POSITIVE SOLUTIONS OF VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

YUMEI WU

Abstract

Sufficient conditions for existence of positive solutions of integro-differential equations of Volterra type are given and existence of solutions with zero crossing $(0,+\infty)$ of integro-differential equations is investigated.

Introduction

In this paper, we investigate existence of positive solutions and existence of zero points of solutions on $(0, \infty)$ of the Volterra integro-differential equations

$$
\begin{equation*}
\dot{x}(t)+\int_{0}^{t} P(t, s) x(g(s)) d s=0, \quad t \geq 0 \tag{1}
\end{equation*}
$$

The functions $P \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{+}, \mathbb{R}^{+}\right)$and $g \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$. The function g satisfies the following conditions:

$$
\begin{align*}
& g \text { is nondecreasing, } g(t)<t \text { for } t \in(0, \infty) \text { and } \\
& \lim _{t \rightarrow \infty} g(t)=\lim _{t \rightarrow \infty}(t-g(t))=+\infty \tag{2}
\end{align*}
$$

We present some sufficient conditions such that Eq. (1) only has solutions with zero points in $(0, \infty)$. Moreover, we also obtain some conditions such that Eq. (1) has a positive solution on $[0,+\infty)$.

The motivation of this work comes from the work of Ladas, Philos and Sficas [5]. They discussed the oscillation behavior of Eq. (1) when $P(t, s)=P(t-s)$ and $g(t)=t$. They obtained a necessary and sufficient condition under which every solution of the equation is positive on $[0,+\infty)$. Note that Eq. (1) is not a generalization of the equation in [5] because of the condition $g(t)<t$, which we require here.

From (2), we see that the function g is nondecreasing and $g(0)=0$, so, Eq. (1) has a lag with a finite fixed point $t=0$. Karakostas [4] has studied linear delay differential equations with delays having fixed point and obtained that solutions

[^0]of such equations are well defined by giving an initial point instead of an initial function as for general delay differential equations.

By a solution of Eq. (1), we mean that $x \in C^{1}\left(\mathbb{R}^{+}, \mathbb{R}\right)$ and satisfies Eq. (1). For the fundamental theory of integro-differential equations, we refer to [1], and for some related work, we refer to [3].

Main Results

Before giving the main results, we present some lemmas which will be used in the proofs of theorems.

Lemma 1. The function g has the properties

$$
g(g(t)) \leq g(t), \quad t>0
$$

and

$$
\lim _{t \rightarrow+\infty} g(g(t))=\lim _{t \rightarrow+\infty}(t-g(g(t))=+\infty
$$

Proof. By assumption (2), g is nondecreasing, and

$$
g(t)<t \text { for } t>0
$$

So we have

$$
g(g(t)) \leq g(t), \quad \text { for } t>0
$$

Moreover, by this inequality, we can see easily that

$$
t-g(t) \leq t-g(g(t)), \quad t>0
$$

taking limit on both sides, we obtain

$$
+\infty=\lim _{t \rightarrow+\infty}(t-g(t)) \leq \lim _{t \rightarrow+\infty}(t-g(g(t)))
$$

By $g(t) \rightarrow \infty$ as $t \rightarrow+\infty$, it is obvious that $g(g(t)) \rightarrow+\infty$ as $t \rightarrow+\infty$.
Lemma 2. Assume that

$$
\liminf _{t \rightarrow+\infty} \int_{0}^{t} P(t, s) d s \neq 0
$$

Then we have

$$
\lim _{t \rightarrow+\infty} \int_{g(t)}^{t} \int_{0}^{s} P(s, u) d u d s=\lim _{t \rightarrow+\infty} \int_{g(g(t))}^{t} \int_{0}^{s} P(s, u) d u d s=+\infty
$$

