Moreover, we have in this

case cm ≤ c2k ≤ c′2k−1 ∨ c2k = (c2k−1 ∧ c′2k)′ for all k = 1, . . . , m−1
2 and hence

the elements c1 ∧ c′2, . . . , cm−2 ∧ c′m−1, cm are mutually orthogonal in this case.)

Therefore f ∈ R(L).

The inclusion R(L) ⊆ A(L) is obvious.

Finally, assume f ∈ A(L). Then f∗(I) = 〈f, paI 〉 ∈ {0, 1} for all I ⊆ N . Hence

f ∈ A1. �
Lemma 4. For I,K ⊆ N define aIK := 1 and bIK := (−1)|I\K| if K ⊆ I and

aIK = bIK := 0 otherwise. Then the matrices (aIK)I,K⊆N and (bIK)I,K⊆N are

mutually inverse.

Proof. The proof uses the method of interchanging of sum signs and the special

case
m∑
i=0

(
m

i

)
(−1)i = (1 + (−1))m = δm0 (m ≥ 0)

of the binomial theorem. �
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Lemma 5. For every f, g : 2N → R the following are equivalent:

(i)
∑
K⊆I

f(K) = g(I) for all I ⊆ N ,

(ii)
∑
K⊆I

(−1)|I\K|g(K) = f(I) for all I ⊆ N .

Proof. With the notation of the previous lemma we have∑
K⊆I

f(K) =
∑
K⊆I

aIKf(K) and
∑
K⊆I

(−1)|I\K|g(K) =
∑
K⊆I

bIKg(K).

�
Remark. According to Lemma 5 the elements of A1 correspond in a natural

bijective way to the mappings from 2N to {0, 1}.

3. Minimal Sets of Valid Bell-type Inequalities

Theorem 6. Assume n ∈ {2, 3}. Then the following are equivalent:

(i) A(L) = A0,

(ii) there exist p ∈ S(L) and a, b ∈ L with p(a ∧ b) < p(a)+p(b)−1
2 .

Proof. First we remark that for p ∈ S(L) and a, b ∈ L the inequalities

p(a ∧ b) <
p(a) + p(b)− 1

2

and

p(a) + p(b)− 2p(a ∧ b) > 1

are equivalent. If (i) holds then the inequality

0 ≤ p(a) + p(b)− 2p(a ∧ b) ≤ 1

does not hold in L and hence because of the monotonicity of states there exist

p ∈ S(L) and a, b ∈ L with p(a) + p(b)− 2p(a ∧ b) > 1, i.e. (ii) holds.

Conversely, assume (ii) holds. In the following we only consider inequalities of

the form

0 ≤
∑
I⊆N

f(I)p(
∧
i∈I

ai) ≤ 1

with f(∅) = 0 since for all f ∈ A1 it holds f(∅) ∈ {0, 1} and since the inequalities

0 ≤ x ≤ 1 and 0 ≤ 1− x ≤ 1 are equivalent.

Case 1. n = 2

The only Bell-type inequalities corresponding to the elements f of A1 \A0 with

f(∅) = 0 are the inequalities

0 ≤ p(a) + p(b)− p(a ∧ b) ≤ 1,

0 ≤ p(a) + p(b)− 2p(a ∧ b) ≤ 1.
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Since there exist p ∈ S(L) and a, b ∈ L with p(a) + p(b)− 2p(a ∧ b) > 1 and since

p(a) + p(b)− p(a ∧ b) ≥ p(a) + p(b)− 2p(a∧ b) we have p(a) + p(b)− p(a ∧ b) > 1.

Hence (i) holds.

Case 2. n = 3

Let f ∈ A1 \ A0 with f(∅) = 0. If there exist i, j ∈ {1, 2, 3} with i 6= j and

f({i}) = f({j}) = 1 then

∑
I⊆{1,2,3}

f(I)p(
∧
i∈I

ai) = p(a) + p(b)−

2−
∑

I⊆{1,2,3}

f(I)

 p(a ∧ b) > 1

if (ai, aj , ak) = (a, b, a ∧ b) and hence the inequality

0 ≤
∑

I⊆{1,2,3}

f(I)p(
∧
i∈I

ai) ≤ 1

does not hold in L. Now, up to symmetry, the following twelve inequalities remain

to be considered:

