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KNEADING THEORY FOR A FAMILY OF CIRCLE MAPS

WITH ONE DISCONTINUITY

Ll. ALSEDÀ and F. MAÑOSAS

Abstract. We apply the kneading theory techniques to a class of circle maps with
one discontinuity and we characterize the rotation interval of a map in terms of the
kneading sequences. As a consequence we obtain lower and upper bounds of the
entropy depending on the rotation interval.

1. Introduction

We study the class C of maps F : R −→ R defined as follows (see Figure 1).

We say that F ∈ C if:

(1) F |(0,1) is bounded, continuous and non-decreasing.

(2) lim
x↑1

F (x) > lim
x↓1

F (x).

(3) F (x+ 1) = F (x) + 1 for all x ∈ R.

For a map F ∈ C and for each a ∈ Z we set F (a+) = limx↓a F (x) and F (a−) =

limx↑a F (x). In view of (3) we have F (a+) = F (0+) + a and F (a−) = F (0−) + a.

Note that the exact value of F (0) is not specified. Then in what follows we consider

that F (0) is either F (0+) or F (0−), or both, as necessary.

Since every map F ∈ C has a discontinuity in each integer, the class C can be

considered as a family of liftings of circle maps with one discontinuity.

The maps of class C appear in a natural way in the study of many branches of

dynamics. The simplest example of such maps is the family x → βx + α, which

plays an important role in ergodic theory (see [H]). The case α = 0 gives the

famous β-transformations (see [R]). Also, the class C contains the class of the

Lorenz-Like maps which has been studied by several authors (see [ALMT], [G],

[GS], [Gu], [HS], [S]).

The aim of this paper is to extend the kneading theory developed in [AM] for

continuous maps of the circle of degree one to class C, to obtain a characterization

of the rotation interval of a map in terms of its kneading sequences. From this

characterization we shall obtain models with maximum and minimum entropy
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Figure 1. An example of a map of class C.

and, hence, lower and upper bounds of the topological entropy depending on the

rotation interval. The lower bounds of the topological entropy for this class of

maps were already known (see [ALMT]). Here we give a different proof.

To extend the kneading theory to our class of maps we note that it is closely

related to the class A′ defined as follows. We say that F ∈ A′ if (see Figure 2) :

(1) F ∈ C(R,R) and F (x+ 1) = F (x) + 1 for all x ∈ R.

(2) There exists cF ∈ (0, 1), such that F is non-decreasing in [0, cF ] and non-

increasing in [cF , 1].

(3) F (cF ) > F (1).

To show the relation between maps from class C and A′ take F ∈ C and for

each µ > 0 let cµ ∈ (0, 1) be such that F (cµ) = µ(1− cµ) + F (1+). Also let Fµ be

the continuous map defined as follows (see Figure 3):

(1) Fµ|(0,cµ] = F ,

(2) Fµ(x) = µ(1− x) + F (1+) for all x ∈ [cµ, 1)

Clearly for all µ > 0, Fµ ∈ A′, limµ→∞ cµ = 1 and F (x) = limµ→∞ Fµ(x). In

other words each map of C is a pointwise limit of maps from A′.

The class A′ contains the class A of those maps which satisfy the statement (2)

of the definition of A′ with strict monotonicity. In [AM] a kneading theory for

maps from class A was developed. It is an easy exercise to extend this kneading
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cF

Figure 2. A map of class A′.

theory and all the results of [AM] to the class A′. To study the class C we shall

use without proof the results from [AM] for class A′. Most of the results we

shall state for class C are also trivial extensions of the corresponding ones in the

continuous case. Thus we shall also omit their proofs. However, this paper is an

extension of [AM]. Therefore, to understand the proofs and details of this paper

it is necessary to know the general theory developed in [AM].

The notions of periodic (mod. 1) point, rotation number, rotation interval, lap,

growth number and entropy extend naturally to class C (see [AM] for a review

of these notions). From [M] it follows that the rotation interval has the same

properties as in the continuous case. We shall use the same notation as in [AM].

Thus, if F ∈ C, LF denotes the rotation interval of F , s(F ) the growth number of

F and h(F ) = log s(F ) the topological entropy of F .

