
Acta Math. Univ. Comenianae
Vol. LXIV, 1(1995), pp. 57–76

57

k–MINIMAL TRIANGULATIONS OF SURFACES

A. MALNIČ1 and R. NEDELA2

Abstract. A triangulation of a closed surface is k-minimal (k ≥ 3) if each edge
belongs to some essential k-cycle and all essential cycles have length at least k. It is
proved that the class of k-minimal triangulations is finite (up to homeomorphism).
As a consequence it follows, without referring to the Robertson-Seymour’s theory,
that there are only finitely many minor-minimal graph embeddings of given rep-
resentativity. In the topological part, certain separation properties of homotopic

simple closed curves are presented.

1. Introduction

Let G be a graph (possibly with loops and multiple edges) embedded in a

closed surface Σ 6≈ S2 (cf. [10, 24]). The representativity rpΣG [21, 24] is

defined as min |{z ∈ S1 : G ∩ γ(z) 6= ∅}|, where the minimum is taken over all

homotopically nontrivial (essential) closed paths γ : S1 → Σ. The minimum can be

taken just over simple paths which intersect G in vertices only, and which moreover

traverse each face of the embedding at most once. If T is a triangulation of Σ

(a triangular embedding of a simplicial graph), then rpΣT is the length of

the shortest essential cycle of T .

Let k ≥ 3 be a natural number. Triangulations with rpΣT ≥ k can be de-

scribed as an inductive class where the generating rule is the standard vertex-

splitting operation as illustrated in Figure 1. The base of this inductive class

is the class of k-minimal triangulations of Σ. One easily proves the following

proposition.

Proposition 1.1. A triangulation T is k-minimal if and only if rpΣT = k and

each edge of T belongs to some essential k-cycle of T .

These triangulations do not have nice symmetry if k is sufficiently large; for

instance, their automorphism groups are not arc-transitive. Barnette [3] found

the 3-minimal base for the projective plane, Lavrenchenko [13] computed the

3-minimal base for the torus. Barnette and Edelson [4, 5] proved that for each
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Figure 1. The vertex-splitting.

closed surface the 3-minimal base is finite. A triangulation is locally-cyclic ([8,

11, 14, 18, 20]) if, for each vertex, the induced subgraph on the set of neighbours is

isomorphic to some cycle. By vertex-splitting, where producing vertices of degree 3

is forbidden, the locally-cyclic triangulations are generated from the irreducible

ones. It is easy to see that a k-minimal triangulation, where k ≥ 4, is locally-

cyclic. Moreover, it is 4-minimal if and only if it is irreducible locally-cyclic. In

the present terminology, the result proved in [14] states that the class of 4-minimal

triangulations of orientable closed surfaces is finite. Fisk, Mohar and Nedela [8]

computed the 4-minimal base for the projective plane. Our main result is the

following.

Theorem 1.2 (Main Theorem). The class of k-minimal triangulations

(k ≥ 3) is finite (up to homeomorphism of embeddings) for each closed surface

Σ 6≈ S2.

The proof is similar to that of [14] using homotopy techniques. However, some

key steps are different and moreover, a more accurate study of certain separation

properties of simple closed curves on surfaces is needed (see Section 2). These

topological results seem not to appear in literature. At the end we present an

application of Main Theorem. We give an elementary proof that every closed

surface Σ 6≈ S2 admits only finitely many minor-minimal embeddings of given

representativity (which otherwise follows from the Robertson-Seymour’s proof of

the Wagner’s conjecture).

2. Simple Curves on Surfaces

It is assumed that the reader is familiar with standard textbooks on analysis,

algebraic topology and general topology (cf. [1, 7, 16, 19]), with the theory of

covering spaces and with the homotopy theory in particular. Throughout the pa-

per, M denotes an arbitrary (connected) 2-manifold (and compact, with the

exception of an open disc/plane). By χM we denote its Euler characteristic, by

gM its genus (orientable or nonorientable), by ∂M its boundary and by intM
the interior of M. If Ω ⊂ M is a subset then Ω̄ denotes its closure, Ω◦ its

interior and fr Ω its frontier. It is a consequence of the Schoenflies’ theorem
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that a graph G ⊂ int M has a regular neighbourhood NG in M. This is a

compact surface with boundary obtained by “small” disjoint discs around vertices

plus disjoint “strips” along the edges. The separating regions (or faces) are

the components of M\G while the corresponding components of M\ int NG are

the dissecting surfaces obtained by cuttingM along G. IfM 6≈ S2 is not the

2-sphere and if a separating region R is an open disc, we write R = RW = RW−1 ,

where W is the closed walk in G “representing its boundary”. By γ1
∼= γ2 we de-

note free homotopy of closed paths γ1, γ2 : S1 →M, where S1 ⊂ C is the unit

circle, while by γ1
∼= γ2 |x0 and γ1

∼= γ2 |x0,x1 we denote the relative homotopy

of paths γ1, γ2 : (S1, 1)→ (M, x0) and γ1, γ2 : ([0, 1], 0, 1)→ (M, x0, x1), respec-

tively. A simple (open,closed) curve is the image of a simple (open,closed)

path. Different simple curves are therefore understood as distinct in the set-

theoretical sense. By an abuse of language, homotopic simple closed curves

are to be understood as having homotopic simple closed paths as representatives

(i.e., the first is homotopic to the second, or is homotopic to the inverse of the

second representative path). Homotopically nontrivial (noncontractible) curves

(paths) are called essential. The next two propositions are from [14].

Proposition 2.1. Let Γ be a family of pairwise disjoint, pairwise freeley non-

homotopic essential simple closed curves on a closed surface Σ 6≈ S2. Then the

cardinality |Γ| = 1 if Σ is the torus or the projective plane, and |Γ| = 3(gΣ − 1)

otherwise.

Proposition 2.2. Let Γ be a “bouquet” of pairwise “internally disjoint”, pair-

wise relatively nonhomotopic essential simple closed curves at a common point

x0 ∈ Σ. Then the cardinality |Γ| = 1 if Σ is the projective plane, and |Γ| =

3(1− χΣ) otherwise.