0 ≤ p(a ∧ b) + p(a ∧ c)− p(a ∧ b ∧ c) ≤ 1,

0 ≤ p(a ∧ b) + p(a ∧ c)− 2p(a ∧ b ∧ c) ≤ 1,

0 ≤ p(a ∧ b) + p(a ∧ c) + p(b ∧ c)− 2p(a ∧ b ∧ c) ≤ 1,

0 ≤ p(a ∧ b) + p(a ∧ c) + p(b ∧ c)− 3p(a ∧ b ∧ c) ≤ 1,

0 ≤ p(a) + p(b ∧ c)− p(a ∧ b ∧ c) ≤ 1,

0 ≤ p(a) + p(b ∧ c)− 2p(a ∧ b ∧ c) ≤ 1,

0 ≤ p(a)− p(a ∧ b)− p(a ∧ c) + p(a ∧ b ∧ c) ≤ 1,

0 ≤ p(a)− p(a ∧ b)− p(a ∧ c) + 2p(a ∧ b ∧ c) ≤ 1,

0 ≤ p(a)− p(a ∧ b) + p(b ∧ c) ≤ 1,

0 ≤ p(a)− p(a ∧ b) + p(b ∧ c)− p(a ∧ b ∧ c) ≤ 1,

0 ≤ p(a)− p(a ∧ b)− p(a ∧ c) + p(b ∧ c) ≤ 1,

0 ≤ p(a)− p(a ∧ b)− p(a ∧ c) + p(b ∧ c) + p(a ∧ b ∧ c) ≤ 1.

By setting in each single of these inequalities an appropriate one of the three

variables a, b, c equal to 1 one sees that these inequalities are not satisfied in L.

This shows that (i) holds. �

Remark. The idea of the last part of the proof of Theorem 6 can be used in

order to obtain the following general result: If the inequality

0 ≤ p(a) + p(b)− 2p(a ∧ b) ≤ 1
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does not hold in L and if f ∈ A1 is such that there exist i, j ∈ N with i 6= j and

(f(∅), f({i}), f({j})) ∈ {(0, 1, 1), (1,−1,−1)} then the inequality

0 ≤
∑
I⊆N

f(I)p(
∧
i∈I

ai) ≤ 1

does not hold in L. (For the proof put ai := a, aj := b and ak := a ∧ b for all

k ∈ N \ {i, j}.)

Lemma 7. Exactly half of the subsets of a finite non-empty set are of even

cardinality (and therefore exactly half of the subsets are of odd cardinality).

Proof. Induction on the cardinality of the base set. �

Lemma 8. |f(I)| ≤ 2|I|−1 for all f ∈ A1 and all I ∈ 2N \ {∅}.

Proof. For f ∈ A1 and ∅ 6= I ⊆ N we have according to Lemma 5

−2|I|−1 = −|{K ⊆ I | |I \K| odd}| ≤ f(I) ≤ |{K ⊆ I | |I \K| even}| = 2|I|−1.

�

The following theorem gives a sufficient condition for the minimality of A(L):

Theorem 9. If there exist a p ∈ S(L) and a, b ∈ L with p(a) + p(b) > 1 and

p(a ∧ b) ≤ 2(p(a)+p(b)−1)
3n then A(L) = A0.

Proof. Assume there exist p ∈ S(L) and a, b ∈ L with p(a) + p(b) > 1 and

p(a ∧ b) ≤ 2(p(a)+p(b)−1)
3n . Let f ∈ A(L). Then f ∈ A1. Put M := {I ⊆ N | f(I) 6=

0}. Assume (M,⊆) not to be a chain. Then there exist two elements of M

which are not comparable w.r.t. ⊆. Let B,C be two such elements of M with

the additional property that |B| + |C| is minimal. If D ∈ (M ∩ 2B) \ {B} then

because of D,C ∈ M and |D| + |C| < |B| + |C|, D and C are comparable with

respect to ⊆. Now C ⊆ D would imply C ⊆ B which contradicts the choice of

B and C. Hence C 6⊆ D and therefore D ⊂ C, i. e. D ∈ (M ∩ 2C) \ {C}. This

shows (M ∩ 2B) \ {B} ⊆ (M ∩ 2C) \ {C}. By a symmetry argument it follows

(M ∩2C) \ {C} ⊆ (M ∩2B) \ {B}. Hence (M ∩2B) \ {B} = (M ∩2C) \ {C} =: E.