2. Kneading Theory

Let F ∈ C. Given a point x ∈ R \ Z we define its address (F -address if neces-

sary) as A(x) = E(F (x))−E(x). If x ∈ Z we define A(x) = E(F (x+))−E(x). The

sequence I(x) = IF (x) = I0(x)I1(x) . . . In(x) . . . = A(x)A(F (x)) . . . A(Fn(x)) . . .

will be called the itinerary of x. For a point x ∈ R we define I(x+) =

I0(x+)I1(x+) . . . as follows. For each n ≥ 0 there exists δn such that In(y) takes
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cµ1 cµ2

Fµ1

Fµ2

Figure 3. The maps Fµ.

a constant value in (x, x+ δn). Denote this value by In(x+). This gives I(x+). In

a similar way one can define I(x−).

Now we define an ordering in the set of itineraries. First we note that the

set of addresses is naturally ordered by the order of the integers. This gives a

total ordering in the set of the itineraries with the lexicographical ordering. The

following lemma follows trivially.

Lemma 1. Let x, y ∈ [0, 1) such that x < y. Then I(x) ≤ I(y).

In a similar way to the continuous case, for a map F ∈ C, we define the invariant

coordinate, θ(x) (where for maps in C we define the function ε(A(x)) to be 1 for

each x ∈ R), the kneading invariants and the kneading determinant DF (t), and

we obtain:

Theorem 2. For F ∈ C, the function DF (t) is nonzero for |t| < 1
s(F ) . More-

over, if s(F ) > 1 then the first zero of DF (t) as t varies in the interval [0, 1) occurs

at t = 1
s(F ) .

If F ∈ C and s(F ) > 1 we can define the map φF and the twist number T (F ) in

the same way as [AM] and we obtain the following result which is the analogous

to Theorem 2.12 of [AM] for the class C.
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Theorem 3. Let F ∈ C be such that s(F ) > 1. Then there exists a unique

map F̃ such that F̃ ◦φF = φF ◦F . Moreover, F̃ ∈ C, F̃ (0) = T (F ), F̃ is piecewise

affine, LF̃ = LF and s(F̃ ) = s(F ).

Let S be the shift operator which acts in a natural way on sequences of integers

(i.e. S(I0I1 . . . ) = I1I2 . . . ). We say that a sequence of integers A is quasidomi-

nated by F if and only if

IF (0+) ≤ A ≤ IF (0−).

We say that A is dominated by F if both of the above inequalities are strict. As

in [AM] we obtain

Proposition 4. Let F ∈ C. Then the following hold:

(1) Let x ∈ R \ Z. Then IF (x) is quasidominated by F .

(2) Let A be a sequence of integers dominated by F . Then there exists x ∈
(0, 1) such that IF (x) = A.

Corollary 5. Let F,G ∈ C such that IF (0+) ≤ IG(0+) and IF (0−) ≥ IG(0−).

Then h(F ) ≥ h(G).

The main result of this paper is the following which is the analogous of Theo-

rem B of [AM] for class C. Its proof is similar to the proof of Theorem B of [AM]

and hence it will be omited. To state it we need to adapt the notation used in

[AM] to our needs.

Let a ∈ R and i ∈ Z. We define εi(a) = E(ia) − E((i − 1)a) and δi(a) =

Ẽ(ia)− Ẽ((i−1)a), where E(·) denotes the integer part function and Ẽ : R −→ Z

is defined as follows:

Ẽ(x) =

{
E(x), if x /∈ Z

x− 1, if x ∈ Z.

Set

Iε(a) = ε1(a)ε2(a)ε3(a) . . .

Iδ(a) = δ1(a)δ2(a)δ3(a) . . .

I∗ε (a) = (ε1(a) + 1)ε2(a)ε3(a) . . .

I∗δ(a) = (δ1(a)− 1)δ2(a)δ3(a) . . . .

Theorem 6. For a map F ∈ C the following statements are equivalent:

(1) LF = [a, b].

(2) I∗δ(a) ≤ I(0+) ≤ Iε(a) and Iδ(b) ≤ I(0−) ≤ I∗ε (b).
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3. Bounds of the Topological Entropy

First of all, for each a, b ∈ R with a < b we construct maximal and minimal

models with rotation interval [a, b].

Lemma 7. Let a, b ∈ R with a < b. Then, there exists H+
a,b and H−a,b ∈ C such

that IH−a,b
(0+) = Iε(a), IH−a,b

(0−) = Iδ(b), IH+
a,b

(0+) = I∗δ(b) and IH+
a,b

(0−) =

I∗ε (a). Moreover LH+
a,b

= LH−a,b
= [a, b].

