ON MEASURE ZERO SETS IN TOPOLOGICAL VECTOR SPACES

M. GRINČ

Abstract

We present short proofs of the well known facts that there exists a probability measure vanishing on all the Aronszajn's zero sets and that nonempty open sets in separable F-spaces are not Aronszajn's zero sets.

1. Let X be a real vector space. Following N. Aronszajn [1] we accept the following definitions.

If $x \in X$ and $a \in X \backslash\{0\}$ then we say that a set $A \subset x+\mathbb{R} a$ is of (Lebesgue) measure zero iff the set $\{t \in \mathbb{R}: x+t a \in A\}$ has one dimensional Lebesgue measure l_{1} zero. For $a \in X \backslash\{0\}$ we put

$$
\mathcal{N}_{a}:=\{A \subset X: \quad A \cap(x+\mathbb{R} a) \text { is of measure zero for every } x \in X\}
$$

and if $\left(a_{n}\right)$ is a sequence of nonzero vectors of X then

$$
\mathcal{N}\left(a_{n}\right):=\left\{A \subset X: \quad A=\bigcup_{n=1}^{\infty} A_{n} \text { and } A_{n} \in \mathcal{N}_{a_{n}} \text { for every } n \in \mathbb{N}\right\}
$$

Let us note a simple consequence of the above definitions.
Proposition 1. For every $a \in X \backslash\{0\}$ the family \mathcal{N}_{a} is a σ-ideal invariant under translations and homoteties, and for every sequence (a_{n}) of nonzero vectors of X the family $\mathcal{N}\left(a_{n}\right)$ is a σ-ideal invariant under translations and homoteties as well.
2. Assume now that X is an \mathbf{F}-space (in the sense of W. Rudin [4, 1.8]) and let \mathcal{B} denote the family of all Borel subsets of X.

We start with the following simple fact (in which it is enough to assume that X is a topological vector space).

[^0]Proposition 2. For every $a \in X \backslash\{0\}$ the σ-ideal \mathcal{N}_{a} does not contain any nonempty open subsets of X and there exists a probability measure μ on \mathcal{B} such that

$$
\mu(B)=0 \text { for every } B \in \mathcal{B} \cap \mathcal{N}_{a}
$$

Proof. If $U \subset X$ is a neighbourhood of the origin then so is the set $\{t \in \mathbb{R}$: $t a \in U\}$ on the real line and, consequently, $U \notin \mathcal{N}_{a}$. Hence and from the fact that the family \mathcal{N}_{a} is invariant under translations it follows that \mathcal{N}_{a} contains no nonempty open subset of X. Moreover, it follows from the continuity of the function $\varphi:[0,1] \longrightarrow X$ given by $\varphi(t)=t a$ that the formula

$$
\mu(B)=l_{1}\left(\varphi^{-1}(B)\right)
$$

defines a probability measure on \mathcal{B}. If $B \in \mathcal{B} \cap \mathcal{N}_{a}$ then, in particular, $l_{1}\left(\varphi^{-1}(B)\right)=$ 0 . Therefore $\mu(B)=0$.

If $\left(a_{n}\right)$ is a sequence of nonzero vectors of X then we put

$$
\mathcal{N}_{\mathcal{B}}\left(a_{n}\right):=\left\{B \subset X: B=\bigcup_{n=1}^{\infty} B_{n} \text { and } B_{n} \in \mathcal{B} \cap \mathcal{N}_{a_{n}} \text { for every } n \in \mathbb{N}\right\}
$$

Using an idea from the proof of [3, Fact 3] we shall present now our proof of the following theorem (cf. [1, Chapter IV] by N. Aronszajn and [2] by V. I. Bogachev).