Let γ1, γ2 be two different simple closed curves in M. The connected compo-

nents of their intersection γ1 ∩ γ2 are arcs (possibly degenerated to points) and

their cardinal number is the intersection number int (γ1, γ2). Assuming that

int (γ1, γ2) is finite (or at least that the intersecting arcs (points) are “separated”

by disjoint neighbourhoods when M is the plane), it is a consequence of the

Schoenflies’ theorem, that each intersection can be classified as either a touching

or a crossing. Moreover, there are three types of intersections relative to the

inherited orientation from S1: a crossing (cr), a coherent touching (ct) and

a noncoherent touching (nt). The definitions are obvious. Let x0 ∈ int M
be an isolated point of intersection of γ1, γ2 : (S1, 1) → (M, x0). The angle be-

tween the paths ang (γ1, γ2) = ang (γ2, γ1) in case x0 is a crossing or a coherent

touching is informally shown in Figure 2(cr) and Figure 2(ct), respectively; if x0 is

a noncoherent touching then we distinguish between ang (γ1, γ2) and ang (γ2, γ1)

as in Figure 2(nt) (note that in this case, the distinction which angle is which
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Figure 2. The angle between the paths.

depends on the preselected local orientation of the regular neighbourhood). The

formal definition is left to the reader.

There are some well-known results regarding separation properties of simple

closed curves with finite intersection number, which date back to Baer, Dehn,

Schoenflies and Poincaré. Apart from the fact that a contractible simple closed

curve bounds a disc we mention the following (cf. [7]): “between” freely homotopic

essential simple closed curves with finite positive crossing intersection number there

is a disc bounded by two arcs, one of each curve; when the curves are disjoint (and

necessarily 2-sided), then the curves bound a cylinder. From this it follows that

two 1-sided homotopic simple closed curves cross an odd number of times, while

2-sided an even number of times. But we shall need a more detailed result.

Theorem 2.3. Let a1, a2 : (S1, 1) → (M, u) be essential homotopic simple

closed paths with u as the single intersection. According to the type of intersection

at u, one of the following cases occurs (on the projective plane we only have the

case (cr), and both regions are open discs):

(ct) The curves are 2-sided. There are either 2 or 3 separating regions; Ra1a
−1
2

is an open disc.

(cr) The curves are 1-sided. There are 2 separating regions; Ra1a
−1
2

is an open

disc.

Proof. We first show that u cannot be a noncoherent touching. Suppose u =

(nt). ThenM is not the projective plane. Consider the universal covering p : R2 →
M. The connected components Ci ⊂ p−1(ai) (i = 1, 2) at ũ0 ∈ p−1(u) are 2-way

infinite paths because the fundamental group π(M, u) does not have elements of

finite order (cf. [7] for the proof). Now the lifts ãi ⊂ Ci of ai (i = 1, 2) originating

at ũ0 have the same terminal point ũ1 ∈ p−1(u) (cf. [16]), and ã1ã
−1
2 bounds

a disc D. Because p is a local homeomorphism, C1 and C2 have a noncoherent

touching at ũ0 and so one of C1, C2 has a continuation to the interior of D. This

continuation in D cannot meet fr D since C1 ∩ C2 ⊂ p−1(u). Hence p−1(u) ∩D
is a discrete, infinite and bounded set. But this is a contradiction since an infinite

and bounded set of an euclidean space has a limit point.
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Suppose u is either a coherent touching or a crossing. Then the curves are

2-sided or 1-sided, respectively, and the dissecting surfaces have in all either three

boundary components a1a
−1
2 , a1 and a2, or two boundary components a1a

−1
2 and

a1a2, respectively. There is a simple closed path δ ∼= a1a
−1
2
∼=u 1 which bounds

a disc in M and is entirely contained in the dissecting surface having a1a
−1
2 as

the boundary component. Hence the corresponding region must be a disc since a1

and a2 are essential. Consequently, there are at least two regions (and clearly not

more than three). �

Corollary 2.4. With notation of Theorem 2.3, ang (a1, a2) always belongs to

an open disc having empty intersection with the curves. The same holds for

ang (a−1
1 , a−1

2 ).

Theorem 2.5. Let γ1, γ2 : (S1, 1) → (M, u) be essential homotopic simple

closed paths with two intersecting points γ1 ∩ γ2 = {u, v}. Set γi = aibi where

ai, bi are the u− v and v − u subpaths of γi (i = 1, 2). Then one of the following

cases occurs, according to the type of intersection at u and v (on the projective

plane we only have cases (cr-ct), (cr-nt), (ct-cr), (nt-cr), and all regions are

open discs):

(ct-ct) The curves are 2-sided. There are 3 or 4 separating regions; Ra1a
−1
2

and

Rb1b−1
2

are open discs.

(ct-nt) The curves are 2-sided. There are 2 separating regions; Ra1b1b
−1
2 a−1

2
is an

open disc.

(cr-ct) The curves are 1-sided. There are 3 separating regions; Ra1a
−1
2

and Rb1b−1
2

are open discs.

(cr-nt) The curves are 1-sided. There are 2 or 3 separating regions, where

Ra1b1b
−1
2 a−1

2
is an open disc.

(ct-cr) The curves are 1-sided. There are 3 separating regions; Ra1a
−1
2

and Rb−1
1 b2

are open discs.

(cr-cr) The curves are 2-sided. There are 3 or 4 separating regions. Ra1a
−1
2

and

Rb1b−1
2

are open discs.

(nt-cr) The curves are 1-sided. There are 3 separating regions; Ra1a
−1
2 b−1

2 b1
is an

open disc. If M is not the projective plane, then exactly one of Ra1b2 ,

Ra2b1 is an open disc.

Proof. The proof is done by case to case analysis according to the type of

intersection at points u and v. As we shall prove, only seven out of the possible

nine cases may actually occur. Also, we shall assume thatM is not the projective

plane since this case is easy to check.

Case u = (ct) or (cr). We distinguish two subcases.

Subcase v = (ct) or (nt). First make the two paths disjoint in a small

regular neighbourhood of v and then apply Theorem 2.3. If there is a coherent
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Figure 3. The case int = 2.

touching at u we have cases (ct-ct), (ct-nt) and if u is a crossing we have cases

(cr-ct), (cr-nt). See Figure 3.

Subcase v = (cr). Consider the universal covering p : R2 → M and let

ãib̃i be the lifted paths of aibi (i = 1, 2) originating at ũ0 ∈ p−1(u). Denote by

ũ1 ∈ p−1(u) their common end, and by ṽi ∈ p−1(v) the ends of ãi, (i = 1, 2).