Proof. Since $P(t, s) \geq 0$, for $t \in \mathbb{R}^{+}, s \in \mathbb{R}^{+}$, by assumption, we have

$$
\liminf _{t \rightarrow+\infty} \int_{0}^{t} P(t, s) d s>0
$$

On the other hand, by mean value theorem, we have

$$
\int_{g(t)}^{t} \int_{0}^{s} P(s, u) d u d s=(t-g(t)) \int_{0}^{\bar{t}} P(\bar{t}, s) d s, \quad t>0
$$

where $\bar{t} \in[g(t), t]$. Thus $\bar{t} \rightarrow+\infty$ as $t \rightarrow+\infty$. Then it is clear that

$$
\lim _{t \rightarrow+\infty} \int_{g(t)}^{t} \int_{0}^{s} P(s, u) d u d s=+\infty
$$

Since

$$
\int_{g(t)}^{t} \int_{0}^{s} P(s, u) d u d s \leq \int_{g(g(t))}^{t} \int_{0}^{s} P(s, u) d u d s
$$

we have

$$
\lim _{t \rightarrow+\infty} \int_{g(g(t))}^{t} \int_{0}^{s} P(s, u) d u d s=+\infty
$$

Let us see the main theorem.
Theorem 1. Assume that

$$
\liminf _{t \rightarrow+\infty} \int_{0}^{t} P(t, s) d s \neq 0
$$

Then every solution of Eq. (1) has, at least, one zero point on $(0,+\infty)$.
Proof. For the sake of contradiction, assume that there exists a positive solution x on $(0,+\infty)$. For the case that there is a negative solution y, we simply let $x=-y$. So here we only consider the case $x(t)>0$, for $t \in(0,+\infty)$. Then we see that $\dot{x}(t) \leq 0, t \geq 0$, so x is a nonincreasing function on $[0,+\infty)$. Thus we have

$$
0<x(t) \leq x(g(t)), \quad \text { for } \quad t>0
$$

Dividing both sides of Eq. (1) by $x(t)$, we obtain

$$
\frac{\dot{x}(t)}{x(t)}+\int_{0}^{t} P(t, s) \frac{x(g(s))}{x(t)} d s=0, \quad t>0
$$

Hence, by using the facts that x is noincreasing an g is nondecreasing, we have

$$
\frac{\dot{x}(t)}{x(t)}+\frac{x(g(t))}{x(t)} \int_{0}^{t} P(t, s) d s \leq 0, \quad t>0
$$

Integrating both sides of this inequality from $g(t)$ to t, we have

$$
\ln \frac{x(t)}{x(g(t))}+\int_{g(t)}^{t} \frac{x(g(s))}{x(s)} \int_{0}^{s} P(s, u) d u d s \leq 0, \quad t>0
$$

a Setting $W(t):=\frac{x(g(t))}{x(t)}$, it is clear that $W(t) \geq 1, t>0$.
So by the last inequality, we have

$$
\int_{g(t)}^{t} W(s) \int_{0}^{s} P(s, u) d u d s \leq \ln W(t), \quad t>0
$$

Let $\ell:=\liminf _{t \rightarrow+\infty} W(t)$, then $1 \leq \ell \leq+\infty$. Now we divide our discussion into the following two cases: $\alpha) \ell \neq+\infty, \beta) \ell=+\infty$.
$\alpha) \ell$ is finite.
There exists a sequence $\left(t_{n}\right)$ such that

$$
\lim _{n \rightarrow+\infty} t_{n}=+\infty, \quad \text { and } \quad \liminf _{t \rightarrow+\infty} W(t)=\lim _{n \rightarrow+\infty} W\left(t_{n}\right)=\ell
$$

Thus

$$
\begin{aligned}
\ell \cdot \liminf _{t \rightarrow+\infty} \int_{g(t)}^{t} \int_{0}^{s} P(s, u) d u d s & \leq \liminf _{t \rightarrow+\infty} \int_{g(t)}^{t} W(s) \int_{0}^{s} P(s, u) d u d s \\
& \leq \liminf _{t \rightarrow+\infty} \ln W(t)=\ln \ell
\end{aligned}
$$

