PERMUTABILITY OF TOLERANCES WITH FACTOR AND DECOMPOSING CONGRUENCES

I. CHAJDA

Abstract

A variety \mathcal{V} has tolerances permutable with factor congruences if for any A_{1}, A_{2} of \mathcal{V} and every tolerance T on $A_{1} \times A_{2}$ we have $T \circ \Pi_{1}=\Pi_{1} \circ T$ and $T \circ \Pi_{2}=\Pi_{2} \circ T$, where Π_{1}, Π_{2} are factor congruences. If B is a subalgebra of $A_{1} \times A_{2}$, the congruences $\Theta_{i}=\Pi_{i} \cap B^{2}$ are called decomposing congruences. \mathcal{V} has tolerances permutable with decomposing congruences if $T \circ \Theta_{i}=\Theta_{i} \circ T(i=1,2)$ for each $A_{1}, A_{2} \in \mathcal{V}$, every subalgebra B of $A_{1} \times A_{2}$ and any tolerance T on B. The paper contains Mal'cev type condition characterizing these varieties.

Permutability of congruences with factor congruences was introduced by J. Hageman [5]: If A_{1}, A_{2} are algebras of the same type, denote by Π_{1}, Π_{2} the so called factor congruences on $A_{1} \times A_{2}$, i.e. Π_{i} is a congruence induced by the i-th projection of $A_{1} \times A_{2}$ onto $A_{i}(i=1,2)$. A variety \mathcal{V} has congruences permutable with factor congruences if for any A_{1}, A_{2} of \mathcal{V} and each $\Theta \in \operatorname{Con} A_{1} \times A_{2}$,

$$
\Theta \circ \Pi_{1}=\Pi_{1} \circ \Theta \quad \text { and } \quad \Theta \circ \Pi_{2}=\Pi_{2} \circ \Theta
$$

The paper [4] contains a Mal'cev type characterization of varieties satisfying this condition, see also [4] for some details. This property was studied by J. Duda [3] for 3 -permutability. In this paper we generalize the original property for tolerances and we give Mal'cev conditions characterizing these varieties.

By a tolerance on an algebra (A, F) is meant a reflexive and symmetric binary relation on A satisfying the substitution property with respect to all operations of F. The set of all tolerances on A forms a complete (even algebraic) lattice $\operatorname{Tol} A$ with respect to set inclusion. Clearly, every congruence is a tolerance on A. The least element of $\operatorname{Tol} A$ is the identity relation ω_{A}, the greatest one is $\iota_{A}=$ $A \times A$. Hence, for every two elements a, b of A there exists the least tolerance on A containing the pair $\langle a, b\rangle$; it will be denoted by $T(a, b)$ or $T(\langle a, b\rangle)$ and called the principal tolerance generated by $\langle a, b\rangle$.

[^0]Definition 1. A variety \mathcal{V} has tolerances permutable with factor congruences if for every A_{1}, A_{2} of \mathcal{V} and each $T \in \operatorname{Tol} A_{1} \times A_{2}$,

$$
T \circ \Pi_{1}=\Pi_{1} \circ T \quad \text { and } \quad T \circ \Pi_{2}=\Pi_{2} \circ T
$$

Recall that a variety \mathcal{V} is called tolerance trivial if for each $A \in \mathcal{V}$, every tolerance on A is a congruence on A. The following result contains Lemma 1.7 and Theorem 4.11 of [2]:

Proposition.

(1) Let A be an algebra and a, b, c, d be elements of A. Then $\langle a, b\rangle \in T(c, d)$ if and only if there exists a binary algebraic function φ over A with $a=$ $\varphi(c, d)$ and $b=\varphi(d, c)$.
(2) A variety \mathcal{V} is tolerance trivial if and only if \mathcal{V} is congruence-permutable.

If \mathcal{V} is a variety, denote by $F_{\mathcal{V}}\left(x_{1}, \ldots, x_{n}\right)$ the free algebra of \mathcal{V} with free generators x_{1}, \ldots, x_{n}.

