KNEADING THEORY FOR A FAMILY OF CIRCLE MAPS WITH ONE DISCONTINUITY

Ll. ALSEDÀ and F. MAÑOSAS

Abstract

We apply the kneading theory techniques to a class of circle maps with one discontinuity and we characterize the rotation interval of a map in terms of the kneading sequences. As a consequence we obtain lower and upper bounds of the entropy depending on the rotation interval.

1. Introduction

We study the class \mathcal{C} of maps $F: \mathbf{R} \longrightarrow \mathbf{R}$ defined as follows (see Figure 1). We say that $F \in \mathcal{C}$ if:
(1) $\left.F\right|_{(0,1)}$ is bounded, continuous and non-decreasing.
(2) $\lim _{x \uparrow 1} F(x)>\lim _{x \downarrow 1} F(x)$.
(3) $F(x+1)=F(x)+1$ for all $x \in \mathbf{R}$.

For a map $F \in \mathcal{C}$ and for each $a \in \mathbf{Z}$ we set $F\left(a^{+}\right)=\lim _{x \downarrow a} F(x)$ and $F\left(a^{-}\right)=$ $\lim _{x \uparrow a} F(x)$. In view of (3) we have $F\left(a^{+}\right)=F\left(0^{+}\right)+a$ and $F\left(a^{-}\right)=F\left(0^{-}\right)+a$. Note that the exact value of $F(0)$ is not specified. Then in what follows we consider that $F(0)$ is either $F\left(0^{+}\right)$or $F\left(0^{-}\right)$, or both, as necessary.

Since every map $F \in \mathcal{C}$ has a discontinuity in each integer, the class \mathcal{C} can be considered as a family of liftings of circle maps with one discontinuity.

The maps of class \mathcal{C} appear in a natural way in the study of many branches of dynamics. The simplest example of such maps is the family $x \rightarrow \beta x+\alpha$, which plays an important role in ergodic theory (see $[\mathbf{H}]$). The case $\alpha=0$ gives the famous β-transformations (see $[\mathbf{R}]$). Also, the class \mathcal{C} contains the class of the Lorenz-Like maps which has been studied by several authors (see [ALMT], [G], $[\mathbf{G S}],[\mathbf{G u}],[\mathbf{H S}],[\mathbf{S}])$.

The aim of this paper is to extend the kneading theory developed in $[\mathbf{A M}]$ for continuous maps of the circle of degree one to class \mathcal{C}, to obtain a characterization of the rotation interval of a map in terms of its kneading sequences. From this characterization we shall obtain models with maximum and minimum entropy

[^0]

Figure 1. An example of a map of class \mathcal{C}.
and, hence, lower and upper bounds of the topological entropy depending on the rotation interval. The lower bounds of the topological entropy for this class of maps were already known (see [ALMT]). Here we give a different proof.

To extend the kneading theory to our class of maps we note that it is closely related to the class \mathcal{A}^{\prime} defined as follows. We say that $F \in \mathcal{A}^{\prime}$ if (see Figure 2) :
(1) $F \in \mathcal{C}(\mathbf{R}, \mathbf{R})$ and $F(x+1)=F(x)+1$ for all $x \in \mathbf{R}$.
(2) There exists $c_{F} \in(0,1)$, such that F is non-decreasing in $\left[0, c_{F}\right]$ and nonincreasing in $\left[c_{F}, 1\right]$.
(3) $F\left(c_{F}\right)>F(1)$.

To show the relation between maps from class \mathcal{C} and \mathcal{A}^{\prime} take $F \in \mathcal{C}$ and for each $\mu>0$ let $c_{\mu} \in(0,1)$ be such that $F\left(c_{\mu}\right)=\mu\left(1-c_{\mu}\right)+F\left(1^{+}\right)$. Also let F_{μ} be the continuous map defined as follows (see Figure 3):
(1) $\left.F_{\mu}\right|_{\left(0, c_{\mu}\right]}=F$,
(2) $F_{\mu}(x)=\mu(1-x)+F\left(1^{+}\right)$for all $x \in\left[c_{\mu}, 1\right)$

Clearly for all $\mu>0, F_{\mu} \in \mathcal{A}^{\prime}, \lim _{\mu \rightarrow \infty} c_{\mu}=1$ and $F(x)=\lim _{\mu \rightarrow \infty} F_{\mu}(x)$. In other words each map of \mathcal{C} is a pointwise limit of maps from \mathcal{A}^{\prime}.