Because of the choice of B and C, E is a chain and we have M ∩ 2B = E ∪ {B}
and M ∩ 2C = E ∪ {C}. We put

S :=
∑
I∈E

f(I).

If E = ∅ then S = 0 and if E 6= ∅ then (E,⊆) has a greatest element, say F ,

and S = f∗(F ) ∈ {0, 1}. Moreover, we have S + f(B) = f∗(B) ∈ {0, 1} and

S + f(C) = f∗(C) ∈ {0, 1}. Since f(B), f(C) ∈ Z \ {0}, we conclude that

(2) (S, f(B), f(C)) ∈ {(0, 1, 1), (1,−1,−1)}.
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Now define a ∈ Ln as follows:

ai :=


a

b

0

1

 if i ∈


B \ C
C \B

N \ (B ∪ C)

B ∩ C

Put T := 〈f, p̃a〉 and

U :=
∑

I⊆B∪C, I 6⊆B, I 6⊆C

f(I).

Then T = S + f(B)p(a) + f(C)p(b) + Up(a ∧ b) and hence because of (2)

(3) T ∈ {p(a) + p(b) + Up(a ∧ b), 1− p(a)− p(b) + Up(a ∧ b)}.

But because of

|U | ≤
∑

I⊆B∪C, I 6⊆B, I 6⊆C

|f(I)| <
∑
∅6=I⊆N

|f(I)| ≤
n∑
i=1

(
n

i

)
2i−1 <

1

2

n∑
i=0

(
n

i

)
2i =

3n

2

we have |Up(a∧b)| < p(a)+p(b)−1 which together with (3) contradicts T ∈ {0, 1}.
Hence (M,⊆) is a chain and A(L) = A0 now easily follows from f ∈ A1. �

A weaker sufficient condition for the minimality of A(L), which is often satisfied,

is the following:

Theorem 10. If there exist a p ∈ S(L) and a, b ∈ L with p(a) = p(b) = 1 and

p(a ∧ b) = 0 then A(L) = A0.

Proof. Theorem 9. �

Remark. The conditions of Theorem 10 are often satisfied in so-called Greechie

logics when one takes for a and b atoms lying in different maximal Boolean sub-

algebras. (Greechie logics are logics which are built up from finitely many finite

Boolean algebras (containing at least three atoms) by “pasting them together”

in a certain way.) So, one can say that in Greechie logics often only those Bell-

type inequalities are valid which follow directly from the fact that every state is

monotone. This phenomenon also appeared in another context in [1].

Next we want to show that in non-trivial “Hilbert logics” L(H) there hold only

“a few” Bell-type inequalities.

Lemma 11. Let H be a complex Hilbert space of dimension > 1 and let ε ∈
(0, 1]. Then there exist a1, a2 ∈ H and p ∈ S(L(H)) such that p(〈{a1}〉), p(〈{a2}〉)
> 1− ε and 〈{a1}〉 ∩ 〈{a2}〉 = {0}.

Proof. Since dimH > 1 there exist two linearly independent elements a, b of H.

Clearly, a, b 6= 0. Without loss of generality, |a| = 1. Because of the continuity
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of polynomials there exists a δ > 0 such that a2 + 2Re(ab)λ + b2λ2 > 0 for all

λ ∈ [0, δ). Because of the continuity of rational functions on their domain there

exist δ1, δ2 ∈ (0, δ) with δ1 6= δ2 and

|a2 + abδi|

a2 + 2Re(ab)δi + b2δ2
i

>
√

1− ε

for i = 1, 2. Now put ai := a + δib for i = 1, 2 and p(M) := |PMa|2 for all

M ∈ L(H) where for each M ∈ L(H) PM denotes the orthogonal projection of H

onto M . Then a1, a2 6= 0 and

p(〈{ai}〉) =

∣∣∣∣aaia2
i

∣∣∣∣2 =
|a2 + abδi|2(

a2 + 2Re (ab)δi + b2δ2
i

)2 > 1− ε

for i = 1, 2. Finally, let c ∈ 〈{a1}〉 ∩ 〈{a2}〉. Then there exist α1, α2 ∈ C with

c = α1a1 = α2a2, i.e., α1(a + δ1b) = α2(a + δ2b). Since a and b are linearly

independent, we conclude α1 = α2 and α1δ1 = α2δ2 which together with δ1 6= δ2
implies α1 = α2 = 0 whence c = 0. This shows 〈{a1}〉 ∩ 〈{a2}〉 = {0}. �

Theorem 12. If H is a complex Hilbert space of dimension > 1 then

A(L(H)) = A0.