Clearly, ũ0 6= ũ1. Suppose ṽ1 6= ṽ2.

Then the “quadrilateral” ã1b̃1b̃
−1
2 ã−1

2 is a simple closed curve in R2 which

bounds a disc D. Consider the connected components Ci ⊂ p−1(γi) (i = 1, 2)

at ũ0, C′2 ⊂ p−1(γ2) at ṽ1 and C′1 ⊂ p−1(γ1) at ṽ2. These are all 2-way infinite

paths. Moreover, by avoiding the limit point contradiction and by the unique path

lifting, we have C′2 = C2 and C′1 = C1. Also, C1 and C2 continue to the interior

of D at exactly one of the points ũ0, ũ1, say, after meeting ũ1. In the interior,

C1 and C2 either do not meet or they intersect at ũ2 ∈ p−1(u) (the common end

of the lifts of aibi originating at ũ1). In the second case ũ1 and ũ2 are opposite

corners of a quadrilateral D1 ⊂ D. Moreover, since C1 and C2 come to ũ1 from

the exterior of D1, C1 and C2 continue to the interior of D1 at ũ2. Hence either C1

and C2 form an infinite sequence of nested quadrilaterals D = D0 ⊃ D1 ⊃ D2 . . . ,

or we can find a quadrilateral Dk ⊂ D (k ≥ 0) such that C1 and C2 do not meet
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in the interior of Dk. In the first case we have a contradiction via the limit point

argument. In the second case, u is necessarily a crossing, and the curves C1 and

C2 join ũk+1 ∈ p−1(u) across the interior of Dk to the two lifts of v on fr Dk.

Hence there exist two “digons” whose boundaries project 1−1 onto a1b2 and a2b1.

Consequently, these projections are contractible simple closed curves in M. This

implies (a1a
−1
2 )2 ∼=u 1, a final contradiction.

It follows that ṽ1 = ṽ2. But this means that ã1ã
−1
2 and b̃−1

1 b̃2 project 1 − 1

onto a1a
−1
2 and b−1

1 b2, respectively, and that these projections are contractible

simple closed curves. The two possibilities are covered by (ct-cr), (cr-cr). See

Figure 3. The number of regions is clear by first performing a homotopic switch

of arcs across the disc to obtain cases (cr-ct), (ct-ct).

Case u = (nt). If the second intersection is not a crossing, we first make the

curves disjoint in a small neighbourhood of v and then use Theorem 2.3 to obtain

a contradiction. Hence there must be a crossing at v and therefore the curves

1-sided. Consider the universal covering p : R2 →M. We retain the notation as

in the previous case. By the limit point argument we have ṽ1 6= ṽ2. Therefore, the

“quadrilateral” ã1b̃1b̃
−1
2 ã−1

2 is a simple closed curve which bounds a disc D. At

points ũ0, ũ1, exactly one of C1, C2 continues to the interior of D (but clearly not

the same one at both points).

Suppose C1 has a continuation to the interior at ũ0 and C2 at ũ1. If ũ2 is

the common end of the lifts of aibi (i = 1, 2) originating at ũ1, then ũ2 is in the

exterior of D (otherwise C1 connects ũ1 with ũ2 by crossing fr D at ṽ2, and then

continues to ũ0; thus C1 is a closed curve, a contradiction). Hence C2 joins ũ1 and

ṽ1 across the interior of D not meeting C1, and C1 joins ṽ2 and ũ0 not meeting

C2. It follows that D◦ contains no points of p−1∪p−1(v). The disc D is composed

of a “quadrilateral” R̃ and two “digons” R̃′, R̃′′. The covering projection on fr R̃′,

fr R̃′′ is 1 − 1. Hence their projection a2b1 is a contractible simple closed curve

in M. The projection on fr R̃ fails to be 1 − 1 at points ũ0, ũ1, ṽ0 and ṽ1. By

a small homotopic perturbation at points ũ1 and ṽ2 it follows that the projection

a1a
−1
2 b−1

2 b1 of fr R̃ bounds a disc with two points of identification at u and v.

In the dual case (when C1 has a continuation to the interior of D at ũ1) we have

two discs in M bounded by a1b2 and a1a
−1
2 b−1

2 b1. See Figure 3. This completes

the proof of Theorem 2.5. �

Corollary 2.6. Let γ1
∼=u γ2 be 2-sided essential simple closed paths with at

most two intersections. Then they cannot have a noncoherent touching at u.

Corollary 2.7. With assumptions and notation as in Theorem 2.5, let u be

either a coherent touching or a crossing. Then the angle ang (γ1, γ2) belongs to an

open disc whose interior has empty intersection with the curves. The same holds

for ang (γ−1
1 , γ−1

2 ).
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Corollary 2.8. With assumptions and notation as in Theorem 2.5 we have

a1b2 ∼=u a2b1 (still in the same homotopy class as the original paths) in the two

cases (ct-cr), (cr-cr), while either b−1
2 b1 ∼=u a2a

−1
1 or a1a

−1
2
∼=u b

−1
1 b2 in the case

(nt-cr).

Corollary 2.9. With assumptions and notation as in Theorem 2.5, let u be a

noncoherent touching. Then either ang (γ1, γ2) or ang (γ2, γ1) belongs to an open

disc. The same holds for ang (γ−1
1 , γ−1

2 ) or ang (γ−1
2 , γ−1

1 ), respectively.

3. Essential Edges of a Relative Homotopy Class

We first introduce some nonstandard notation regarding an arbitrary triangu-

lation T of a fixed closed surface Σ 6≈ S2. If x 6= y are points in Σ, let #(x, y)

denote the minimal number of intersections T ∩γ(0, 1), where γ : [0, 1]→ Σ ranges

over all paths joining x and y (note that the endpoints never contribute to this

number). Let dist : Σ× Σ→ R be a function defined as

dist (x, y) :=

{
0, x = y

1 + #(x, y), x 6= y.

This is a metric on Σ and for any pair of vertices u, v ∈ V (T ), dist (u, v) agrees

with the standard metric in T . If u ∈ V (T ), then D(u) = D1(u) = {x ∈ Σ |
dist (u, x) ≤ 1} is a disc, and its frontier is the link cycle N(u) = N1(u). By Cu
and Cu(n) we denote the sets of cycles (respectively, n-cycles) in T at u ∈ V (T ).