The class \mathcal{A}^{\prime} contains the class \mathcal{A} of those maps which satisfy the statement (2) of the definition of \mathcal{A}^{\prime} with strict monotonicity. In $[\mathbf{A M}]$ a kneading theory for maps from class \mathcal{A} was developed. It is an easy exercise to extend this kneading

Figure 2. A map of class \mathcal{A}^{\prime}.
theory and all the results of $[\mathbf{A M}]$ to the class \mathcal{A}^{\prime}. To study the class \mathcal{C} we shall use without proof the results from $[\mathbf{A M}]$ for class \mathcal{A}^{\prime}. Most of the results we shall state for class \mathcal{C} are also trivial extensions of the corresponding ones in the continuous case. Thus we shall also omit their proofs. However, this paper is an extension of $[\mathbf{A M}]$. Therefore, to understand the proofs and details of this paper it is necessary to know the general theory developed in $[\mathbf{A M}]$.

The notions of periodic (mod. 1) point, rotation number, rotation interval, lap, growth number and entropy extend naturally to class \mathcal{C} (see [AM] for a review of these notions). From $[\mathbf{M}]$ it follows that the rotation interval has the same properties as in the continuous case. We shall use the same notation as in [AM]. Thus, if $F \in \mathcal{C}, L_{F}$ denotes the rotation interval of $F, s(F)$ the growth number of F and $h(F)=\log s(F)$ the topological entropy of F.

2. Kneading Theory

Let $F \in \mathcal{C}$. Given a point $x \in \mathbf{R} \backslash \mathbf{Z}$ we define its address (F-address if necessary) as $A(x)=E(F(x))-E(x)$. If $x \in \mathbf{Z}$ we define $A(x)=E\left(F\left(x^{+}\right)\right)-E(x)$. The sequence $\underline{I}(x)=\underline{I}_{F}(x)=I_{0}(x) I_{1}(x) \ldots I_{n}(x) \ldots=A(x) A(F(x)) \ldots A\left(F^{n}(x)\right) \ldots$ will be called the itinerary of x. For a point $x \in \mathbf{R}$ we define $\underline{I}\left(x^{+}\right)=$ $I_{0}\left(x^{+}\right) I_{1}\left(x^{+}\right) \ldots$ as follows. For each $n \geq 0$ there exists δ_{n} such that $I_{n}(y)$ takes

Figure 3. The maps F_{μ}.
a constant value in $\left(x, x+\delta_{n}\right)$. Denote this value by $I_{n}\left(x^{+}\right)$. This gives $\underline{I}\left(x^{+}\right)$. In a similar way one can define $\underline{I}\left(x^{-}\right)$.

Now we define an ordering in the set of itineraries. First we note that the set of addresses is naturally ordered by the order of the integers. This gives a total ordering in the set of the itineraries with the lexicographical ordering. The following lemma follows trivially.

Lemma 1. Let $x, y \in[0,1)$ such that $x<y$. Then $\underline{I}(x) \leq \underline{I}(y)$.
In a similar way to the continuous case, for a map $F \in \mathcal{C}$, we define the invariant coordinate, $\theta(x)$ (where for maps in \mathcal{C} we define the function $\epsilon(A(x))$ to be 1 for each $x \in \mathbf{R}$), the kneading invariants and the kneading determinant $D_{F}(t)$, and we obtain:

Theorem 2. For $F \in \mathcal{C}$, the function $D_{F}(t)$ is nonzero for $|t|<\frac{1}{s(F)}$. Moreover, if $s(F)>1$ then the first zero of $D_{F}(t)$ as t varies in the interval $[0,1)$ occurs at $t=\frac{1}{s(F)}$.

If $F \in \mathcal{C}$ and $s(F)>1$ we can define the map ϕ_{F} and the twist number $T(F)$ in the same way as $[\mathbf{A M}]$ and we obtain the following result which is the analogous to Theorem 2.12 of $[\mathbf{A M}]$ for the class \mathcal{C}.

Theorem 3. Let $F \in \mathcal{C}$ be such that $s(F)>1$. Then there exists a unique map \tilde{F} such that $\tilde{F} \circ \phi_{F}=\phi_{F} \circ F$. Moreover, $\tilde{F} \in \mathcal{C}, \tilde{F}(0)=T(F), \tilde{F}$ is piecewise affine, $L_{\tilde{F}}=L_{F}$ and $s(\tilde{F})=s(F)$.