On the other hand, since $g(t)$ is nondecreasing and $P(s, u)$ is nonnegative, so it follows

$$
\liminf _{t \rightarrow+\infty} \int_{g(t)}^{t} \int_{0}^{s} P(s, u) d u d s=\lim _{t \rightarrow+\infty} \int_{g(t)}^{t} \int_{0}^{s} P(s, u) d u d s
$$

Therefore we have

$$
\lim _{t \rightarrow+\infty} \int_{g(t)}^{t} \int_{0}^{s} P(s, u) d u d s \leq \frac{\ln \ell}{\ell} \leq \frac{1}{e}
$$

By Lemma 2, we see that it is a contradiction.
$\beta) \ell=+\infty$.
Thus

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \frac{x(g(t))}{x(t)}=+\infty \tag{3}
\end{equation*}
$$

Integrating (1) on both sides from $g(g(t))$ to $g(t)$, we have

$$
x(g(t))-x(g(g(t)))+x(g(g(t))) \int_{g(g(t))}^{g(t)} \int_{0}^{s} P(s, u) d u d s \leq 0, \quad t>0
$$

Dividing both sides of this inequality by $x(g(g(t)))$, we have

$$
\begin{equation*}
\frac{x(g(t))}{x(g(g(t)))}-1+\int_{g(g(t))}^{g(t)} \int_{0}^{s} P(s, u) d u d s \leq 0, \quad t>0 \tag{4}
\end{equation*}
$$

And by (3), we know

$$
\lim _{t \rightarrow+\infty} \frac{x(g(t))}{x(g(g(t)))}=\lim _{t \rightarrow+\infty} \frac{x(t)}{x(g(t))}=0
$$

Taking limit on both sides of inequality (4), in view of Lemmas 1 and 2, we have a contradiction.

The proof is complete.
Example 1. Consider the integro-differential equation

$$
\dot{x}(t)+\int_{0}^{t} \frac{-2 s}{\alpha t^{2}} x(\alpha s) d s=0, \quad t>0
$$

where $\alpha \in(0,1)$. Thus, we see that $g(t)=\alpha t, g(g(t))=\alpha^{2} t, g$ satisfies all conditions in Theorem 1. It is easy to check that $x(t)=t$ is a solution of the equation, and $x(t)$ has no zero point in the interval $(0,+\infty)$. It is clear that the function $P(t, s)$ is negative. Thus P does not satisfy the conditions in Theorem 1. We can also see that Eq. (1) could have positive solution when the kernel $P(t, s)$ is negative no matter what the function g is. In above example, even if α takes value in the interval $[1,+\infty), x(t)=t$ is always a solution of the equation.

Example 2. Consider the following integro-differential equation

$$
\begin{equation*}
\dot{x}(t)+\int_{0}^{t} P(s) x\left(\frac{s}{2}\right) d s=0, \quad t>0 \tag{5}
\end{equation*}
$$

where $P \in C\left(\mathbb{R}^{+}, \mathbb{R}^{+}\right)$.
As we can see, this integral equation is equivalent to the following second order functional differential equation

$$
\begin{equation*}
\ddot{x}(t)+p(t) x\left(\frac{t}{2}\right)=0, \quad t>0 \tag{6}
\end{equation*}
$$

if we only consider the solutions which belong to $C^{2}\left(\mathbb{R}^{+}, \mathbb{R}\right)$ and satisfy the initial condition $\dot{x}(0)=0$. The oscillation of this equation has been studied in [2] where
sufficient conditions have been established. Thus if we have (see Corollary 2.4 in [2]),

$$
\int^{\infty} t^{\alpha} P(t) d t=+\infty, \quad \text { for some } \alpha \in(0,1)
$$

then every solution of Eq. (6) with the condition $\dot{x}(0)=0$ is oscillatory. So for Eq. (5), if the function $P(t)$ is nonnegative and no identically zero on $[0,+\infty)$, then all the conditions in Theorem 1 hold. Hence, every solution of Eq. (5) has, at least, zero point on $(0,+\infty)$.

From the proof of Theorem 1, we can have the following results without giving further proof.

