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ON MEASURE ZERO SETS IN

TOPOLOGICAL VECTOR SPACES

M. GRINČ

Abstract. We present short proofs of the well known facts that there exists a
probability measure vanishing on all the Aronszajn’s zero sets and that nonempty
open sets in separable F-spaces are not Aronszajn’s zero sets.

1. Let X be a real vector space. Following N. Aronszajn [1] we accept the

following definitions.

If x ∈ X and a ∈ X \ {0} then we say that a set A ⊂ x+ Ra is of (Lebesgue)

measure zero iff the set {t ∈ R : x+ta ∈ A} has one dimensional Lebesgue measure

l1 zero. For a ∈ X \ {0} we put

Na := {A ⊂ X : A ∩ (x+ Ra) is of measure zero for every x ∈ X} ,

and if (an) is a sequence of nonzero vectors of X then

N (an) :=

{
A ⊂ X : A =

∞⋃
n=1

An and An ∈ Nan for every n ∈ N

}
.

Let us note a simple consequence of the above definitions.

Proposition 1. For every a ∈ X \ {0} the family Na is a σ-ideal invariant

under translations and homoteties, and for every sequence (an) of nonzero vectors

of X the family N (an) is a σ-ideal invariant under translations and homoteties as

well.

2. Assume now that X is an F-space (in the sense of W. Rudin [4, 1.8]) and

let B denote the family of all Borel subsets of X.

We start with the following simple fact (in which it is enough to assume that

X is a topological vector space).
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Proposition 2. For every a ∈ X \ {0} the σ-ideal Na does not contain any

nonempty open subsets of X and there exists a probability measure µ on B such

that

µ(B) = 0 for every B ∈ B ∩Na

Proof. If U ⊂ X is a neighbourhood of the origin then so is the set {t ∈ R :

ta ∈ U} on the real line and, consequently, U /∈ Na. Hence and from the fact

that the family Na is invariant under translations it follows that Na contains

no nonempty open subset of X. Moreover, it follows from the continuity of the

function ϕ : [0, 1] −→ X given by ϕ(t) = ta that the formula

µ(B) = l1(ϕ−1(B))

defines a probability measure on B. If B ∈ B∩Na then, in particular, l1(ϕ−1(B)) =

0. Therefore µ(B) = 0. �

If (an) is a sequence of nonzero vectors of X then we put

NB(an) :=

{
B ⊂ X : B =

∞⋃
n=1

Bn and Bn ∈ B ∩Nan for every n ∈ N

}
.

Using an idea from the proof of [3, Fact 3] we shall present now our proof of the

following theorem (cf. [1, Chapter IV] by N. Aronszajn and [2] by V. I. Bogachev).

Theorem. If (an) is a sequence of nonzero vectors of X then there exists a

probability measure µ on B such that

µ(B) = 0 for every B ∈ NB(an).

Proof. For every positive integer n let us fix a closed and nondegenerate interval

In ⊂ R containing zero and such that the set Zn defined by

Zn := {tan : t ∈ In}

has the diameter less than 1
2n , consider the function ϕn : In −→ X given by

ϕn(t) = tan

and a probability measure µn on B defined by

µn(B) =
l1(ϕ−1

n (B))

l1(In)
;
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moreover, let νn denote the restriction of µn to the σ-algebra of all Borel subsets

of the (compact) space Zn. Of course,

µn(B) = νn(B ∩ Zn) for every B ∈ B;

in particular, νn is a probability measure for every n ∈ N. Let ν be the product

of the sequence of measures (νn). Since for every z ∈
∏∞
n=1 Zn the series

∑∞
n=1 zn

converges and the function S :
∏∞
n=1 Zn −→ X defined by

S(z) =
∞∑
n=1

zn

is continuous, we see that the formula

µ(B) = ν(S−1(B))

defines a probability measure on B. For every positive integer n let ν
n

denote the

product of the sequence of measures (ν1, . . . , νn−1, νn+1, . . . ), consider the function

S
n

:
∏∞
ν=1, ν 6=n Zν −→ X given by

S
n

(z1, . . . , zn−1, zn+1, zn+2, . . . ) =
∞∑

ν=1, ν 6=n

zν

and a probability measure µ
n

defined on B by

µ
n
(B) = ν

n
(S
n

−1(B)).

We shall prove that

µ
n
∗ µn = µ for every n ∈ N.

In fact, if B ∈ B, then using the theorem on integrating by substitution and the

theorem of Fubini we have:

(µ
n
∗ µn)(B)

=

∫
X

µn(B − x)µ
n

(dx) =

∫
S
n

−1(X)

µn(B − S
n

(z
n
))ν
n

(dz
n
)

=

∫
∏∞
ν=1,ν 6=nZν

νn((B − S
n

(z
n
)) ∩ Zn)ν

n
(dz
n
)

=

∫
∏∞
ν=1,ν 6=nZν

[∫
Zn

1(B−S
n

(z
n
))∩Zn(zn)νn(dzn)

]
ν
n
(dz
n
)

=

∫
∏∞
ν=1,ν 6=nZν

[∫
Zn

1S−1(B)(z1, z2, . . . )νn(dzn)

]
ν
n
(d(z1, . . . , zn−1, zn+1, . . . ))

=

∫
∏∞
ν=1 Zν

1S−1(B)(z)ν (dz) = ν(S−1(B)) = µ(B).
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Now, if n ∈ N and B ∈ B ∩ Nan then B − x ∈ B ∩ Nan for every x ∈ X, whence

µn(B − x) = 0 for every x ∈ X and, consequently,

µ(B) = (µ
n
∗ µn)(B) =

∫
X

µn(B − x)µ
n

(dx) = 0.

This ends the proof. �

The above theorem allows us to give a simple proof of the Aronszajn’s theorem

[1, Theorem 3.1].

Corollary. Let X be a separable space. If (an) is a sequence of nonzero vectors

of X then the family NB(an) does not contain any nonempty open subset of X.

Proof. Suppose that a nonempty open set U ⊂ X belongs to NB(an). If Q is a

countable and dense subset of X then

X = U +Q ∈ NB(an),

which contradicts with the Theorem. �

3. The following sets considered in [3] by B. R. Hunt, T. Sauer and J. A. Yorke

are examples of measure zero sets.

Example 1, (cf. [3, Fact 8]). If X is an infinite dimensional F-space then for

every compact set Z ⊂ X there exists a first category set P ⊂ X such that Z ∈ Na
for every a ∈ X \ P .

Example 2, (cf. [3, Proposition 2]). The set{
(an) ∈ l2 : the series

∞∑
n=1

an converges

}

belongs to N( 1
n ).

Example 3, (cf. [3, Proposition 1]). The set{
f ∈ L1(0, 1) :

∫ 1

0

f(x) dx = 0

}
belongs to NB(an) for every linearly dense sequence (an) of elements of L1(0, 1).
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