The respective subsets of the essential ones are denoted by Ess u and Ess u(n),

and ess u is the length of the shortest cycle in Ess u. The respective subsets with

cycles in some nontrivial relative homotopy class Γ at u is denoted by Cu(Γ) and

Cu(Γ, n). The edges of T at u used by Cu(Γ, n) are called (Γ, n)-essential and are

denoted by Eu(Γ, n).

Theorem 3.1. Let T be a triangulation of Σ 6≈ S2 and let Γ be a nontriv-

ial relative homotopy class at the vertex u, where ess u = rpΣT = k ≥ 3. If

|Eu(Γ, k)| ≥ 3, there exist cycles C1, C2 ∈ Cu(Γ, k) and open discs R1, R2, each

bounded by segments of C1 and C2, such that

Eu(Γ, k) ⊂ R1 ∪R2 ∪ {C1, C2}.

(Possibly, one of R1, R2 is empty or R1 = R2; also, R1, R2 have empty inter-

section with C1, C2.) The set Eu(Γ, k) may be written as Eu(Γ, k) = E1
u(Γ, k) ∪

E2
u(Γ, k), where |E1

u(Γ, k) ∩ E2
u(Γ, k)| ≤ 1, such that each cycle in Cu(Γ, k) uses

exactly one edge of E1
u(Γ, k) and one of E2

u(Γ, k).

The proof is performed by induction on k. The induction step consists in

contracting the graph within D(u) homotopically to u to obtain the triangulation
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T ′ = T /D(u)=u. However, some details of this contraction must be carefully

analyzed, and we do this in the next lemma. Let v ∈ V (T ) be a vertex such that

ess u = n ≥ k = rpΣT ≥ 3, and let

ru =

{
1, n = 3, 4

max(2, b(k − 1)/2c), n ≥ 5.

By Nr(u) we denote the cycle in T which satisfies three conditions: firstly, all

points (as points of Σ) are at distance dist = r from u, secondly, the cycle is

planarly embedded in Σ, and thirdly, its bounding disc Dr(u) contains the ver-

tex u. If such a cycle exists, it is unique. (It is not unique if we drop the third

requirement.) Observe that points in Dr(u) can have arbitrarily large distance

from u.

Lemma 3.2. Let T be a triangulation of a closed surface Σ 6≈ S2 and let u be

a vertex with ess u = n ≥ k = rpΣT ≥ 3. Then for each 1 ≤ r ≤ ru the cycle

Nr(u) exists. Moreover, if n ≥ 5 then the triangulation T ′ = T /D(u)=u exists and

if Γ is a nontrivial relative homotopy class at u, the following holds:

(a) If C ∈ Cu(Γ, n), then C′ = C/D(u)=u is a cycle in T ′ and we have C′ ∈
C′u(Γ, n− 2).

(b) rpΣT
′ = min (n− 2, k).

(c) If n ≤ k + 2 then ess ′u = n− 2.

(d) If n ≤ k + 1 then the converse to (a) is true: to each C′ ∈ C′u(Γ, n − 2)

there exists a unique cycle C ∈ Cu(Γ, n) such that C′ = C/D(u)=u.

Proof. The cycle N1(u) = N(u) exists for all values of n ≥ k ≥ 3. Moreover, if

N2(u) exists then n ≥ 5. Hence the first part of the lemma holds for 3 ≤ k ≤ n ≤ 4.

We now first prove the existence of N2(u) for n ≥ 5.

Let Z = {z ∈ V (C) | dist (z, u) = 2, C ∈ Cu(4)}. This set is nonempty.

For each z ∈ Z there exist vertices xz , yz ∈ N(u) such that the 4-cycle Qz =

z − xz − u− yz − z encompasses all other 2-paths z − u. Denote by αz = xz − yz
the arc on N(u) encompassed by Qz. Now the following is true. Firstly, the set

of arcs A = {αz | z ∈ Z} covers N(u). Secondly, if two arcs αz, αz′ ∈ A have

an interior point in common, then one is contained in the other, say αz ⊆ αz′ ,

and Qz′ encompasses Qz (it may happen that z = z′). And thirdly, if two arcs in

αz , αz′ ∈ A have disjoint interiors then none of Qz, Qz′ encompasses the other one.

Also, z 6= z′. It follows that there exists a (unique) minimal subset A0 ⊆ A (of

cardinality greater than 1) still covering N(u), and no arc in A0 being contained

in some “larger”one from A. Now relabel the arcs of A0 (and their endvertices)

as α1 = x1 − y1, α2 = x2 − y2, . . . , consistently with some preselected orientation

of N(u). For each αi choose zi ∈ Z such that αzi = αi. If more than one such

vertex exists, let zi be the one for which Qzi encompasses all other such vertices

in Z. The graph formed by the edges xizi, yizi, i = 1, 2, . . . , is a planar cycle.
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For each xi take the path zi−1 − zi in N(xi) outside the above planar cycle. The

graph formed by the paths zi−1 − zi, i = 1, 2, . . . , is the required cycle N2(u).

By contracting the edges of D(u) to u and after replacing all subgraphs bounded

by the double adjacencies u′zi, each by a single edge, a simplicial triangulation

T ′ = T /D(u)=u is obtained. We now prove statements (a), (b), (c) and (d).

To see (a), let C ∈ Cu(Γ, n). Since C intersects N(u) in exactly two vertices, it

contracts exactly by the two edges incident at u and the homotopy class is clearly

preserved. To prove (b) we first establish the inequality rpΣT
′ ≥ min (n − 2, k)

by showing that any cycle C′ ⊂ T ′ of shorter length is planar. Namely, if there

is a cycle C ⊂ T such that C′ = C after contraction, then |C| = |C′| < k. If

not, then necessarily u ∈ C′. Moreover, the edges of C′ in T must form a “path

of attachment” at two different vertices on N(u) in T . Therefore, there is a cycle

C ∈ Cu which contracts to C′ and is of length |C| = |C′|+ 2 < n. In both cases C

is planar and so is C′. To show the reverse inequality note that Ess ′u(n− 2) is not

empty by (a). So rpΣT
′ ≤ n−2. Also, rpΣT

′ ≤ k since contraction cannot increase

the representativity. To see (c), observe that (b) implies ess ′u ≥ rpΣT
′ = n − 2.