Let S be the shift operator which acts in a natural way on sequences of integers (i.e. $S\left(I_{0} I_{1} \ldots\right)=I_{1} I_{2} \ldots$). We say that a sequence of integers \underline{A} is quasidominated by F if and only if

$$
\underline{I}_{F}\left(0^{+}\right) \leq \underline{A} \leq \underline{I}_{F}\left(0^{-}\right)
$$

We say that \underline{A} is dominated by F if both of the above inequalities are strict. As in $[\mathbf{A M}]$ we obtain

Proposition 4. Let $F \in \mathcal{C}$. Then the following hold:
(1) Let $x \in \mathbf{R} \backslash \mathbf{Z}$. Then $\underline{I}_{F}(x)$ is quasidominated by F.
(2) Let \underline{A} be a sequence of integers dominated by F. Then there exists $x \in$ $(0,1)$ such that $\underline{I}_{F}(x)=\underline{A}$.

Corollary 5. Let $F, G \in \mathcal{C}$ such that $\underline{I}_{F}\left(0^{+}\right) \leq \underline{I}_{G}\left(0^{+}\right)$and $\underline{I}_{F}\left(0^{-}\right) \geq \underline{I}_{G}\left(0^{-}\right)$. Then $h(F) \geq h(G)$.

The main result of this paper is the following which is the analogous of Theorem B of $[\mathbf{A M}]$ for class \mathcal{C}. Its proof is similar to the proof of Theorem B of $[\mathbf{A M}]$ and hence it will be omited. To state it we need to adapt the notation used in [AM] to our needs.

Let $a \in \mathbf{R}$ and $i \in \mathbf{Z}$. We define $\epsilon_{i}(a)=E(i a)-E((i-1) a)$ and $\delta_{i}(a)=$ $\tilde{E}(i a)-\tilde{E}((i-1) a)$, where $E(\cdot)$ denotes the integer part function and $\tilde{E}: \mathbf{R} \longrightarrow \mathbf{Z}$ is defined as follows:

$$
\tilde{E}(x)= \begin{cases}E(x), & \text { if } x \notin \mathbf{Z} \\ x-1, & \text { if } x \in \mathbf{Z}\end{cases}
$$

Set

$$
\begin{aligned}
& \underline{I}_{\epsilon}(a)=\epsilon_{1}(a) \epsilon_{2}(a) \epsilon_{3}(a) \ldots \\
& \underline{I}_{\delta}(a)=\delta_{1}(a) \delta_{2}(a) \delta_{3}(a) \ldots \\
& \underline{I}_{\epsilon}^{*}(a)=\left(\epsilon_{1}(a)+1\right) \epsilon_{2}(a) \epsilon_{3}(a) \ldots \\
& \underline{I}_{\delta}^{*}(a)=\left(\delta_{1}(a)-1\right) \delta_{2}(a) \delta_{3}(a) \ldots
\end{aligned}
$$

Theorem 6. For a map $F \in \mathcal{C}$ the following statements are equivalent:
(1) $L_{F}=[a, b]$.
(2) $\underline{I}_{\delta}^{*}(a) \leq \underline{I}\left(0^{+}\right) \leq \underline{I}_{\epsilon}(a)$ and $\underline{I}_{\delta}(b) \leq \underline{I}\left(0^{-}\right) \leq \underline{I}_{\epsilon}^{*}(b)$.

3. Bounds of the Topological Entropy

First of all, for each $a, b \in \mathbf{R}$ with $a<b$ we construct maximal and minimal models with rotation interval $[a, b]$.

Lemma 7. Let $a, b \in \mathbf{R}$ with $a<b$. Then, there exists $H_{a, b}^{+}$and $H_{a, b}^{-} \in \mathcal{C}$ such that $\underline{I}_{H_{a, b}^{-}}\left(0^{+}\right)=\underline{I}_{\epsilon}(a), \underline{I}_{H_{a, b}^{-}}\left(0^{-}\right)=\underline{I}_{\delta}(b), \underline{I}_{H_{a, b}^{+}}\left(0^{+}\right)=\underline{I}_{\delta}^{*}(b)$ and $\underline{I}_{H_{a, b}^{+}}\left(0^{-}\right)=$ $\underline{I}_{\epsilon}^{*}(a)$. Moreover $L_{H_{a, b}^{+}}=L_{H_{a, b}^{-}}=[a, b]$.

