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ON CERTAIN FORMULAS FOR THE
MULTIVARIABLE HYPERGEOMETRIC FUNCTIONS

R. K. RAINA

Abstract. We present relatively simple and direct proofs of the integral represen-
tations established recently in [7]. An algorithm is then furnished and applied to
obtain new classes of integral formulas for the multivariable hypergeometric func-
tions, thereby, providing generalizations to the results of [7]. Also, an operational
formula involving fractional calculus operators for an analytic function is derived
and its usefulness illustrated by considering some examples.

1. Preliminaries and Definitions

The multivariable generalized Lauricella function due to Srivastava and Daoust
[8, p. 454] is a generalization of the Wright function ,Wq in several variables, and
is defined by ([1, p. 107]),
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The coe [cights of (j = 1,...,p), B¥ G = 1,...,0), v (G = 1,...,px) and
6}< G=1,..0q) K=1,...,n, are real and positive, and (ap) means the
array of p-parameters as, ..., ap; with similar interpretations for (by), (y,}l), (ag),
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etc., and (&), = N'(a + n)/T (a) denotes the usual Pochhammer symbol. For the
precise conditions under which the multiple series (1) converges absolutely, see
[9, pp. 157-158].

The generalized hypergeometric function is defined by
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for p<q+1 (cf. [10, p. 42]), and its generalization known as the Wright’s hyper-
geometric function ,Wq [10, p. 50] is defined by
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where 1+ _ Bj— j,0=00;(G=1...,pandBj G =1,...,9) are
positive real numbers.
The Fox’s H-function is defined by
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where {ap, 0p} abbreviates the p-parameters (ag, 1), ..., (ap, 0p). We refer to
[3, p. 626] (see also [10, p. 49]) for the details regarding the type of the contour L,
and the conditions of existence of the H-function. If oj =1 ( =1,...,p) and
Bi =1@G =1,...,9) in (5), then we have the relation

1] 1
Ml ZQ{ap,l} :Gm,nl?j
P.g {bq, 1} pa

where the G-function is the familiar Meijer’s G-function ([3, p. 617]).
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2. Introduction

In their paper, Saigo and Tuan [7] established two integral representations for
the generalized Kampé de Fériet function (a particular case of (1)) given by
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wherep=q,pk=ogk+1(k=1...,n).

The formulas (7) and (8) are derived in a rather longish manner by reverting
to the analysis of Mellin transform (and its inverse) and invoking the Parseval
theorem in the process.

This paper has two parts. First we derive direct (alternative) proofs of (7)
and (8), and then furnish a simple straightforward algorithm which is applied
in deriving more general classes of integral formulas than (7) and (8) for the
multivariable hypergeometric functions. The second part of this paper gives an
operational formula (egn. (22) below) involving the fractional calculus operator
of Saigo (see, e.g., [5] and [6]) for an analytic function, and some examples are
deduced illustrating the applications.

3. Direct Proofs of (7) and (8)

Expanding the ,Fq function on the right side of (7) in terms of the defining
series (3), using the elementary identity [10, p. 52])
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and interchanging the order of summation and integration (formally), we have
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Appealing to the Mellin transforms of the Meijer’s G-function [3, p. 728, eqn. (9)],
we are lead to the formula (7) as a consequence of the definition (1).
Similarly, for proving (8) directly, we expand each function ,, Fq  (k=1,...,n)
on the right side, invert the order of summation and integration, and apply the
result [3, p. 728, egn. (9)] to arrive at the result (8).

4. Generalizations of (7) and (8)

With a view to demonstrating the algorithm used in our derivation of the gener-
alizations of the integral representations (7) and (8), we first define a multivariable
function.