Proof. Here we use the maps F+ = F+
a,b and F− = F−a,b defined in [AM] (see

Proposition 4.13 and Lemma 4.14). Set c+ = cF+ and c− = cF− . Then we define

(see Figure 4)

H+
a,b(x) =

{
F+(x) if x ∈ [0, c+],

F+(c+) if x ∈ [c+, 1),

(a)

-1

0

1

2

(b)

-1

0

1

2

Figure 4. The maps H+
0,1 and H−0,1.



KNEADING THEORY FOR A FAMILY OF CIRCLE MAPS 17

H−a,b(x) =

{
F−(x) if x ∈ [0, c−],

F−(c−) if x ∈ [c−, 1).

From the construction of F+ we have thatD((F+)n)(0), D((F+)n)(c+) ∈ [0, c+]

for all n (where D(·) denotes the decimal part function). Hence, (F+)n(0) =

(H+
a,b)

n(0) and (H+
a,b)

n(0−) = (H+
a,b)

n(c+) = (F+)n(c+). Therefore, we obtain

the desired result for H+
a,b. The assertion about H−a,b follows in a similar way. �

Next we compute the kneading determinants of H+
a,b and H−a,b. For a, b ∈ R

with a < b and z > 1 we set R−a,b(z) =
∑
z−q (resp. R+

a,b(z) =
∑
z−q), where the

sum is taken over all pairs (p, q) ∈ Z×N for which a < p
q < b (resp. a ≤ p

q ≤ b).

Proposition 8. Let a, b ∈ R such that a < b. Then the kneading determinants

of H−a,b and H+
a,b are DH−a,b

(t) = 1 − R−a,b(t
−1) and DH+

a,b
(t) = 1 − R+

a,b(t
−1),

respectively.

Proof. First we compute DH−a,b
(t). Set F = H−a,b and c = cH−a,b

. Let k =

Ẽ(F (0+))−E(F (0−))+1 (notice that the lap number of F is k+1). By Lemma 7

we get k = Ẽ(F (0+))−E(F (0−)) + 1 = δ1(b)− ε1(a) = Ẽ(b)−E(a) + 1.

Let J1, J2, . . . , Jk+1 be the laps of F contained in the interval [0, 1]. Assume

that for all x ∈ int (Ji), y ∈ int (Jj) we have x < y if i < j. We note that all

points in the interior of a lap have the same address. Then we can use the notion

of address of a lap and hence the notation A(Ji). We have

A(Ji) = ε1(a) + i− 1 for i = 1, . . . , k + 1.

From now on we will also denote a lap Ji by its address. Then, the invariant

coordinates of 0+ and 0− are the following (see the definition in Section 2 of

[AM])

θ(0+) =
∞∑
i=1

εi(a)ti−1 and θ(0−) =
∞∑
i=1

δi(a)ti−1.

Hence v(0) = θ(0+)− θ(0−) =
∑∞
i=1(εi(a)− δi(a))ti−1.

Set K = {i ∈ N : εi(a) = ε1(a)}. By Lemma 4.15 of [AM] if i /∈ K then

εi(a) = ε1(a) + 1 = E(a) + 1. Thus,

E(a) + 1− εi(a) =

{
1 for i ∈ K,

0 if i ∈ N \ K.

Now set J = {i ∈ N : δi(b) = δ1(b)}. If i /∈ J then δi(b) = δ1(b)− 1 = Ẽ(b) and

hence

Ẽ(b) + 1− δi(b) =

{
1 for i ∈ J ,

0 for i ∈N \ J .
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Therefore, writing v(0) as
∑k+1
i=1 vi(0)Ji we have

v1(0) =
∑
i∈K

ti−1 =
∞∑
i=1

(E(a) + 1− εi(a))ti−1,

v2(0) =
∑

i∈N−K,i>0

ti−1 =
∞∑
i=1

(εi(a)−E(a))ti−1,

vj(0) = 0 for j = 3, . . . , k − 1,

vk(0) = −
∑

i∈N−J ,i>0

ti−1 = −
∞∑
i=1

(Ẽ(b) + 1− δi(b))t
i−1,

vk+1(0) = −
∑
i∈J

ti−1 = −
∞∑
i=1

(δi(b)− Ẽ(b))ti−1.