Proof. Here we use the maps $F^{+}=F_{a, b}^{+}$and $F^{-}=F_{a, b}^{-}$defined in $[\mathbf{A M}]$ (see Proposition 4.13 and Lemma 4.14). Set $c^{+}=c_{F^{+}}$and $c^{-}=c_{F^{-}}$. Then we define (see Figure 4)

$$
H_{a, b}^{+}(x)= \begin{cases}F^{+}(x) & \text { if } x \in\left[0, c^{+}\right] \\ F^{+}\left(c^{+}\right) & \text {if } x \in\left[c^{+}, 1\right)\end{cases}
$$

(a)

(b)

Figure 4. The maps $H_{0,1}^{+}$and $H_{0,1}^{-}$.

$$
H_{a, b}^{-}(x)= \begin{cases}F^{-}(x) & \text { if } x \in\left[0, c^{-}\right] \\ F^{-}\left(c^{-}\right) & \text {if } x \in\left[c^{-}, 1\right)\end{cases}
$$

From the construction of F^{+}we have that $D\left(\left(F^{+}\right)^{n}\right)(0), D\left(\left(F^{+}\right)^{n}\right)\left(c^{+}\right) \in\left[0, c^{+}\right]$ for all n (where $D(\cdot)$ denotes the decimal part function). Hence, $\left(F^{+}\right)^{n}(0)=$ $\left(H_{a, b}^{+}\right)^{n}(0)$ and $\left(H_{a, b}^{+}\right)^{n}\left(0^{-}\right)=\left(H_{a, b}^{+}\right)^{n}\left(c^{+}\right)=\left(F^{+}\right)^{n}\left(c^{+}\right)$. Therefore, we obtain the desired result for $H_{a, b}^{+}$. The assertion about $H_{a, b}^{-}$follows in a similar way.

Next we compute the kneading determinants of $H_{a, b}^{+}$and $H_{a, b}^{-}$. For $a, b \in \mathbf{R}$ with $a<b$ and $z>1$ we set $R_{a, b}^{-}(z)=\sum z^{-q}$ (resp. $R_{a, b}^{+}(z)=\sum z^{-q}$), where the sum is taken over all pairs $(p, q) \in \mathbf{Z} \times \mathbf{N}$ for which $a<\frac{p}{q}<b$ (resp. $a \leq \frac{p}{q} \leq b$).

Proposition 8. Let $a, b \in \mathbf{R}$ such that $a<b$. Then the kneading determinants of $H_{a, b}^{-}$and $H_{a, b}^{+}$are $D_{H_{a, b}^{-}}(t)=1-R_{a, b}^{-}\left(t^{-1}\right)$ and $D_{H_{a, b}^{+}}(t)=1-R_{a, b}^{+}\left(t^{-1}\right)$, respectively.

Proof. First we compute $D_{H_{a, b}^{-}}(t)$. Set $F=H_{a, b}^{-}$and $c=c_{H_{a, b}^{-}}$. Let $k=$ $\tilde{E}\left(F\left(0^{+}\right)\right)-\underset{\tilde{E}}{E}\left(F\left(0^{-}\right)\right)+1$ (notice that the lap number of $\underset{\tilde{E}}{F}$ is $k+1$). By Lemma 7 we get $k=\tilde{E}\left(F\left(0^{+}\right)\right)-E\left(F\left(0^{-}\right)\right)+1=\delta_{1}(b)-\epsilon_{1}(a)=\tilde{E}(b)-E(a)+1$.

Let $J_{1}, J_{2}, \ldots, J_{k+1}$ be the laps of F contained in the interval $[0,1]$. Assume that for all $x \in \operatorname{int}\left(J_{i}\right), y \in \operatorname{int}\left(J_{j}\right)$ we have $x<y$ if $i<j$. We note that all points in the interior of a lap have the same address. Then we can use the notion of address of a lap and hence the notation $A\left(J_{i}\right)$. We have

$$
A\left(J_{i}\right)=\epsilon_{1}(a)+i-1 \quad \text { for } \quad i=1, \ldots, k+1
$$

From now on we will also denote a lap J_{i} by its address. Then, the invariant coordinates of 0^{+}and 0^{-}are the following (see the definition in Section 2 of [AM])

$$
\theta\left(0^{+}\right)=\sum_{i=1}^{\infty} \epsilon_{i}(a) t^{i-1} \quad \text { and } \quad \theta\left(0^{-}\right)=\sum_{i=1}^{\infty} \delta_{i}(a) t^{i-1}
$$