The reverse inequality follows from (a). Next, we prove (d). Since n ≤ k + 1,

the edges of C′ ∈ C′u(Γ, n − 2) form a “path of attachment” at two different

vertices on N(u) in T . Hence there is a (unique) C ∈ Cu(Γ, n) which contracts

to C′.

Finally, we show the existence of Nr(u) for all (1 ≤ r ≤ ru). The proof is done

by induction on k. In view of what has been proved above, the statement holds

for 3 ≤ k ≤ 6 and arbitrary n ≥ k. In the inductive step we consecutively perform

some homotopic contractions at u to obtain a triangulation T ′ with k−2 ≤ ess ′u =

rpΣT
′ ≤ k − 1. This is guaranteed by (b) and (c) above. The proof is completed

after expanding back to T . �

Proof of Theorem 3.1. Assume for the moment that the theorem has already

been proved for k = 3, 4 and let k ≥ 5. The statement of the theorem is clear if

there is a pair of vertices a, b ∈ N2(u) in T such that Cu(Γ, k) ∩ N2(u) = {a, b}.
If not, we perform the contraction T ′ = T /D(u)=u. By Lemma 3.2 we have

ess ′u = rpΣT
′ = k−2 ≥ 3, and each cycle in C′u(Γ, k−2) is a contraction of a cycle

in Cu(Γ, k). By the induction hypothesis there are cycles C′1, C
′
2 ∈ C

′
u(Γ, k−2) and

at most two open discs R′1, R
′
2 satisfying the requirements with respect to T ′. The

required cycles C1, C2 in T are the ones that contract to C′1, C
′
2. (Note that one

of R1, R2 may be empty even if none of R′1, R
′
2 is.) The precise description of R1

and R2 is left to the reader. It remains to show that the statement of the theorem

is true for the starting cases k = 3, 4. As already mentioned, we shall here make

use of the general topological results of Section 2.

Case k = 3. We shall adopt the following notation: if Ti ∈ Cu(Γ, 3), let

Ti = ei − fi − gi where ei is the 1-arc (i.e., an oriented edge) originating at u and
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gi is the one terminating at u. Since |Eu(Γ, 3)| ≥ 3, at least two different such

3-cycles exist. Any two of them have intersection number = 1 (possibly along one

edge at u).

Let Γ be 2-sided. Each pair of distinct 3-cycles (T1, T2) in Γ intersects in a

coherent touching by Theorem 2.3. Thus the local rotation ρu of 1-arcs originating

at u may be expressed, up to cyclic permutation or taking the inverse, as ρu =

(e1, A, e2, B, g
−1
2 , C, g−1

1 , D), where A, B, C and D are chains of 1-arcs originating

at u. Possibly, e1 = e2 or g1 = g2, but not simultaneously. Assuming that

the pair (T1, T2) has been chosen so that the sum of the cardinalities |A| + |C|
is maximal, we claim that (T1, T2) is the required pair. Suppose there is some

T3 ∈ Cu(Γ, 3) which uses an arc in B ∪ B−1 ∪ D ∪ D−1 (note that B and D

must be nonempty). Reenumerating the cycles and by symmetry (i.e., using the

inverse local rotation), or considering Γ−1 instead of Γ, we may assume e3 ∈ B.

Since T3 has a coherent touching both with T1 and T2 we essentially have only

one possibility according to where in the local rotation the arc g−1
3 appears; ρu =

(e1, A, e2, B1, e3, B2, g
−1
3 , B3, g

−1
2 , C, g−1

1 , D) (possibly, g3 = g2). But then (T1, T3)

contradicts the maximality of (T1, T2).

Let Γ be 1-sided. Then each pair of distinct 3-cycles (T1, T2) in Γ intersects

in a crossing by Theorem 2.3. Hence ρu = (e1, A, e2, B, g
−1
1 , C, g−1

2 , D). Possibly,

e1 = e2 or g1 = g2, but not simultaneously. Also, it may happen that e1 = g−1
2 or

e2 = g−1
1 , but not simultaneously. Let (T1, T2) be the maximal pair as before, and

suppose that some T3 ∈ Cu(Γ, 3) uses an arc of B∪B−1∪D∪D−1 (it may happen

that B = D = ∅ in which case there is nothing to prove). Again we may assume

e3 ∈ B. Since T3 must cross both T1 and T2 we again have just one possibility

for the local rotation ρu = (e1, A, e2, B1, e3, B2, g
−1
1 , C, g−1

2 , D1, g
−1
3 , D2) (possibly,

g3 = g2 or g3 = e−1
1 ; if e1 = g−1

2 then g3 = g2). Now (T1, T3) contradicts the

maximality of (T1, T2).

Case k = 4. We shall use the following notation: if Qi ∈ Cu(Γ, 4), let Qi =

ei−fi− gi−hi where ei is the 1-arc originating at u and hi is the one terminating

at u. Since |Eu(Γ, 4)| ≥ 3, at least two different such 4-cycles exist, which moreover

use different couples of edges at u. Any pair of different 4-cycles has intersection

number ≤ 2. If the intersection number = 1 then they meet in a path of length

≤ 2 (containing u), and if the intersection number = 2 then they meet at two

“opposite” vertices.

Let Γ be 2-sided. First of all, we claim that the set of pairs of distinct

4-cycles in Γ coherently touching at u (possibly along one edge containing u) is

not empty. Namely, take an arbitrary pairQ1, Q2 ∈ Cu(Γ, 4) using different couples

of edges at u. If int (Q1, Q2) = 1 then by Theorem 2.3 there is nothing to prove.

So assume int (Q1, Q2) = 2 and let u be a crossing. As in Corollary 2.8 we perform

a homotopic switch of the paths g1−h1 and g2−h2 keeping the intersections fixed

to obtain 4-cycles Q′1 = e1−f1−g2−h2 and Q′2 = e2−f2−g1−h1 in Γ. Of course
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Q′1, Q
′
2 coherently touch at u. Since by Corollary 2.6 the noncoherent touching at

u cannot occur, the claim is proved.

Let us now consider the set of distinct 4-cycles in Γ, using distinct couples of

edges at u. Up to cyclic permutation or taking the inverse, the local rotation of

1-arcs originating at u can be expressed as ρu = (e1, A, e2, B, h
−1
2 , C, h−1

1 , D). If

int (Q1, Q2) = 1 we possibly have e1 = e2 or h1 = h2, but not simultaneously.