Theorem. If $\left(a_{n}\right)$ is a sequence of nonzero vectors of X then there exists a probability measure μ on \mathcal{B} such that

$$
\mu(B)=0 \text { for every } B \in \mathcal{N}_{\mathcal{B}}\left(a_{n}\right)
$$

Proof. For every positive integer n let us fix a closed and nondegenerate interval $I_{n} \subset \mathbb{R}$ containing zero and such that the set Z_{n} defined by

$$
Z_{n}:=\left\{t a_{n}: t \in I_{n}\right\}
$$

has the diameter less than $\frac{1}{2^{n}}$, consider the function $\varphi_{n}: I_{n} \longrightarrow X$ given by

$$
\varphi_{n}(t)=t a_{n}
$$

and a probability measure μ_{n} on \mathcal{B} defined by

$$
\mu_{n}(B)=\frac{l_{1}\left(\varphi_{n}^{-1}(B)\right)}{l_{1}\left(I_{n}\right)}
$$

moreover, let ν_{n} denote the restriction of μ_{n} to the σ-algebra of all Borel subsets of the (compact) space Z_{n}. Of course,

$$
\mu_{n}(B)=\nu_{n}\left(B \cap Z_{n}\right) \text { for every } B \in \mathcal{B}
$$

in particular, ν_{n} is a probability measure for every $n \in \mathbb{N}$. Let ν be the product of the sequence of measures $\left(\nu_{n}\right)$. Since for every $z \in \prod_{n=1}^{\infty} Z_{n}$ the series $\sum_{n=1}^{\infty} z_{n}$ converges and the function $S: \prod_{n=1}^{\infty} Z_{n} \longrightarrow X$ defined by

$$
S(z)=\sum_{n=1}^{\infty} z_{n}
$$

is continuous, we see that the formula

$$
\mu(B)=\nu\left(S^{-1}(B)\right)
$$

defines a probability measure on \mathcal{B}. For every positive integer n let ν_{n} denote the product of the sequence of measures $\left(\nu_{1}, \ldots, \nu_{n-1}, \nu_{n+1}, \ldots\right)$, consider the function $\underset{n}{S}: \prod_{\nu=1, \nu \neq n}^{\infty} Z_{\nu} \longrightarrow X$ given by

$$
\underset{n}{S}\left(z_{1}, \ldots, z_{n-1}, z_{n+1}, z_{n+2}, \ldots\right)=\sum_{\nu=1, \nu \neq n}^{\infty} z_{\nu}
$$

and a probability measure μ_{n} defined on \mathcal{B} by

$$
\underset{n}{\mu}(B)=\underset{n}{\nu}\left({\underset{n}{S}}_{-1}(B)\right)
$$

We shall prove that

$$
{\underset{n}{\mu}}_{\mu} * \mu_{n}=\mu \text { for every } n \in \mathbb{N}
$$

In fact, if $B \in \mathcal{B}$, then using the theorem on integrating by substitution and the theorem of Fubini we have:

$$
\begin{aligned}
& \underset{n}{\left(\mu * \mu_{n}\right)(B)} \\
& =\int_{X} \mu_{n}(B-x) \mu_{n}(d x)=\int_{S_{n}^{-1}(X)} \mu_{n}(B-\underset{n}{S}(\underset{n}{z})){\underset{n}{n}}_{\underset{n}{(d z}}^{n} \text {) } \\
& =\int_{\prod_{\nu=1, \nu \neq n}^{\infty} Z_{\nu}} \nu_{n}\left((B-\underset{n}{S}(\underset{n}{z})) \cap Z_{n}\right){\underset{n}{n}}_{\nu}^{(d z)} \\
& =\int_{\prod_{\nu=1, \nu \neq n}^{\infty} Z_{\nu}}\left[\int_{Z_{n}} \mathbf{1}_{(B-\underset{n}{S}(\underset{n}{n})) \cap Z_{n}}\left(z_{n}\right) \nu_{n}\left(d z_{n}\right)\right] \underset{n}{\nu}(d \underset{n}{n}) \\
& =\int_{\prod_{\nu=1, \nu \neq n}^{\infty} Z_{\nu}}\left[\int_{Z_{n}} \mathbf{1}_{S^{-1}(B)}\left(z_{1}, z_{2}, \ldots\right) \nu_{n}\left(d z_{n}\right)\right] \underset{n}{\nu}\left(d\left(z_{1}, \ldots, z_{n-1}, z_{n+1}, \ldots\right)\right) \\
& =\int_{\prod_{\nu=1}^{\infty} Z_{\nu}} \mathbf{1}_{S^{-1}(B)}(z) \nu(d z)=\nu\left(S^{-1}(B)\right)=\mu(B) \text {. }
\end{aligned}
$$