Proof. Lemma 11 and Theorem 9. �

Remark. It should be mentioned that because of Gleason’s theorem every

state p on L(H), where H is an at least three-dimensional Hilbert space, has the

Jauch-Piron property. Hence for Hilbert spaces of dimension > 2 the result of

Theorem 12 cannot be obtained by applying Theorem 10.

Finally, we will provide an asymptotic formula for |A0|.

Theorem 13. |A0| ∼
2

log 2
n!

(log 2)n for n→∞.

Proof. Put an := |A0|. Because of the definition of A0, an is the number of

chains in (2N ,⊆). Let bn denote the number of chains in (2N \ {∅},⊆). If we put

b0 := 1 then we have

bn = 1 +
n∑
i=1

(
n

i

)
bn−i = 1 +

n∑
i=1

(
n

n− i

)
bn−i = 1 +

n−1∑
i=0

(
n

i

)
bi

for n ≥ 1. Since an = 2bn for n ≥ 0, we have

an = 2 +
n−1∑
i=0

(
n

i

)
ai and hence 2an = 2 +

n∑
i=0

(
n

i

)
ai
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for n ≥ 0. An easy calculation shows that g(x) = 2ex

2−ex is the exponentially

generating function g(x) =
∞∑
k=0

ak
xk

k! of the sequence a0, a1, a2, . . . . Now

(4) g(x) = −2− 2
1

ex−log 2 − 1
.

According to the Theorem of Mittag-Leffler we have

(5)
1

ex − 1
= −

1

2
+

∞∑
j=−∞

1

x− 2jπi

Using (4) and (5) and the formula for the sum of an infinite geometric series we

obtain

g(x) = −1 + 2
∞∑
k=0

xk
∞∑

j=−∞

1

(log 2 + 2jπi)k+1
.

Hence we have

an = −δn0 + 2n!
∞∑

j=−∞

1

(log 2 + 2jπi)n+1

for n ≥ 0. Now

an
2

log 2
n!

(log 2)n

= 1 +

(
log 2

log 2 + 2πi

)n+1

+

(
log 2

log 2− 2πi

)n+1

+
∞∑
j=2

(
log 2

log 2 + 2jπi

)n+1

+
∞∑
j=2

(
log 2

log 2− 2jπi

)n+1

for n ≥ 1. Since

0 ≤

∣∣∣∣∣∣
∞∑
j=2

(
log 2

log 2 + 2jπi

)n+1
∣∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑
j=2

(
log 2

log 2− 2jπi

)n+1
∣∣∣∣∣∣

≤
∞∑
j=2

(
1

2jπ

)n+1

≤

∞∫
1

(
1

2xπ

)n+1

dx

= −
1

2nπ

1

(2xπ)n

∣∣∣∞
1

=
1

2nπ

1

(2π)n
→ 0

for n→∞, and since ∣∣∣∣ log 2

log 2 + 2πi

∣∣∣∣ =

∣∣∣∣ log 2

log 2− 2πi

∣∣∣∣ < 1
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we have
an

2
log 2

n!
(log 2)n

→ 1

for n→∞ and therefore

|A0| ∼
2

log 2

n!

(log 2)n

for n→∞. �

4. Maximal Sets of Valid Bell-type Inequalities

Theorem 14 (cf. [3]). If n = 2 the A(L) = A1 if and only if every state on L

is subadditive.

Proof. From the proof of Theorem 6 it follows that in the case n = 2 A(L) = A1

is equivalent to the fact that p(a) + p(b) − p(a ∧ b) ≤ 1 for all p ∈ S(L) and all

a, b ∈ L. Replacing a, b within the last inequality by a′, b′, respectively, yields the

desired result. �

Theorem 15. Assume L to be nearly Boolean. Then R(L) = A(L) = A1.