Also, the sets B and D must be nonempty. Assume that (Q1, Q2) is a maximal

pair in the sense that |A| + |C| is maximal. Then (Q1, Q2) is the required pair.

Indeed, let some Q3 ∈ Γ use an arc in B∪B−1∪D∪D−1. We may assume e3 ∈ B.

Since Q3 cannot have a noncoherent touching with Q1 or Q2 at u, we essentially

distinguish three possibilities according to where in the local rotation the arc h−1
3

appears. In each case we shall find a pair of 4-cycles contradicting the maximality

of (Q1, Q2).

Let ρu = (e1, A, e2, B1, e3, B2, h
−1
3 , B3, h

−1
2 , C, h−1

1 , D) (including h3 = h2). Re-

gardless of the intersection number of (Q1, Q2) or that of (Q1, Q3) (if it is 2, then

the second intersection may either be a coherent or a noncoherent touching), the

contradictory pair is (Q1, Q3).

Let ρu = (e1, A, e2, B1, e3, B2, h
−1
2 , C1, h

−1
3 , C2, h

−1
1 , D) (including h3 = h1).

Note that int (Q3, Q2) = 2 (which means that h3 6= h2; thus this case cannot

occur if h1 = h2). By Corollary 2.8, Q′3 = e3 − f3 − g2 − h2 is in Γ. Regardless of

the intersection number of (Q1, Q2) we always have (Q1, Q
′
3) as the contradictory

pair.

Finally, let ρu = (e1, A, e2, B1, e3, B2, h
−1
2 , C, h−1

1 , D1, h
−1
3 , D2). Here Q3 has

intersection number 2 with both Q1 and Q2. The reader may verify that if

int (Q1, Q2) = 1 then Q1 and Q2 meet in a path of length 2, and if int (Q1, Q2) = 2

then the second intersection is a coherent touching as well. By Corollary 2.8,

Q′3 = e3 − f3 − g2 − h2 is in Γ. In all cases (Q1, Q
′
3) is the contradictory pair.

Let Γ be 1-sided. First of all, we claim that there are pairs of distinct

4-cycles in Γ, using different couples of edges at u, which cross at u (possibly

along a subpath containing u). Take an arbitrary pair (Q1, Q2) in Γ with different

couples of edges at u. If int (Q1, Q2) = 1, then Q1 and Q2 cross and there is noth-

ing to prove. So let int (Q1, Q2) = 2 and suppose that u is a coherent touching.

By Corollary 2.8, the 4-cycles Q′1 = e1 − f1 − g2 − h2 and Q′2 = e2 − f2 − g1 − h1

are in Γ, and they cross at u. It remains to consider the case with a noncoherent

touching of Q1 and Q2 at u. By Corollary 2.8, either Q′1 = h−1
2 −g

−1
2 −g1−h1

∼=u

e2−f2−f
−1
1 −e

−1
1 = Q′2 or Q′1 = e1−f1−f

−1
2 −e

−1
2
∼=u h

−1
1 −g

−1
1 −g2−h2 = Q′2

are in Γ. In both cases (Q′1, Q
′
2) cross at u, and the proof of the claim is complete.

Consider now the set of pairs of distinct 4-cycles (Q1, Q2) in Γ which use

different couples of edges at u and have a crossing at u. The local rotation

of 1-arcs originating at u can be expressed, without loss of generality, as ρu =

(e1, A, e2, B, h
−1
1 , C, h−1

2 , D). Assume that (Q1, Q2) is a maximal pair as above,
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and let Q3 ∈ Γ use an arc in B ∪B−1 ∪D ∪D−1 (if B = D = ∅ there is nothing

to prove). Again we may assume e3 ∈ B. According to where in the local rotation

ρu the arc h−1
3 appears we essentially distinguish 5 cases. In all cases we derive a

contradiction by finding a pair of 4-cycles in Γ which contradicts the maximality

of (Q1, Q2).

Let ρu = (e1, A, e2, B1, e3, B2, h
−1
1 , C, h−1

2 , D1, h
−1
3 , D2) (including h3 = h2 or

h3 = e−1
1 ; possibly, e1 = h−1

2 ). Then (Q1, Q3) is the contradictory pair regardless

of the intersection number of Q1 and Q2, or that of Q3 with Q1 or Q2.

Let ρu = (e1, A, e2, B1, e3, B2, h
−1
3 , B3, h

−1
1 , C, h−1

2 , D). Since the curves are

1-sided Q3 has intersection number 2 with both Q1 and Q2 (note that possibly

int (Q1, Q2) = 1, where Q1 and Q2 meet in a path of length 2; we then have

either e1 = e2, f1 = f2 or h1 = h2, g1 = g2, but not e1 = h−1
2 , f1 = g−1

2 ; also,

if int (Q1, Q2) = 2 then Q1 and Q2 cannot have a noncoherent touching at the

second intersection). By Corollary 2.8, Q′3 = e3 − f3 − g2 − h2 in Γ. In all cases

the contradictory pair is (Q1, Q
′
3).

Let ρu = (e1, A, e2, B1, h
−1
3 , B2, e3, B3, h

−1
1 , C, h−1

2 , D). Again, Q3 must have

intersection number 2 with both Q1 and Q2 (i.e., Q3 crosses both Q1 and Q2 at

the common second intersection). The reader may verify that if int (Q1, Q2) = 1,

then either e1 = e2, f1 = f2 or h1 = h2, g1 = g2, and if int (Q1, Q2) = 2, then the

second intersection of Q1 and Q2 is a coherent touching. By Corollary 2.8, either

Q′1 = e1 − f1 − f
−1
3 − e−1

3 or Q′2 = h−1
3 − g

−1
3 − g2 − h2 is in Γ. Therefore either

(Q′1, Q2) or (Q1, Q
′
2) is a contradictory pair.

Let ρu = (e1, A, e2, B1, e3, B2, h
−1
1 , C1, h

−1
3 , C2, h

−1
2 , D) (including h3 = h1).

The touching of Q3 with Q2 must be a coherent one. Consequently, int (Q2, Q3) =

2 and Q3 must cross Q2 at the second intersection. Note that h3 6= h2, and so this

case cannot occur if h1 = h2. By Corollary 2.8, Q′3 = e3 − f3 − g2 − h2 is in Γ.

Regardless of what is the intersection number int (Q1, Q2), the contradictory pair

is always (Q1, Q
′
3).