Hence $v(0)=\theta\left(0^{+}\right)-\theta\left(0^{-}\right)=\sum_{i=1}^{\infty}\left(\epsilon_{i}(a)-\delta_{i}(a)\right) t^{i-1}$.
Set $\mathcal{K}=\left\{i \in \mathbf{N}: \epsilon_{i}(a)=\epsilon_{1}(a)\right\}$. By Lemma 4.15 of $[\mathbf{A M}]$ if $i \notin \mathcal{K}$ then $\epsilon_{i}(a)=\epsilon_{1}(a)+1=E(a)+1$. Thus,

$$
E(a)+1-\epsilon_{i}(a)= \begin{cases}1 & \text { for } i \in \mathcal{K} \\ 0 & \text { if } i \in N \backslash \mathcal{K}\end{cases}
$$

Now set $\mathcal{J}=\left\{i \in \mathbf{N}: \delta_{i}(b)=\delta_{1}(b)\right\}$. If $i \notin \mathcal{J}$ then $\delta_{i}(b)=\delta_{1}(b)-1=\tilde{E}(b)$ and hence

$$
\tilde{E}(b)+1-\delta_{i}(b)= \begin{cases}1 & \text { for } i \in \mathcal{J} \\ 0 & \text { for } i \in \mathbf{N} \backslash \mathcal{J}\end{cases}
$$

Therefore, writing $v(0)$ as $\sum_{i=1}^{k+1} v_{i}(0) J_{i}$ we have

$$
\begin{aligned}
v_{1}(0) & =\sum_{i \in \mathcal{K}} t^{i-1}=\sum_{i=1}^{\infty}\left(E(a)+1-\epsilon_{i}(a)\right) t^{i-1}, \\
v_{2}(0) & =\sum_{i \in \mathbf{N}-\mathcal{K}, i>0} t^{i-1}=\sum_{i=1}^{\infty}\left(\epsilon_{i}(a)-E(a)\right) t^{i-1}, \\
v_{j}(0) & =0 \quad \text { for } \quad j=3, \ldots, k-1, \\
v_{k}(0) & =-\sum_{i \in \mathbf{N}-\mathcal{J}, i>0} t^{i-1}=-\sum_{i=1}^{\infty}\left(\tilde{E}(b)+1-\delta_{i}(b)\right) t^{i-1}, \\
v_{k+1}(0) & =-\sum_{i \in \mathcal{J}} t^{i-1}=-\sum_{i=1}^{\infty}\left(\delta_{i}(b)-\tilde{E}(b)\right) t^{i-1} .
\end{aligned}
$$

Denote $v_{1}(0) t, v_{2}(0) t, v_{k}(0) t$ and $v_{k+1}(0) t$, by $\varphi, \kappa, \eta, \omega$ respectively.
Now we are able to write the kneading matrix of F. Note that the turning points of F in $(0,1)$ are the elements of $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}=\{x \in(0,1): F(x) \in \mathbf{Z}\}$. Assume that $x_{i}<x_{j}$ if and only if $i<j$. To compute the columns of the kneading matrix we note that if $i \in\{1, \ldots, k\}$ then $v\left(x_{i}\right)=J_{i+1}-J_{i}+t v(0)$.

To see more clearly the structure of the kneading matrix we make the technical assumption that $k>4$. The proof in the case $1<k \leq 4$ goes in a similar way.

The kneading matrix is:

$$
\left(\begin{array}{ccccc}
-1+\varphi & \varphi & \ldots & \varphi & \varphi \\
1+\kappa & -1+\kappa & \ldots & \kappa & \kappa \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\eta & \eta & \ldots & \eta+1 & \eta-1 \\
\omega & \omega & \ldots & \omega & \omega+1
\end{array}\right)
$$

Then,

$$
D_{1}=\left|\begin{array}{ccccc}
1+\kappa & -1+\kappa & \ldots & \kappa & \kappa \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\eta & \eta & \ldots & \eta+1 & \eta-1 \\
\omega & \omega & \ldots & \omega & \omega+1
\end{array}\right|=\left|\begin{array}{ccccc}
1+\kappa & -2 & \ldots & -1 & -1 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\eta & 0 & \ldots & 1 & 1 \\
\omega & 0 & \ldots & 0 & 1
\end{array}\right|
$$

$$
\begin{aligned}
& =1+\kappa+(-1)^{k+1} \omega\left|\begin{array}{ccccc}
-2 & -1 & \ldots & -1 & -1 \\
1 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & -1 & 0 \\
0 & 0 & \ldots & 1 & -1
\end{array}\right| \\
& \quad+(-1)^{k} \eta\left|\begin{array}{ccccc}
-2 & -1 & \ldots & -1 & -1 \\
1 & -1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & -1 & 0 \\
0 & 0 & \ldots & 0 & 1
\end{array}\right| \\
& =1+\kappa+(-1)^{k+1}(-1)^{k-2}(-k) \omega+(-1)^{k}(-1)^{k-3}(-k+1) \eta .
\end{aligned}
$$