Denote v1(0)t, v2(0)t, vk(0)t and vk+1(0)t, by ϕ, κ, η, ω respectively.

Now we are able to write the kneading matrix of F . Note that the turning

points of F in (0, 1) are the elements of {x1, x2, . . . , xk} = {x ∈ (0, 1) : F (x) ∈ Z}.
Assume that xi < xj if and only if i < j. To compute the columns of the kneading

matrix we note that if i ∈ {1, . . . , k} then v(xi) = Ji+1 − Ji + tv(0).

To see more clearly the structure of the kneading matrix we make the technical

assumption that k > 4. The proof in the case 1 < k ≤ 4 goes in a similar way.

The kneading matrix is:


−1 + ϕ ϕ . . . ϕ ϕ

1 + κ −1 + κ . . . κ κ
...

...
. . .

...
...

η η . . . η + 1 η − 1

ω ω . . . ω ω + 1

 .

Then,

D1 =

∣∣∣∣∣∣∣∣∣∣∣

1 + κ −1 + κ . . . κ κ

0 1 . . . 0 0
...

...
. . .

...
...

η η . . . η + 1 η − 1

ω ω . . . ω ω + 1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

1 + κ −2 . . . −1 −1

0 1 . . . 0 0
...

...
. . .

...
...

η 0 . . . 1 1

ω 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣
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= 1 + κ+ (−1)k+1ω

∣∣∣∣∣∣∣∣∣∣∣

−2 −1 . . . −1 −1

1 −1 . . . 0 0
...

...
. . .

...
...

0 0 . . . −1 0

0 0 . . . 1 −1

∣∣∣∣∣∣∣∣∣∣∣
+ (−1)kη

∣∣∣∣∣∣∣∣∣∣∣

−2 −1 . . . −1 −1

1 −1 . . . 0 0
...

...
. . .

...
...

0 0 . . . −1 0

0 0 . . . 0 1

∣∣∣∣∣∣∣∣∣∣∣
= 1 + κ+ (−1)k+1(−1)k−2(−k)ω + (−1)k(−1)k−3(−k + 1)η.

By substituting we obtain

D1 = 1 +
∞∑
i=1

(εi(a)−E(a))ti −
∞∑
i=1

(Ẽ(b)−E(a) + 1)ti +
∞∑
i=1

(Ẽ(b) + 1− δi(b))t
i

= 1−
∞∑
i=1

(δi(b)− εi(a))ti.

Hence, by Lemma 4.16 of [AM],

DF (t) =
1

1− t

(
1−

∞∑
i=1

(δi(b)− εi(a))ti

)
= 1−R−a,b(t

−1).

Now we compute DH+
a,b

. Set F ′ = H+
a,b and k′ = Ẽ(F ′(0−))−E(F ′(0+)) (now

the lap number of F ′ is k′ + 1) From Lemma 7 we have that k′ = E(F ′(0−)) −
E(F ′(0+)) = ε1(b) + 1− (δ1(a)− 1) = E(b)− Ẽ(a) + 1. We use the same notation

as in the case of H−a,b: if J1, J2, . . . , Jk′+1 denote the laps of F ′, we have that

A(Ji) = δ1(a)− 1 + i− 1 for i = 1, . . . , k′ + 1.

Thus,

θ(0+) = (δ1(a)− 1)− δ1(a) +
∞∑
i=1

δi(a)ti−1,

θ(0−) = (ε1(b) + 1)− ε1(b) +
∞∑
i=1

εi(b)t
i−1.

Hence v(0) = (δ1(a)−1)− δ1(a)+ ε1(b)− (ε1(b)+ 1) +
∑∞
i=1(δi(a)− εi(b))ti−1. Set

K = {i ∈ N : δi(a) = δ1(a)} and J = {i ∈ N : εi(b) = ε1(b). By Lemma 4.15 of
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[AM], if i /∈ K then δi(a) = Ẽ(a) and if i /∈ J then εi(b) = E(b) + 1. Therefore,

if we write v(0) as
∑k′+1
i=1 vi(0)Ji we have

v1(0) = 1 +
∑

i∈N−K,i>0

ti−1 = 1 +
∞∑
i=1

(Ẽ(a) + 1− δi(a))ti−1,

v2(0) = −1 +
∑
i∈K

ti−1 = −1 +
∞∑
i=1

(δi(a)− Ẽ(a))ti−1,

vj(0) = 0 for j = 3, . . . , k′ − 1,

vk′(0) = 1−
∑
i∈J

ti−1 = 1−
∞∑
i=1

(E(b) + 1− εi(b))t
i−1,

vk′+1(0) = −1−
∑

i∈N−J ,i>0

ti−1 = −1−
∞∑
i=1

(εi(b)−E(b))ti−1.