Corollary 1. Assume that

$$
\liminf _{t \rightarrow+\infty} \int_{0}^{t} P(t, s) d s \neq 0
$$

Then the integro-differential inequality

$$
\begin{equation*}
\dot{x}(t)+\int_{0}^{t} P(t, s) x(g(s)) d s \leq 0 \quad(o r \geq 0), \quad \text { for } \quad t>0 \tag{7}
\end{equation*}
$$

does not have positive (or negative) solutions on $[0,+\infty)$.
Corollary 2. Assume that

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \int_{g(t)}^{t} \int_{0}^{s} P(s, u) d u d s>1 \tag{8}
\end{equation*}
$$

Then every solution of Eq. (1) has, at least, one zero in $(0,+\infty)$ and every solution of inequality (7) is not positive (or negative) on $[0,+\infty$).

Proof. For Corollary 2, we can see that in the proof of Theorem 1, if $x(t)>0$ on $(0,+\infty)$, when ℓ is finite, then we have

$$
\lim _{t \rightarrow+\infty} \int_{g(t)}^{t} \int_{0}^{s} P(s, u) d u d s \leq \frac{1}{e}
$$

which contradicts (8). When $\ell=+\infty$, in view of (4), we have

$$
\lim _{t \rightarrow+\infty} \int_{g(g(t))}^{g(t)} \int_{0}^{s} P(s, u) d u d s \leq 1
$$

Since $g(t) \rightarrow+\infty$ as $t \rightarrow+\infty$, it follows

$$
\lim _{t \rightarrow+\infty} \int_{g(g(t))}^{g(t)} \int_{0}^{s} P(s, u) d u d s=\lim _{t \rightarrow+\infty} \int_{g(t)}^{t} \int_{0}^{s} P(s, u) d u d s \leq 1
$$

which contradicts (8). Thus the result of Corollary 2 holds.

Note that the condition (8) is much weaker than the condition in Theorem 1. We can see this from Lemma 2.

Consider the following Volterra integro-differential equation

$$
\begin{equation*}
\dot{x}(t)+\int_{0}^{t} f(t, s, x(g(s))) d s=0, \quad t>0 \tag{9}
\end{equation*}
$$

and the inequality

$$
\begin{equation*}
\dot{x}(t)+\int_{0}^{t} f(t, s, x(g(s))) d s \leq 0 \quad(\text { or } \geq 0), \quad t>0 \tag{10}
\end{equation*}
$$

The function $f \in C\left(\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}, \mathbb{R}\right)$ satisfies the following conditions: $f(t, s, v) v>$ 0 for $s \leq t, v \in \mathbb{R}, v \neq 0$ and

$$
f(t, s, 0)=0, \quad|f(t, s, v)| \geq p(t, s)|v|, \quad v \in \mathbb{R}, t, s \in \mathbb{R}^{+}
$$

where $P(t, s)$ is as the function appeared in Eq. (1) and satisfies all the conditions mentioned at the beginning of this paper.

It follows a similar way to prove the following results.
Theorem 2. Assume that

$$
\liminf _{t \rightarrow+\infty} \int_{0}^{t} P(t, s) d s \neq 0
$$

Then every solution of Eq. (9) has, at least, one zero point on $(0,+\infty)$ and no solution of inequality (10) is positive (or negative) on $(0,+\infty)$.

As a matter of fact, if there exists a positive solution x of Eq. (9), then by Eq. (9), we have

$$
\dot{x}(t)+\int_{0}^{t} P(t, s) x(g(s)) d s \leq \dot{x}(t)+\int_{0}^{t} f(t, s, x(g(s))) d s=0, \quad t>0
$$

Then the rest proof can follow the one that we have done in the proof of Theorem 1. It has similar steps if we have a negative solution x to Eq. (9). Indeed, if $x(t)<0$, $t \in(0,+\infty)$, we have

$$
\dot{x}(t)+\int_{0}^{t} P(t, s) x(g(s)) d s \geq \dot{x}(t)+\int_{0}^{t} f(t, s, x(g(s))) d s=0
$$

for $t>0$. Let $x(t)=-y(t)$, then $y(t)>0, t>0$, it follows

$$
\dot{y}(t)+\int_{0}^{t} P(t, s) y(g(s)) d s \leq 0, \quad t>0
$$

In the following, we investigate existence of positive solutions of Eq. (1) and Eq. (9).