By substituting we obtain

$$
\begin{aligned}
D_{1} & =1+\sum_{i=1}^{\infty}\left(\epsilon_{i}(a)-E(a)\right) t^{i}-\sum_{i=1}^{\infty}(\tilde{E}(b)-E(a)+1) t^{i}+\sum_{i=1}^{\infty}\left(\tilde{E}(b)+1-\delta_{i}(b)\right) t^{i} \\
& =1-\sum_{i=1}^{\infty}\left(\delta_{i}(b)-\epsilon_{i}(a)\right) t^{i} .
\end{aligned}
$$

Hence, by Lemma 4.16 of $[\mathbf{A M}]$,

$$
D_{F}(t)=\frac{1}{1-t}\left(1-\sum_{i=1}^{\infty}\left(\delta_{i}(b)-\epsilon_{i}(a)\right) t^{i}\right)=1-R_{a, b}^{-}\left(t^{-1}\right) .
$$

Now we compute $D_{H_{a, b}^{+}}$. Set $F^{\prime}=H_{a, b}^{+}$and $k^{\prime}=\tilde{E}\left(F^{\prime}\left(0^{-}\right)\right)-E\left(F^{\prime}\left(0^{+}\right)\right)$(now the lap number of F^{\prime} is $k^{\prime}+1$) From Lemma 7 we have that $k^{\prime}=E\left(F^{\prime}\left(0^{-}\right)\right)-$ $E\left(F^{\prime}\left(0^{+}\right)\right)=\epsilon_{1}(b)+1-\left(\delta_{1}(a)-1\right)=E(b)-\tilde{E}(a)+1$. We use the same notation as in the case of $H_{a, b}^{-}$: if $J_{1}, J_{2}, \ldots, J_{k^{\prime}+1}$ denote the laps of F^{\prime}, we have that

$$
A\left(J_{i}\right)=\delta_{1}(a)-1+i-1 \quad \text { for } \quad i=1, \ldots, k^{\prime}+1 .
$$

Thus,

$$
\begin{aligned}
& \theta\left(0^{+}\right)=\left(\delta_{1}(a)-1\right)-\delta_{1}(a)+\sum_{i=1}^{\infty} \delta_{i}(a) t^{i-1} \\
& \theta\left(0^{-}\right)=\left(\epsilon_{1}(b)+1\right)-\epsilon_{1}(b)+\sum_{i=1}^{\infty} \epsilon_{i}(b) t^{i-1}
\end{aligned}
$$

Hence $v(0)=\left(\delta_{1}(a)-1\right)-\delta_{1}(a)+\epsilon_{1}(b)-\left(\epsilon_{1}(b)+1\right)+\sum_{i=1}^{\infty}\left(\delta_{i}(a)-\epsilon_{i}(b)\right) t^{i-1}$. Set $\mathcal{K}=\left\{i \in \mathbf{N}: \delta_{i}(a)=\delta_{1}(a)\right\}$ and $\mathcal{J}=\left\{i \in \mathbf{N}: \epsilon_{i}(b)=\epsilon_{1}(b)\right.$. By Lemma 4.15 of
$[\mathbf{A M}]$, if $i \notin \mathcal{K}$ then $\delta_{i}(a)=\tilde{E}(a)$ and if $i \notin \mathcal{J}$ then $\epsilon_{i}(b)=E(b)+1$. Therefore, if we write $v(0)$ as $\sum_{i=1}^{k^{\prime}+1} v_{i}(0) J_{i}$ we have