Proof. Let f ∈ A1. Put

t(x1, . . . , xn) :=
∨

K⊆N, f∗(K)=1

(
∧
i∈K

xi ∧
∧

i∈N\K

x′i)

and let p ∈ S(L). Since L is nearly Boolean there exists a Boolean algebra B, a

state q on B and a homomorphism ϕ from L to B with q ◦ϕ = p. Let a ∈ Ln and

put b := (ϕ(a1), . . . , ϕ(an)) and

cI :=
∧
i∈I

bi ∧
∧

i∈N\I

b′i.

for all I ⊆ N . Then

〈f, pa〉 = 〈f, q ◦ ϕa〉 = 〈f, qb〉

=
∑
I⊆N

f(I)q

 ∨
I⊆K⊆N

cK

 =
∑
I⊆N

f(I)
∑

I⊆K⊆N

q(cK)

=
∑
K⊆N

q(cK)f∗(K) =
∑

K⊆N, f∗(K)=1

q(cK)

= q(tB(b)) = q(ϕ(tL(a))) = (p ◦ tL)(a).

Hence f ∈ R(L). The rest of the proof follows from Theorem 3. �
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Remark. The above theorem says that in Boolean algebras, for every f ∈ A1

there exists a g : Ln → L such that 〈f, p•〉 = p ◦ g for all p ∈ S(L). Since every

Boolean algebra has a full set of states (consider the Stone representation and

states concentrated on one element), the above g is uniquely determined by f .

Observe that for I ⊆ N g(aI) = 1 if f∗(I) = 1 and g(aI) = 0 if f∗(I) = 0. Hence,

according to Lemma 5 we have

f(I) =
∑
K⊆I

(−1)|I\K|g(aK)

for all I ⊆ N . From the existence of the disjunctive normal form for term func-

tions on Boolean algebras and from Lemma 5 it follows that in Boolean algebras

the functions g corresponding to the elements of A1 are exactly the n-ary term

functions on L.

Example. Let O6 denote the six-element ortholattice {0, a, a′, b, b′, 1} where

0 < a < b < 1. Then R(O6) = A(O6) = A1. This can be seen as follows: Let

p ∈ S(L). Since a ⊥ b′ we have p(a) = p(a) + p(b′) − p(b′) = p(a ∨ b′) − p(b′) =

p(1)−p(b′) = 1−p(b′) = p(b). For every α ∈ [0, 1] let pα denote the mapping from

L to [0, 1] defined by pα(0) := 0, pα(a) = pα(b) := α, pα(a′) = pα(b′) := 1 − α
and pα(1) := 1. Then, obviously, S(O6) = {pα |α ∈ [0, 1]}. Now it is easy

to see that every state on O6 can be derived from a state on the four-element

Boolean algebra. Hence, O6 is nearly Boolean and therefore R(O6) = A(O6) = A1

according to Theorem 15.

In the following we consider orthomodular logics.

Theorem 16. Assume n ≥ 3. Then the following are equivalent:

(i) L is nearly Boolean,

(ii) p(t1(a)) = p(t2(a)) for all p ∈ S(L), all m ≥ 1, all m-ary terms t1, t2 on L such

that the law t1 = t2 holds in every Boolean algebra and all a ∈ Lm,

(iii) A=A1,

(iv) A is maximal.

Proof. The proof that (i)–(iii) are equivalent can be found e.g. in [4]. The

equivalence of (iv) to each of (i)–(iii) now follows by Theorem 3. �

Theorem 17. Assume n ≥ 3. Then (i) and (ii) hold:

(i) If L has a separating set of states then A is maximal iff L is Boolean.

(ii) If L has a full set of states then A is maximal iff L is Boolean.

Proof. Theorem 16. �

Remark. That (also in case n ≥ 3) the maximality of A does not character-

ize the distributivity of L can be seen by the following observation which shows

that there exist nearly Boolean logics which are not Boolean. In order to see this
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consider a non-trivial Boolean algebra B and a stateless logic L0. Since every

non-trivial Boolean algebra possesses at least one state (consider the Stone rep-

resentation and any state concentrated on one fixed element), L0 is not Boolean.

Since L0 is a homomorphic image of B × L0, B × L0 is also not Boolean. Let

p ∈ S(B × L0). Since p(0, 1) > 0 would imply p(0,.)
p(0,1) ∈ S(L0), we have p(0, 1) = 0

and hence p(a, b) = p((a, 0)∨ (0, b)) = p(a, 0) +p(0, b) = p(a, 0) for all a, b ∈ L and

p(., 0) ∈ S(B). Therefore S(B × L0) = {(x, y) 7→ q(x) | q ∈ S(B)}. Hence B × L0

is nearly Boolean.

Theorem 18. |A1| = 22n.

Proof. Remark after Lemma 5. �
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