Now, if $n \in \mathbb{N}$ and $B \in \mathcal{B} \cap \mathcal{N}_{a_{n}}$ then $B-x \in \mathcal{B} \cap \mathcal{N}_{a_{n}}$ for every $x \in X$, whence $\mu_{n}(B-x)=0$ for every $x \in X$ and, consequently,

$$
\mu(B)=\left(\underset{n}{\mu} * \mu_{n}\right)(B)=\int_{X} \mu_{n}(B-x) \mu(d x)=0
$$

This ends the proof.
The above theorem allows us to give a simple proof of the Aronszajn's theorem [1, Theorem 3.1].

Corollary. Let X be a separable space. If $\left(a_{n}\right)$ is a sequence of nonzero vectors of X then the family $\mathcal{N}_{\mathcal{B}}\left(a_{n}\right)$ does not contain any nonempty open subset of X.

Proof. Suppose that a nonempty open set $U \subset X$ belongs to $\mathcal{N}_{\mathcal{B}}\left(a_{n}\right)$. If Q is a countable and dense subset of X then

$$
X=U+Q \in \mathcal{N}_{\mathcal{B}}\left(a_{n}\right)
$$

which contradicts with the Theorem.
3. The following sets considered in [3] by B. R. Hunt, T. Sauer and J. A. Yorke are examples of measure zero sets.

Example 1, (cf. [3, Fact 8]). If X is an infinite dimensional \mathbf{F}-space then for every compact set $Z \subset X$ there exists a first category set $P \subset X$ such that $Z \in \mathcal{N}_{a}$ for every $a \in X \backslash P$.

Example 2, (cf. [3, Proposition 2]). The set

$$
\left\{\left(a_{n}\right) \in \boldsymbol{l}^{2}: \text { the series } \sum_{n=1}^{\infty} a_{n} \text { converges }\right\}
$$

belongs to $\mathcal{N}_{\left(\frac{1}{n}\right)}$.
Example 3, (cf. [3, Proposition 1]). The set

$$
\left\{f \in \mathbf{L}^{1}(0,1): \int_{0}^{1} f(x) d x=0\right\}
$$

belongs to $\mathcal{N}_{\mathcal{B}}\left(a_{n}\right)$ for every linearly dense sequence $\left(a_{n}\right)$ of elements of $\mathbf{L}^{1}(0,1)$.

References

1. Aronszajn N., Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190.
2. Bogachev V. I., Three problems of Aronszajn in measure theory, Funct. Anal. Appl. 18 (1984), 242-244; translation from Funkts. Anal. Prilozh., 18 (1984), 75-76.
3. Hunt B. R., Sauer T. and Yorke J. A., Prevalence: a translation-invariant "almost every" on infinite-dimensional spaces, Bull. Amer. Math. Soc. 27 (1992), 217-238; 28 (1993), 306-307.
4. Rudin W., Functional analysis, McGraw-Hill Book Company, 1973, (Russian edition: Mir Publishers, 1975).
M. Grinč, Instytut Matematyki, Uniwersytet Śla̧ski, ul. Bankowa 14, PL-40-007 Katowice, Poland, e-mail: grinc@gate.math.us.edu.pl

[^0]: Received January 26, 1995.
 1980 Mathematics Subject Classification (1991 Revision). Primary 28A05, 28C15, 46G12.
 Key words and phrases. σ-ideal, Aronszajn's zero sets, F-space.