Suppose a function f(zy,...,zn) is analytic in the domain D = D; x D; %
x Dp (z; [O;, i =1,...,n) possessing the power series expansion
1
11 f(z1,...,zn) = C(my,...,mp)z™ ... z0™,

where |zi| < R;j (Ri > 0,1 [{1,...,n}),and C(m4,...,my) is a bounded sequence
of real (or complex) numbers.
Let us replace z;j by tix; (i=1,...,n)in (11), multiply the equation so obtained

both sides by
iy PO @{d&k,ak .
k=1 Ok P {Cpk’ pk}

Then the repeated (n-fold) integration of the resulting equation between the
limits 0 to oo, and use of the Mellin transform of the H-function [3, p. 729,
egn. (11)] (with the assumption of the change in the order of summation and
integrations) readily yields the foIIowing assertion:
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where px = qk, Re(c}‘) > 0, y}‘ >0( =1,...,px), and 6}-‘ >0(G=1,...,0),
[kKI=1,...,n; such that both the members of (12) exist.

Proceeding with the same steps as indicated above, we would also be led to the
following result
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wherep=¢q, Re(h;]) >0(G =1,...,n), Re(g;) >0,0; >0(J =1,...,p), and
Bj >0( =1,...,0q) such that both sides of (13) exist.
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Next, we put the sequence
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wherg_h; > 0 (Iilln) y}‘ >0( =1,...,px): 6}‘ >0( =1,...,0),
1+ [Eok— 5 yf=0 K{L,...,n}

It may be noted that the integral representations (7) and (8) are recoverable
from our formulas (15) and (17), respectively, in the special case when yj* =
G=1...,p),0=1(G=1,...,q),and hi =1 (i=1,...,n).

5. Operational Formulas

In this section we establish an operational formula involving Saigo’s fractional
calculus operator |g£’" which is defined by (see [5, p. 15] and [6, p. 53])

—a—p 1 -
x—1)*F 0(+B,—n;0(;l—; f(t) dt,
0

o,B.n X
18) 1500 = s
where Re (o) > 0, B and n are complex numbers, the F-function is the Gauss’s
function which is a special case of (3).
If Re(a) <0, then
dn

(19) 155 ") = o),

provided that n is a positive integer such that
—Re(a) <n<-—-Re(a)+1.

Two special cases of (18) emerge, giving the Riemann-Liouville (R-L) and
Erdélyi-Kober (E-K) fractional calculus operators. Indeed, for = —a, (18) gives
the R-L operator

20 RYF(x) = 19O (x) = —— . — )1 () dt

(20) oxF ) =15 () = F@) o (X =) (1) dt,

and, for 3 = 0, (18) yields the E-K operator

1) ESNF(x) = 1900 (x) = X g(x — )L (1) dt
0,X — '0,x - r(a) 0 .

For an analytic function f(z,, ..., z,) defined by (11), we have the following op-
erational formula involving the fractional calculus operator (18) for a real variable
X and complex variables z4, ..., zn:

Theorem. Corresponding to the sequence C(mg,...,my), let the function
f(z1,...,2zn) be defined by (11), then

1
(22)  T{f(xza,...,XZn)} = xPr1 C(my,...,mp)

1
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e+ myr; + + M)
I'(Bj +|\/|)r((1j +}\j +}J.j + M)
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where Re(aj) >0, Re(Bj + 1) =0 =1,...,p), max{[xzi|,...,|Xzn|} < R,
T is a chain of fractional calculus operators defined by

(23) T = I(;\’F),(,ap—BpMpxap—Bp_l o I(;\E(,GZ_BZvHZXGZ_Bl |&§(,01—I31,H1XO(1—1 '
such that both sides of (22) exist, and
(24) M=m;+.--+mp,.