Let ρu = (e1, A1, h
−1
3 , A2, e2, B1, e3, B2, h

−1
1 , C, h−1

2 , D) (including h3 = e−1
2 ).

The touching of Q3 with Q1 must be a noncoherent one. Note that Q3 has

intersection number 2 with Q1 (so this case cannot occur if e1 = e2). Now

Q′3 = e3− f3− f
−1
1 − e−1

1 is in Γ, and (Q1, Q
′
3) is the contradictory pair regardless

of int (Q1, Q2).

This completes the proof of case k = 4 and hence, of the theorem. �

4. Minimal Paths Across a Disc

We shall prove an auxiliary lemma for later reference. Let T be an arbitrary

triangulation of a closed disc D. A path in T between two boundary vertices

u1, u2 ∈ ∂D is minimal (with respect to u1, u2) if there is no shorter u1 − u2

path in T . Clearly, all minimal paths ℘(u1, u2) between two fixed vertices are
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simple paths, and if w is an intersection of P1, P2 ∈ ℘(u1, u2), then dist P1(u1, w) =

dist P2(u1, w).

Lemma 4.1. Let T be a triangulation of a closed disc D and let u ∈ ∂D be a

vertex such that the “link path” N(u) has exactly 2 vertices on ∂D. If u1, u2 ∈ ∂D
(u1, u2 6= u) are vertices, then the set of minimal paths ℘(u1, u2) covers at most

two edges on N(u).

Proof. Assume that the edges of N(u) are strictly in the interior of D, and let

the paths in ℘(u1, u2) have length m ≥ 3 (otherwise there is nothing to prove).

Choose the orientation of N(u) coherently with u1 − u2 paths in D. If e = xy ∈
N(u) (where the 1-arc xy is coherent with respect to the orientation of N(u))

then any minimal path P ∈ ℘(u1, u2) via e meets x before y. Let e1 = x1y1

and e2 = x2y2 (in this order) be two disjoint edges on N(u) such that there

exist paths Pi ∈ ℘(u1, u2), ei ∈ Pi (i = 1, 2). We claim that P1 6= P2. For if

P1 = P2 = P then P meets e1 before e2. Hence dist P (x1, y2) ≥ 3, and by the

obvious rerouting of P through u we have a contradiction. The claim is proved.

Consider now the subpaths u1 − x2 ⊂ P2 and y1 − u2 ⊂ P1. These subpaths

must have an intersection, say w. Therefore, dist P1(x1, w) + dist P2(w, y2) ≥ 3

and hence dist P1(u1, x1) + dist P2(y2, u2) ≤ m − 3. Again, the obvious rerouting

through u leads to a contradiction. �

5. k-Minimal Triangulations: Bounding the Vertex Degree

Theorem 5.1. Let T be a k-minimal triangulation (k ≥ 3) of a closed sur-

face Σ 6≈ S2. There exists a function const (k, χΣ) which bounds from above the

maximal vertex degree ∆ of T :

∆ ≤ const (k, χΣ).

Lemma 5.2. Let T be a k-minimal triangulation (k ≥ 3) of a closed surface

Σ 6≈ S2, and let Γ 6= 1 be a relative homotopy class at u ∈ V (T ). There exists a

function const (k) = k(k− 1) such that the number of (Γ, k)-essential edges at u is

bounded by 2 · (1 + const (2k)). More precisely,

|Eiu(Γ, k)| ≤ 1 + const (2k), (i = 1, 2).

Proof. Let C1, C2 be the extremal pair of k-cycles in Γ and consider the bound-

ing open disc(s) R1, R2 (or R = R1 = R2) as in Theorem 3.1. Assume none of

these discs is empty. Cut R1 and R2 (or just R) out of Σ by dissecting along

C1, C2 to obtain triangulated closed disc(s) R̂1, R̂2 (or R̂). We retain the labeling

of vertices and edges as in Σ. Those which are “duplicated” on the boundary are

equipped with additional indices. This holds at least for u which gives rise to two
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distinct vertices ui ∈ ∂R̂i (or ui ∈ ∂R̂) (i = 1, 2). The link cycle N(u) in Σ gives

rise to two disjoint simple paths N(ui) in R̂i (or R̂) (i = 1, 2) having exactly two

vertices on ∂R̂i (or ∂R̂).

Consider the connected components in R̂i (i = 1, 2) (or R̂) which arise from an

essential k-cycle in T . Since T is k-minimal, it is easy to see each such component

is a minimal path between a pair of boundary vertices of R̂i (or R̂). The boundaries

of R̂i (i = 1, 2) (or R̂) have length at most 2k. Hence there are at most
(

2k
2

)
classes

of minimal paths in R̂i (i = 1, 2) (or R̂). By Lemma 4.1, each class covers at most

2 edges on N(u) in R̂i (i = 1, 2) (or on N(ui), i = 1, 2, in R̂). But all such edges

are covered by k-minimality of T . Hence N(u) of R̂i (or N(ui) of R̂) (i = 1, 2)

consists of at most const (2k) = 2
(
2k
2

)
edges. �

Proof of Theorem 5.1. Let u be a vertex of maximal degree ∆. We show that

one can choose a suitable number of cycles C1, C2, . . . , CN at u in T which give

rise to N pairwise internally disjoint and pairwise nonhomotopic simple loops at

u in Σ. We distinguish two cases according to whether k is odd or even.

Suppose k is odd. Then ru = 1
2 (k − 1). Each essential k-cycle at u has all

its vertices in Dru(u), with a unique edge joining the two vertices on Nru(u) from

the outside. The required cycles are constructed as follows: at the beginning let

E1 contain all the edges incident with u. Then at ith-step:

• Choose an edge uui ∈ Ei, and Ci ∈ Ess u(k) containing uui. Denote the

relative homotopy class at u to which Ci belongs by Γi.

• Ei+1 = Ei\Eu(Γi, k).

The procedure does not stop beforeN ≥ ∆/(2 (1+const (2k))) steps by Lemma 5.2.

The cycles C = {C1, C2, . . . , CN} are pairwise nonhomotopic since at each step all

the k-essential edges for the current homotopy class are deleted. The required

loops are obtained by contracting the edges of C ∩ Dru(u) homotopically to a

point u. Since N is bounded by a constant O(χΣ) by Proposition 2.2, we have the

bound on ∆.