Theorem 3. Assume that

$$
\int_{0}^{+\infty} \int_{0}^{s} P(s, u) d u d s \leq \frac{1}{e}
$$

Then Eq. (1) has a positive solution on $[0,+\infty)$.
Proof. For the convenience, we set

$$
\begin{equation*}
x(t)=\exp \left(\int_{0}^{t} \lambda(u) d u\right), \quad t \geq 0 \tag{11}
\end{equation*}
$$

where x is a solution of Eq. (1). By this form, from Eq. (1), we have the following integral equation

$$
\begin{equation*}
\lambda(t)=-\int_{0}^{t} P(t, s) \exp \left(-\int_{g(s)}^{t} \lambda(u) d u\right) d s, \quad t>0 \tag{12}
\end{equation*}
$$

If we can prove that Eq. (12) has a solution $\lambda(t)$, then by the form of $x(t)$ in (11), we see that Eq. (1) has a positive solution on $[0,+\infty)$.
Construct a sequence as follows

$$
\begin{aligned}
\lambda_{0}(t) & =-e \int_{0}^{t} P(t, s) d s \\
\lambda_{1}(t) & =-\int_{0}^{t} P(t, s) \exp \left[\int_{g(s)}^{t}-\lambda_{0}(u) d u\right] d s \\
\ldots & \\
\lambda_{n}(t) & =-\int_{0}^{t} P(t, s) \exp \left[\int_{g(s)}^{t}-\lambda_{n-1}(u) d u\right] d s
\end{aligned}
$$

Using the induction, we can prove that $\lambda_{n}(t)$ is a nondecreasing sequence, namely

$$
\lambda_{n}(t) \geq \lambda_{n-1}(t), \quad n=1,2, \ldots
$$

and we also have

$$
-e \int_{0}^{t} P(t, s) d s \leq \lambda_{n}(t) \leq 0, \quad t \in[0,+\infty)
$$

for $n=1,2, \ldots$.
Using the monotone convergence theorem, we know that there exists a function $\lambda(t)$ such that $\lambda_{n}(t) \rightarrow \lambda(t)$ as $n \rightarrow+\infty$, and

$$
\lim _{n \rightarrow+\infty} \int_{g(s)}^{t} \lambda_{n}(u) d u=\int_{g(s)}^{t} \lambda(u) d u, \quad s \leq t
$$

Hence
$\lim _{n \rightarrow+\infty} \int_{0}^{t} P(t, s) \exp \left[\int_{g(s)}^{t}-\lambda_{n}(u) d u\right] d s=\int_{0}^{t} P(t, s) \exp \left[\int_{g(s)}^{t}-\lambda(u) d u\right] d s, t>0$.
It concludes that $\lambda(t)$ is a solution of Eq. (12).

Theorem 4. Assume that the function $f(t, s, v)$ is nonincreasing in v and $f(t, s, v) v>0, v \neq 0$, and

$$
\int_{0}^{+\infty} \int_{0}^{t} f\left(t, s, \frac{1}{e}\right) d s d t \leq \frac{1}{e}
$$

Then Eq. (9) has a positive solution on $[0,+\infty)$.
Proof. We can prove this result by a similar way as we have done in the proof of Theorem 3. Set

$$
x(t)=\exp \left(\int_{0}^{t} \lambda(s) d s\right), \quad t \geq 0
$$

where x is a solution of Eq. (9). Then by Eq. (9) and the form of x, we have the integral equation

$$
\begin{equation*}
\lambda(t)=-\int_{0}^{t} \frac{f\left(t, s, \exp \left[\int_{0}^{g(s)} \lambda(u) d u\right]\right)}{\exp \left[\int_{0}^{t} \lambda(u) d u\right]} d s, \quad t \geq 0 \tag{13}
\end{equation*}
$$