Proof. In view of defining equations (11) and (23), we have on replacing each
zi by xz; (i=1,...,n):

1 1
S i | | S |
(24a) T{f(X21,...,X2n)}=T c(mg,...,mp)xM  zM
ma,..., mp=0 i=1
o | 1
= c(mg,...,mp)  zMT{HM3,
mai,..., mp=0 i=1

under of course the assumptions stated with (11), and with the above theorem,

permitting the interchange in the order of the multiple summation and fractional

di Lerential operator |g§£v"; T and M being defined by (23) and (24), respectively.
Applying the known formula [5, p. 16, Lemma 1]:

JOBNA — FL+MIFr1+A—p+n) SA—B
0. FAL+A—B)L+A+a+n) '
Re (A) > max[0, Re (B —n)]—1, succesively p times on the right of (24a), we arrive
at (22).

IfA; =Bj—a; g =1,...,p), then in view of (20), the above theorem in terms
of R-L operators gives

(25)
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where Re(0;) >0 (i=1,...,p), and M is given by (24).
On the other hand, if B; = a; (i=1,...,p) in (22), then using (21), we get
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where Re(aj + ;) >0 ( =1,...,p), and M is given by (24).
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By letting z; —» 0 (i =2,...,n) in (26), and putting
C(my,0,...,0) = (—m)m,/m;! (m is a positive integer),
so that
f(xz1,0,...,0) = (1 —xz,)™,

we receive the formula of Misra [2]. It may also be observed that when p = 1, then
(26) would evidently correspond to the result due to Raina [4, p. 185, Corollary 1].

Lastly, we consider deducing certain examples illustrating the usefulness of the
operational formula (22).

Example 1. Put

(28) C(my,...,mp) =

j=1 (m;j)!
in (22), so that
N |
(29) f(xz1,...,xzn) = (1 —xzj)™ ",
i=1

then in terms of the generalized Kampé de Fériet function, (22) gives

1 C1
(30) T I%Ixz-)_vi I:—I NG 2p:id
Ij:=1I | :_19 2p:0;...;0
C1 . o s -
(©p),(Bp + Hp) Y/ A VA, XZ1,. .. X2y

(Bp). (0p + Ap + Hp): —i. . i—;

where

_ )@ )

(31) ¢ Y(Bi)I(aj +Aj +1j)

j=1

The formula of Saigo and Raina [6, p. 56, egn. (2.5)] is at once obtainable from
(30) when p = 1.

Example 2. Let us set

(yj)mj _—

(32) C(my,...,mp) = (Gn)m m

j=1
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in (22), where m is defined by (24), we get the following operational formula for
the Lauricella function F{™:

(33)
2p+1:1;...;1

TR Y, .o Yo Ma, - B X2, .- ., XZn]} = QxPe I 2 1.1

(I

C1 + e ey
(@p),(Bp + Hp) O Y155 YN, XZ1,...,XZn

(Bp).(0p +Ap + Hp): Pns-- -5 Pn;

where Re () >0, Re(Bj + 1) =>0(0 =1,...,p), [Xz1 +---+Xzn| <1,and Q is
given by (31).

Example 3. If we set the sequence

C(@n @,

(34) C(my,...,mp) = - ) m)
j=

where, as before, M is given by (24), then (22) yields the following operational
formula involving Lauricella function F,(D”) and the Kampé de Fériet function of n
variables:

35)  T{FS[a,01,...,0n X2, ..., X2Zn]} = QxPeIF gg : 13 é
1 1

(), (Bp + Hp), @ 2 01;...,0n; XZ1. ... XZn |

Bp), (0p +Ap + Hp), i —;. .. —;
where Re (0;) >0, Re(Bj+1;) =0 =1,...,p), max{|xzj[} <1, fori=1,...,n,
and Q is given by (31).

On replacing zx by zx/a, ok by —ry, for all k =1,...,n in (35), and letting

[a] — oo, we are led to the operational formula for the generalized Laguerre
polynomials of several variables ([10, p. 464]),

W — oot A F W, 20 110
R r!...r! I:2|p:|+1:0;...;0

]
(0p),(Bp + Hp) e C T Y

Bo) (@ + Mo + i) o+ Ly iy T

where Q is given by (31).
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