As in the previous case, we set ϕ′ = tv1(0), κ′ = tv2(0), η′ = vk′(0) and

ω′ = vk′+1(0). Then, the kneading matrix of F ′ has the same expression as the

kneading matrix of H−a,b with k′, ϕ′, κ′, η′, ω′ instead of k, ϕ, κ, η, ω. Hence,

D1(t) = 1 + κ′ + (k′ − 1)η′ + k′ω′

= 1− 2t+
∞∑
i=1

(δi(a)− Ẽ(a))ti −
∞∑
i=1

(E(b)− Ẽ(a) + 1)ti

+
∞∑
i=1

(E(b) + 1− εi(b))t
i)

= 1− 2t−
∞∑
i=1

(εi(b)− δi(a))ti.

Thus,

DF (t) =
1

1− t

[
1− 2t−

( ∞∑
i=1

(E(ib)− Ẽ(ia))ti − t
∞∑
i=1

(E(ib)− Ẽ(ia))ti − t

)]

= 1−
∞∑
i=1

(E(ib)− Ẽ(ia))ti.

Hence, by Lemma 4.16 of [AM], we have DH+
a,b

(t) = 1−R+
a,b(t

−1). �

Lemma 9. For a < b the equations R+
a,b(t

−1) = 1 and R−a,b(t
−1) = 1 have a

unique solution in (0, 1).

Proof. By Lemma 4.16 of [AM] we know that R+
a,b(t

−1) =
∑∞
n=1(E(nb) −

Ẽ(na))tn and R−a,b(t
−1) =

∑∞
n=1(Ẽ(nb) − E(na))tn for t ∈ (0, 1). Since Ẽ(nb) −
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E(na) and E(nb)−Ẽ(na) are uniformly bounded for all n ∈ N, then R+
a,b(t

−1) and

R−a,b(t
−1) are well defined and continuous for t ∈ (0, 1). Since the coefficients of

these series are non-negative we have that R+
a,b(t

−1) and R−a,b(t
−1) are increasing

in (0, 1). We also note that since a < b there exists n0 such that (E(nb) −
Ẽ(na)) > 1 and (Ẽ(nb) − E(na)) > 1 for all n > n0. Hence limt↑1R

+
a,b(t

−1) =

limt↑1R
−
a,b(t

−1) =∞. Since limt↓0R
+
a,b(t

−1) = limt↓0R
−
a,b(t

−1) = 0 we obtain the

desired conclusion. �

(a)

-1

0

1

2

(b)

-1

0

1

2

Figure 5. The maps G+
0,1 and G−0,1.

From Lemma 9, Proposition 8 and Theorem 2 we obtain that the maps H+
a,b

and H−a,b have positive topological entropy.
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Now let G+
a,b and G−a,b be the piecewise linear maps given by Theorem 3 from

H+
a,b and H−a,b (see Figure 5). The following lemma follows in a similar way to

Lemma 4.14 of [AM].

Lemma 10. The following equalities hold:

(1) IG−a,b
(0+) = Iε(a) and IG−a,b

(0−) = Iδ(b).

(2) IG+
a,b

(0+) = I∗δ(a) and IG+
a,b

(0−) = I∗ε (b).

In what follows we denote the inverses of the solutions of the equationsR+
a,b(t

−1)

= 1 and R−a,b(t
−1) = 1 in (0, 1) by α+

a,b and α−a,b respectively (in view of Lemma 9

these numbers are well defined).

The next result is the analogous of Corollary C of [AM] for class C and gives

lower and upper bounds of the topological entropy for maps from C depending on

the rotation interval. The statement logα−a,b = h(G−a,b) ≤ h(F ) was already known

(see [ALMT]). Here we give a different proof.

Corollary 11. Let F ∈ C such that LF = [a, b] with a < b. Then

logα−a,b = h(G−a,b) ≤ h(F ) ≤ h(G+
a,b) = logα+

a,b.

Proof. It follows by Lemma 10, Corollary 5 and Theorem 6. �
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