Theorem 1. For a variety \mathcal{V}, the following are equivalent:
(1) \mathcal{V} has tolerances permutable with factor congruences;
(2) there exists $n \geq 1, a(2+n)$-ary term q, binary terms e_{1}, \ldots, e_{n} and ternary terms f_{1}, \ldots, f_{n} such that:

$$
\begin{aligned}
x & =q\left(x, y, e_{1}(x, y), \ldots, e_{n}(x, y)\right) \\
y & =q\left(y, x, e_{1}(x, y), \ldots, e_{n}(x, y)\right) \\
z & =q\left(y, x, f_{1}(x, y, z), \ldots, f_{n}(x, y, z)\right)
\end{aligned}
$$

Proof. $(1) \Rightarrow(2)$: Let $A_{1}=F_{\mathcal{V}}(x, y), A_{2}=F_{\mathcal{V}}(x, y, z)$ and $T \in \operatorname{Tol} A_{1} \times A_{2}$ be the principal tolerance generated by the pair $\langle(x, x),(y, y)\rangle$. Then

$$
(x, x) T(y, y) \Pi_{1}(y, z)
$$

and, by (1), also $(x, x) \Pi_{1} \circ T(y, z)$, i.e. there exists an element $d \in A_{2}$ with

$$
(x, x) \Pi_{1}(x, d) T(y, z)
$$

Hence, by the Proposition, there exists a binary algebraic function φ over $A_{1} \times A_{2}$ with

$$
\begin{align*}
& (x, d)=\varphi((x, x),(y, y)) \\
& (y, z)=\varphi((y, y),(x, x)) \tag{*}
\end{align*}
$$

Hence, there exists a $(2+n)$-ary term q and elements $\left(e_{1}, f_{1}\right), \ldots,\left(e_{n}, f_{n}\right) \in A_{1} \times A_{2}$ such that

$$
\varphi(v, w)=q\left(v, w,\left(e_{1}, f_{1}\right), \ldots,\left(e_{n}, f_{n}\right)\right)
$$

Since $e_{i} \in F_{\mathcal{V}}(x, y)$ and $f_{i} \in F_{\mathcal{V}}(x, y, z)$, each e_{i} is a binary and f_{i} a ternary term. If we substitute q and $e_{i}(x, y), f_{i}(x, y, z)$ into $(*)$ and we read it coordinatewise, then the first, second and fourth equation of $(*)$ form (2).
$(2) \Rightarrow(1):$ Suppose $A_{1}, A_{2} \in \mathcal{V}, T \in \operatorname{Tol} A_{1} \times A_{2}$ and $\left(a_{1}, a_{2}\right),\left(c_{1}, c_{2}\right) \in A_{1} \times A_{2}$. If $\left(a_{1}, a_{2}\right) T \circ \Pi_{1}\left(c_{1}, c_{2}\right)$ then $\left(a_{1}, a_{2}\right) T\left(c_{1}, b_{2}\right) \Pi_{1}\left(c_{1}, c_{2}\right)$ for some $b_{2} \in A_{2}$. Put $d_{2}=q\left(a_{2}, b_{2}, f_{1}\left(a_{2}, b_{2}, c_{2}\right), \ldots, f_{n}\left(a_{2}, b_{2}, c_{2}\right)\right)$. Then, by (2), we have

$$
\begin{aligned}
\left(a_{1}, d_{2}\right)=q & \left(\left(a_{1}, a_{2}\right),\left(c_{1}, b_{2}\right),\left(e_{1}\left(a_{1}, c_{1}\right), f_{1}\left(a_{2}, b_{2}, c_{2}\right)\right), \ldots\right. \\
& \left.\left(e_{n}\left(a_{1}, c_{1}\right), f_{n}\left(a_{2}, b_{2}, c_{2}\right)\right)\right) \\
\left(c_{1}, c_{2}\right)=q & \left(\left(c_{1}, b_{2}\right),\left(a_{1}, a_{2}\right),\left(e_{1}\left(a_{1}, c_{1}\right), f_{1}\left(a_{2}, b_{2}, c_{2}\right)\right), \ldots\right. \\
& \left.\left(e_{n}\left(a_{1}, c_{1}\right), f_{n}\left(a_{2}, b_{2}, c_{2}\right)\right)\right)
\end{aligned}
$$