$$
\begin{aligned}
v_{1}(0) & =1+\sum_{i \in \mathbf{N}-\mathcal{K}, i>0} t^{i-1}=1+\sum_{i=1}^{\infty}\left(\tilde{E}(a)+1-\delta_{i}(a)\right) t^{i-1} \\
v_{2}(0) & =-1+\sum_{i \in \mathcal{K}} t^{i-1}=-1+\sum_{i=1}^{\infty}\left(\delta_{i}(a)-\tilde{E}(a)\right) t^{i-1} \\
v_{j}(0) & =0 \quad \text { for } \quad j=3, \ldots, k^{\prime}-1, \\
v_{k^{\prime}}(0) & =1-\sum_{i \in \mathcal{J}} t^{i-1}=1-\sum_{i=1}^{\infty}\left(E(b)+1-\epsilon_{i}(b)\right) t^{i-1} \\
v_{k^{\prime}+1}(0) & =-1-\sum_{i \in \mathbf{N}-\mathcal{J}, i>0} t^{i-1}=-1-\sum_{i=1}^{\infty}\left(\epsilon_{i}(b)-E(b)\right) t^{i-1}
\end{aligned}
$$

As in the previous case, we set $\varphi^{\prime}=t v_{1}(0), \kappa^{\prime}=t v_{2}(0), \eta^{\prime}=v_{k^{\prime}}(0)$ and $\omega^{\prime}=v_{k^{\prime}+1}(0)$. Then, the kneading matrix of F^{\prime} has the same expression as the kneading matrix of $H_{a, b}^{-}$with $k^{\prime}, \varphi^{\prime}, \kappa^{\prime}, \eta^{\prime}, \omega^{\prime}$ instead of $k, \varphi, \kappa, \eta, \omega$. Hence,

$$
\begin{aligned}
D_{1}(t)= & 1+\kappa^{\prime}+\left(k^{\prime}-1\right) \eta^{\prime}+k^{\prime} \omega^{\prime} \\
= & 1-2 t+\sum_{i=1}^{\infty}\left(\delta_{i}(a)-\tilde{E}(a)\right) t^{i}-\sum_{i=1}^{\infty}(E(b)-\tilde{E}(a)+1) t^{i} \\
& \left.+\sum_{i=1}^{\infty}\left(E(b)+1-\epsilon_{i}(b)\right) t^{i}\right) \\
= & 1-2 t-\sum_{i=1}^{\infty}\left(\epsilon_{i}(b)-\delta_{i}(a)\right) t^{i} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
D_{F(t)} & =\frac{1}{1-t}\left[1-2 t-\left(\sum_{i=1}^{\infty}(E(i b)-\tilde{E}(i a)) t^{i}-t \sum_{i=1}^{\infty}(E(i b)-\tilde{E}(i a)) t^{i}-t\right)\right] \\
& =1-\sum_{i=1}^{\infty}(E(i b)-\tilde{E}(i a)) t^{i}
\end{aligned}
$$

Hence, by Lemma 4.16 of $[\mathbf{A M}]$, we have $D_{H_{a, b}^{+}}(t)=1-R_{a, b}^{+}\left(t^{-1}\right)$.
Lemma 9. For $a<b$ the equations $R_{a, b}^{+}\left(t^{-1}\right)=1$ and $R_{a, b}^{-}\left(t^{-1}\right)=1$ have a unique solution in $(0,1)$.

Proof. By Lemma 4.16 of $[\mathbf{A M}]$ we know that $R_{a, b}^{+}\left(t^{-1}\right)=\sum_{n=1}^{\infty}(E(n b)-$ $\tilde{E}(n a)) t^{n}$ and $R_{a, b}^{-}\left(t^{-1}\right)=\sum_{n=1}^{\infty}(\tilde{E}(n b)-E(n a)) t^{n}$ for $t \in(0,1)$. Since $\tilde{E}(n b)-$
$E(n a)$ and $E(n b)-\tilde{E}(n a)$ are uniformly bounded for all $n \in \mathbf{N}$, then $R_{a, b}^{+}\left(t^{-1}\right)$ and $R_{a, b}^{-}\left(t^{-1}\right)$ are well defined and continuous for $t \in(0,1)$. Since the coefficients of these series are non-negative we have that $R_{a, b}^{+}\left(t^{-1}\right)$ and $R_{a, b}^{-}\left(t^{-1}\right)$ are increasing in $(0,1)$. We also note that since $a<b$ there exists n_{0} such that $(E(n b)-$ $\tilde{E}(n a))>1$ and $(\tilde{E}(n b)-E(n a))>1$ for all $n>n_{0}$. Hence $\lim _{t \uparrow 1} R_{a, b}^{+}\left(t^{-1}\right)=$ $\lim _{t \uparrow 1} R_{a, b}^{-}\left(t^{-1}\right)=\infty$. Since $\lim _{t \downarrow 0} R_{a, b}^{+}\left(t^{-1}\right)=\lim _{t \downarrow 0} R_{a, b}^{-}\left(t^{-1}\right)=0$ we obtain the desired conclusion.