If Eq. (13) has a solution $\lambda(t)$ on $[0,+\infty)$, then it follows that Eq. (9) has a positive solution on $[0,+\infty)$. Construct a sequence as follows

$$
\begin{aligned}
& \lambda_{0}(t)=-e \int_{0}^{t} f\left(t, s, \frac{1}{e}\right) d s \\
& \lambda_{n}(t)=-\int_{0}^{t} \frac{f\left(t, s, \exp \left[\int_{0}^{g(s)} \lambda_{n-1}(u) d u\right]\right)}{\exp \left[\int_{0}^{t} \lambda_{n-1}(u) d u\right]} d s
\end{aligned}
$$

for $t \geq 0, n=1,2, \ldots$.
In view of the assumption, we see that $\lambda_{n}(t) \leq 0$, for $t \geq 0, n=1,2,3, \ldots$. Furthermore by using the induction, we can prove that

$$
-e \int_{0}^{t} f\left(t, s, \frac{1}{e}\right) d s \leq \lambda_{n-1}(t) \leq \lambda_{n}(t), \quad n=1,2,3, \ldots, t \geq 0
$$

Indeed,

$$
\exp \left[\int_{0}^{t} \lambda_{0}(u) d u\right]=\exp \left[\int_{0}^{t}-e \int_{0}^{s} f\left(s, u, \frac{1}{e}\right) d u d s\right] \geq \frac{1}{e}
$$

for $t \geq 0$, and since f is nonincreasing in v, we have

$$
f\left(t, s, \exp \left[\int_{0}^{g(s)} \lambda_{0}(u) d u\right]\right) \leq f\left(t, s, \frac{1}{e}\right), \quad t \geq s \geq 0
$$

Thus

$$
\lambda_{1}(t) \geq-e \int_{0}^{t} f\left(t, s, \frac{1}{e}\right) d s=\lambda_{0}(t), \quad t \geq 0
$$

Now assume that $\lambda_{n-1}(t) \geq \lambda_{n-2}(t), t \geq 0$. Then

$$
0<\exp \left[\int_{0}^{t} \lambda_{n-2}(u) d u\right] \leq \exp \left[\int_{0}^{t} \lambda_{n-1}(u) d u\right]
$$

and

$$
f\left(t, s, \exp \left[\int_{0}^{g(s)} \lambda_{n-2}(u) d u\right]\right) \leq f\left(t, s, \exp \left[\int_{0}^{g(s)} \lambda_{n-1}(u) d u\right]\right)>0
$$

Thus, it is clear that $\lambda_{n}(t) \geq \lambda_{n-1}(t)$.
By the monotone convergence theorem, there exists a function $\lambda(t)$ such that $\lambda_{n}(t) \rightarrow \lambda(t)$ as $n \rightarrow+\infty$. So there exists a solution $\lambda(t)$ of Eq. (13).

The proof is complete.

Acknowledgements.

I am very grateful to Prof. G. Karakostas for his suggestion and I thank the mathematics department of UNICAMP for the hospitality.

References

1. Balachandran K. and Ilamaran S., An existence theorem for Volterra integral equation with deviating arguments, J. Appl. Math. Stoch. Anal. 3 (1990), 155-162.
2. Erbe L., Oscillation criteria for second order nonlinear delay equations, Canad. Math. Bull 16(1) (1973), 49-56.
3. Gopalsamy K., Oscillations in integro-differential equations of arbitrary order, J. Math. Anal. Appl. 126 (1987), 100-109.
4. Karakostas G., Expression of solutions of linear differential equations of retarded type, Bolletino U.M.I. (5)17-A (1980), 428-435.
5. Ladas G., Philos Ch. G. and Sficas Y. G., Oscillations of integro-differential equations, Differential and Integral Equations 4 (1991), 1113-1120.

[^0]: Received August 28, 1994.
 1980 Mathematics Subject Classification (1991 Revision). Primary 34K15, 45J05.