By the Proposition, it gives $\left(a_{1}, d_{2}\right) T\left(c_{1}, c_{2}\right)$, i.e. $\left(a_{1}, a_{2}\right) \Pi_{1}\left(a_{1}, d_{2}\right) T\left(c_{1}, c_{2}\right)$ proving

$$
T \circ \Pi_{1} \subseteq \Pi_{1} \circ T
$$

Conversely, if $\left(a_{1}, a_{2}\right) \Pi_{1}\left(a_{1}, b_{2}\right) T\left(c_{1}, c_{2}\right)$, we can take $d_{2}=q\left(c_{2}, b_{2}, f_{1}\left(c_{2}, b_{2}, a_{2}\right)\right.$, $\left.\ldots, f_{n}\left(c_{2}, b_{2}, a_{2}\right)\right)$ and prove $\left(a_{1}, a_{2}\right) T\left(c_{1}, d_{2}\right) \Pi_{1}\left(c_{1}, c_{2}\right)$, i.e. also $T \circ \Pi_{1} \supseteq \Pi_{1} \circ T$. The identity $T \circ \Pi_{2}=\Pi_{2} \circ T$ can be shown analogously if we interchange the role of the first and second coordinate.

Remark. If \mathcal{V} has tolerances permutable with factor congruences then \mathcal{V} has clearly also congruences permutable with factor congruences since every $\Theta \in \operatorname{Con} A$ for $A \in \mathcal{V}$ is also a tolerance on A. The converse implication does not hold, see the following.

Example 1. An implication algebra (see [1]) is a groupoid satisfying the following identities

$$
(x y) x=x, \quad(x y) y=(y x) x, \quad x(y z)=y(x z) .
$$

As it was shown in $[\mathbf{1}]$, in every implication algebra it holds $x x=y y$, hence we can put $x x=1$ which is an algebraic constant. Moreover, every implication algebra is a \vee-semilattice with the greatest element 1 with respect to the term operation

$$
x \vee y=(x y) y
$$

Denote by \mathcal{V} the variety of all implication algebras. It is well-known that \mathcal{V} is congruence-distributive, i.e. \mathcal{V} has the Fraser-Horn property (alias directly decomposable congruences) and hence \mathcal{V} has also congruences permutable with factor
congruences. On the other hand, let A be a three element implication algebra whose table is the following:

	1	a	b
1	1	a	b
a	1	1	b
b	1	a	1

Introduce a relation T on $A \times A$ by its blocks, where we set $x T y$ iff x and y are from the same block:

$$
\begin{aligned}
B_{1} & =\{(a, a),(b, a),(1, a),(a, 1),(b, 1),(1,1)\} \\
B_{2} & =\{(a, b),(a, 1),(b, 1),(1,1)\} \\
B_{3} & =\{(b, b),(1, b),(b, 1),(1,1)\}
\end{aligned}
$$

see Fig. 1, where the implication algebra $A \times A$ is visualized with respect to its semilattice order.

Figure 1.

It is easy to show that $T \in \operatorname{Tol} A \times A$. Moreover, we have

$$
(a, a) T(b, 1) \Pi_{1}(b, b)
$$

but there does not exist $d \in\{a, b, 1\}$ with

$$
(a, a) \Pi_{1}(a, d) T(b, b)
$$

whence $T \circ \Pi_{1} \neq \Pi_{1} \circ T$.