Figure 5. The maps $G_{0,1}^{+}$and $G_{0,1}^{-}$.

From Lemma 9, Proposition 8 and Theorem 2 we obtain that the maps $H_{a, b}^{+}$ and $H_{a, b}^{-}$have positive topological entropy.

Now let $G_{a, b}^{+}$and $G_{a, b}^{-}$be the piecewise linear maps given by Theorem 3 from $H_{a, b}^{+}$and $H_{a, b}^{-}$(see Figure 5). The following lemma follows in a similar way to Lemma 4.14 of [AM].

Lemma 10. The following equalities hold:
(1) $\underline{I}_{G_{a, b}^{-}}\left(0^{+}\right)=\underline{I}_{\epsilon}(a)$ and $\underline{I}_{G_{a, b}^{-}}\left(0^{-}\right)=\underline{I}_{\delta}(b)$.
(2) $\underline{I}_{G_{a, b}^{+}}\left(0^{+}\right)=\underline{I}_{\delta}^{*}(a)$ and $\underline{I}_{G_{a, b}^{+}}\left(0^{-}\right)=\underline{I}_{\epsilon}^{*}(b)$.

In what follows we denote the inverses of the solutions of the equations $R_{a, b}^{+}\left(t^{-1}\right)$ $=1$ and $R_{a, b}^{-}\left(t^{-1}\right)=1$ in $(0,1)$ by $\alpha_{a, b}^{+}$and $\alpha_{a, b}^{-}$respectively (in view of Lemma 9 these numbers are well defined).

The next result is the analogous of Corollary C of $[\mathbf{A M}]$ for class \mathcal{C} and gives lower and upper bounds of the topological entropy for maps from \mathcal{C} depending on the rotation interval. The statement $\log \alpha_{a, b}^{-}=h\left(G_{a, b}^{-}\right) \leq h(F)$ was already known (see [ALMT]). Here we give a different proof.

Corollary 11. Let $F \in \mathcal{C}$ such that $L_{F}=[a, b]$ with $a<b$. Then

$$
\log \alpha_{a, b}^{-}=h\left(G_{a, b}^{-}\right) \leq h(F) \leq h\left(G_{a, b}^{+}\right)=\log \alpha_{a, b}^{+}
$$

Proof. It follows by Lemma 10, Corollary 5 and Theorem 6.

References

[ALMT] Alsedà Ll., Llibre J., Misiurewicz M. and Tresser C., Periods and entropy for Lorenzlike maps, Ann. Inst. Fourier 39 (1989), 929-952.
[AM] Alsedà Ll. and Mañosas F., Kneading Theory and rotation intervals for a class of circle maps of degree one, Nonlinearity 3 (1990), 413-452.
[G] Glendinning P., Topological conjugation of Lorenz maps by β-transformations, Math. Proc. Camb. Phil. Soc. 107 (1990), 401-413.
[GS] Glendining P. and Sparrow C. T., Prime and renormalisable kneading invariants and the dynamics of Lorenz maps, Phys. D. 62 (1993), 22-50.
[Gu] Guckenheimer J., A strange, strange attractor. The Hopf bifurcation and its applications, Appl. Math. Sci., vol. 10, 1976, Springer-Verlag.
[H] Hofbauer F., The maximal measure for linear mod. one transformations, J. London Math. Soc. 23 (1981), 92-112.
[HS] Hubbard J. and Sparrow C. T., The classification of topologically expansive Lorenz maps, Comm. Pure Appl. Math. 43 (1990), 431-443.
[M] Misiurewicz M., Rotation intervals for a class of maps of the real line into itself, Ergod. Th. \& Dynam. Sys. 6 (1986), 117-132.
[R] Rényi A., Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar. 8 (1957), 477-493.
[S] Sparrow C. T., The Lorenz equations: Bifurcations, Chaos and Strange Attractors, Appl. Math. Sci., vol. 41, 1982, Springer-Verlag.

Ll. Alsedà, Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
F. Mañosas, Departament de Matemàtiques, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

[^0]: Received October 20, 1995.
 1980 Mathematics Subject Classification (1991 Revision). Primary 34C35, 54H20.
 Key words and phrases. kneading theory, rotation interval, bounds of topological entropy.
 Supported by DGCICYT grant number PB93-0860.