Example 2. Every variety of lattices has tolerances permutable with factor congruences (by the Proposition, lattice varieties are not tolerance trivial): we can take $n=2, e_{1}(x, y)=x \wedge y, e_{2}(x, y)=x \vee y, f_{1}(x, y, z)=y \vee z, f_{2}(x, y, z)=z$ and $q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1} \vee x_{3}\right) \wedge x_{4}$. Then

$$
\begin{aligned}
q\left(x, y, e_{1}(x, y), e_{2}(x, y)\right) & =(x \vee(x \wedge y)) \wedge(x \vee y)=x \\
q\left(y, x, e_{1}(x, y), e_{2}(x, y)\right) & =(y \vee(x \wedge y)) \wedge(x \vee y)=y \\
q\left(y, x, f_{1}(x, y, z), f_{2}(x, y, z)\right) & =(y \vee(y \vee z)) \wedge z=z
\end{aligned}
$$

There exist varieties whose similarity type contains two nullary operations, say 0 and 1 , and the greatest tolerance (and hence also congruence) ι_{A} on $A \in \mathcal{V}$ is equal to the principal tolerance $T(0,1)$. Such a variety will be called a $T(0,1)$ variety. Typical examples of $T(0,1)$-varieties are varieties of bounded lattices or unitary rings. For $T(0,1)$-varieties, the Mal'cev condition of Theorem 1 can be replaced by a strong Mal'cev condition:

Theorem 2. Let \mathcal{V} be a variety. The following conditions are equivalent:
(1) \mathcal{V} is a $T(0,1)$-variety;
(2) there exists a 4-ary term q such that

$$
x=q(0,1, x, y) \quad \text { and } \quad y=q(1,0, x, y)
$$

Moreover, every $T(0,1)$-variety has tolerances (thus also congruences) permutable with factor congruences.

Proof. (1) $\Rightarrow(2)$: Let $A_{1}=A_{2}=F_{\mathcal{V}}(x, y)$. Since \mathcal{V} is a $T(0,1)$-variety, clearly $\langle x, y\rangle \in T(0,1)$. Applying the Proposition, there exists a 4 -ary term q with

$$
x=q(0,1, x, y) \quad \text { and } \quad y=q(1,0, x, y)
$$

$(2) \Rightarrow(1):$ For each $A \in \mathcal{V}$ and $a, b \in A$ we have

$$
\langle a, b\rangle=\langle q(0,1, a, b), q(1,0, a, b)\rangle \in T(0,1)
$$

whence $T(0,1)=\iota_{A}$.
Suppose now that \mathcal{V} is a $T(0,1)$-variety and $A_{1}, A_{2} \in \mathcal{V}$ and $T \in \operatorname{Tol} A_{1} \times A_{2}$. Let

$$
\left(a_{1}, a_{2}\right) T\left(c_{1}, b_{2}\right) \Pi_{1}\left(c_{1}, c_{2}\right)
$$

Put $d=q\left(1,0, a_{2}, c_{2}\right)$. Then

$$
\begin{aligned}
\left(a_{1}, a_{2}\right) & \Pi_{1}\left(a_{1}, d\right) \\
& =\left(q\left(0,1, a_{1}, c_{1}\right), q\left(1,0, a_{2}, c_{2}\right)\right) \\
& =q\left((0,1),(1,0),\left(a_{1}, a_{2}\right),\left(c_{1}, c_{2}\right)\right) T q\left((0,1),(1,0),\left(c_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)\right) \\
& =\left(q\left(0,1, c_{1}, c_{1}\right), q\left(1,0, b_{2}, c_{2}\right)\right)=\left(c_{1}, c_{2}\right)
\end{aligned}
$$

proving $T \circ \Pi_{1} \subseteq \Pi_{1} \circ T$. The converse inclusion can be shown analogously, the equality $T \circ \Pi_{2}=\Pi_{2} \circ T$ can be reached by interchanging roles of the first and second coordinate.

The condition (2) of Theorem 2 does not imply congruence-permutability and hence tolerance triviality as one can see in the following:

Example 3. Let \mathcal{V} be the variety of all bounded lattices. Then \mathcal{V} is not congruence-permutable. However, we can put $q(a, b, x, y)=(b \wedge x) \vee(a \wedge y)$. Then

$$
\begin{aligned}
& q(0,1, x, y)=(1 \wedge x) \vee(0 \wedge y)=x \\
& q(1,0, x, y)=(0 \wedge x) \vee(1 \wedge y)=y
\end{aligned}
$$

proving (2) of Theorem 2.
Now, we turn our attention to subalgebras of direct products:
Definition 2. Let B be a subalgebra of a direct product $A_{1} \times A_{2}$. By decomposing congruences on B we mean the following $\Theta_{1}, \Theta_{2} \in \operatorname{Con} B$:

$$
\begin{aligned}
& \Theta_{1}=\left\{\left\langle\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)\right\rangle \in B^{2} ; b_{1}=c_{1}\right\} \\
& \Theta_{1}=\left\{\left\langle\left(b_{1}, b_{2}\right),\left(c_{1}, c_{2}\right)\right\rangle \in B^{2} ; b_{2}=c_{2}\right\} .
\end{aligned}
$$

A variety \mathcal{V} is said to have tolerances permutable with decomposing congruences if for every A_{1}, A_{2} of \mathcal{V}, each subalgebra B of $A_{1} \times A_{2}$ and each $T \in \operatorname{Tol} B$,

$$
T \circ \Theta_{1}=\Theta_{1} \circ T \quad \text { and } \quad T \circ \Theta_{2}=\Theta_{2} \circ T
$$

Theorem 3. For a variety \mathcal{V}, the following are equivalent:
(1) \mathcal{V} has tolerances permutable with decomposing congruences;
(2) \mathcal{V} is congruence-permutable.

Proof. If \mathcal{V} is congruence-permutable then it has evidently congruences permutable with factor congruences and, by the Proposition, \mathcal{V} is tolerance trivial, i.e. it satisfies (1).

Prove $(1) \Rightarrow(2)$: Let again $A_{1}=F_{\mathcal{V}}(x, y), A_{2}=F_{\mathcal{V}}(x, y, z)$ and let B be a subalgebra of $A_{1} \times A_{2}$ generated by three elements: $(x, x),(y, y),(y, z)$. Let $T \in \operatorname{Tol} A_{1} \times A_{2}$ be the principal tolerance generated by the pair $\langle(x, x),(y, y)\rangle$. Then $(x, x) T(y, y) \Theta_{1}(y, z)$. By (1), there exists an element $(x, d) \in B$ with

$$
\langle(x, d),(y, z)\rangle \in T(\langle(x, x),(y, y)\rangle) .
$$

By the Proposition, there is a binary algebraic function φ over B such that

$$
\begin{aligned}
& (x, d)=\varphi((x, x),(y, y)) \\
& (y, z)=\varphi((y, y),(x, x)) .
\end{aligned}
$$

However, B has three generators, thus

$$
\varphi(v, w)=q(v, w,(x, x),(y, y),(y, z))
$$

for some 5-ary term q. If we write it coordinatewise and apply the first and last equation, we obtain

$$
x=q(x, y, x, y, y) \quad \text { and } \quad z=q(y, x, x, y, z)
$$

Thus for $t(x, y, z)=q(x, y, x, y, z)$ we have

$$
\begin{aligned}
& t(x, y, y)=q(x, y, x, y, y)=x \\
& t(x, x, z)=q(x, x, x, x, z)=z
\end{aligned}
$$

i.e. t is a Mal'cev term and \mathcal{V} is congruence-permutable.

References

1. Abbot J. C., Semi-boolean algebra, Matem. Vestnik 4 (1967), 177-1988.
2. Chajda I., Algebraic Theory of Tolerance Relations, Palacký University Olomouc, Monograph series, 1991.
3. Duda J., Relation products of congruences and factor congruences, Czech. Math. J. 41 (1991), 155-159.
4. Gumm H.-P., Geometrical methods in congruence modular algebras, Memoirs Amer. Math. Soc. 286, Providence, 1983.
5. Hagemann J., Congruences on products an subdirect products of algebras, Preprint Nr. 219, TH-Darmstadt, 1975.
I. Chajda, Department of Algebra and Geometry, Palacký University Olomouc, Tomkova 40, 77900 Olomouc, Czech Republic

[^0]: Received April 12, 1995.
 1980 Mathematics Subject Classification (1991 Revision). Primary 08B05, 08A30.
 Key words and phrases. Tolerance relation, direct product, factor congruence, permutability of congruences, Mal'cev condition.