Suppose k is even. Then ru = 1
2 (k − 2). Each essential k-cycle at u has

exactly one vertex outside Dru(u), the “antipodal vertex”. This time we have to

be slightly more careful with our construction of cycles since antipodal vertices of

different cycles may coincide.

First of all, the antipodal vertices of cycles Ci (i = 1, 2, . . . ) to be constructed

below will be denoted by wi, their neighbours on Nru(u) by {si, ti}, and the

intersections of Ci with the link cycle at u by {ui, xi} (here ui ∈ u− si − wi and

xi ∈ u − ti − wi). The edges wisi will be pairwise distinct and moreover, the

contraction of Dru plus all the edges witi will preserve the homotopy class of each

Ci. At the beginning, let E1 contain all the edges at u. Then at the ith-step:

• Choose an edge uui ∈ Ei. If each cycle in Ess u(k) containing uui has

its antipodal vertex different form the antipodal vertices wj of Cj for
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each j < i, let Ci be an arbitrary essential k-cycle containing uui. See

Figure 4(a). Otherwise there exists C ∈ Ess u(k) containing uui such that

its antipodal vertex wi coincides with some antipodal vertex wj of Cj ,

j < i. Choose Ci to be the cycle formed by the paths u−ui− si−wi ⊂ C
and wj − tj − xj −u ⊂ Cj (therefore we set ti = tj and xi = xj ; below we

shall prove that Ci is indeed an essential k-cycle and that si 6= sj ; note

that possibly wi = wj for different indices j < i in which case wj − tj −
xj−u is common for all such indices and the corresponding sj are pairwise

different). See Figure 4(b). Let Γi be the relative homotopy class of Ci.

• Delete the edges of Ei which are at most const (2k) apart from uui and

those which are at most const (2k) apart from uxi (here const (2k) is as in

Lemma 5.2 and the distance between edges incident with u is calculated

on the link cycle N(u)).

u ui

Nrmax

u j

N1

xi

xj

tj

w i

s i

ti

w j

s j

uui

Nrmax

u j

N1

s j

s i

xi=xj

ti=tj

w i=wj

(a) (b)

Figure 4. The construction of cycles C1, C2, . . . , CN when k even.

Since at most 2 (1+2 const (2k)) edges are deleted at each step, the procedure does

not stop before N ≥ ∆/(2 (1 + 2 const (2k))) steps. The constructed cycles are

essential. This needs verification only in case wi = wj for some j < i. First of all, it

is immediate that Ci (as a closed walk – so far we have not yet proved that it should

be a cycle, i.e., simple) is of length k. Moreover, it is homotopically nontrivial. For

if not then the edges uui and uxi belong to some planar cycle (determined by Ci) of

length ≤ k. Its bounding closed disc contains at most 1+const (k) < 1+const (2k)

edges at u. But this is a contradiction since the edges uui and uxi are more than

const (2k) apart by construction. From the fact that Ci is essential it also follows

that Ci is indeed a cycle. Also, if wi = wj then si 6= sj . For if not then Ci is in the

same homotopy class as Cj , which is impossible since at each step all the k-essential

edges for the current homotopy class are deleted. By the very same reason the

constructed cycles C = {C1, C2, . . . , CN} are pairwise nonhomotopic. As before,

contract C ∩ Dru(u) homotopically to u. Further, contract also the edges which

were originally denoted by tiwi. Each cycle in C gives rise to exactly one loop at u

and the N loops are internally disjoint (because each loop corresponds to an edge
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siwi and these edges are pairwise distinct). Also, the contraction preserves the

homotopy class of each cycle which contracts to the corresponding loop (because

after the contraction of Dru(u), each of the resulting curves is further contracted

only by an arc on that curve). Again, the bound on ∆ follows by Proposition 2.2.�

6. k-Minimal Triangulations: Bounding the Number of Edges

Theorem 6.1. Let T be a k-minimal triangulation of Σ 6≈ S2, let ∆ denote the

maximum vertex degree of T . There exists a function const (∆, k, χΣ), polynomial

in ∆, such that

|E(T )| ≤ const (∆, k, χΣ).

Lemma 6.2. Let T be a k-minimal triangulation of Σ 6≈ S2 and let Γ be a

nontrivial (free) homotopy class on Σ. Then no k + 1 k-cycles in Γ (if k is even)

and no k + 2 k-cycles in Γ (if k is odd) can be pairwise disjoint.

Proof. Denote by r = k+ 1 if k is even and r = k+ 2 if k is odd and suppose a

family C1, C2, . . . , Cr of r pairwise disjoint k-cycles in Γ exists. Every pair (Ci, Cj)

bounds a cylinder in Σ and Γ is necessarily 2-sided (cf. [7]). Consequently, we may

assume that all these cycles belong to the bounding cylinder A1r of (C1, Cr) and

that C(r+1)/2 is the “middle one”. Then each k-cycle at u, where u is a vertex of

(C(r+1)/2, is contained in A1r.

Among essential k-cycles at u there exists at least one, say C, such that the

distance (measured onN(u)) between the crossings {a1, a2} = C∩N(u) is minimal.

The minimal arc a1−a2 must contain a vertex, say v. Consider an essential k-cycle

Cuv containing uv. Then Cuv ∩N(u) = {v, w}, where v 6= a1, a2 and w 6= a1, a2.

By the minimality of a1 − a2, C and Cuv must cross at u, and since Γ is 2-sided,

we have int (C,Cuv) > 1. Choose the intersection x ∈ C ∩ Cuv such that the

path u − v − x on Cuv does not contain other points of C. Cut the cylinder

A = A1r out of Σ and attach a disc D to one of the boundary components of A

to obtain a disc DA. Then C ⊂ DA bounds a disc DC which must contain D in

its interior. We may as well assume that the minimal arc a1 − a2 on N(u) also

belongs to the interior of DC (otherwise, DA is defined by “filling up the other

hole” of A). The simple path u − v − x divides DC into two discs D1, D2 and

exactly one of them contains D, say D ⊂ D2, where fr D1 = u − v − x − a1 − u
and fr D2 = u− v − x− a2 − u. The cycle fr D2 on A1r ⊂ Σ is essential and has

length k, a contradiction with the minimality of C. �

Proof of Theorem 6.1. For each edge e ∈ E(T ) choose an essential k-cycle

e ∈ Ce. Observe the set of pairs E = {(e, Ce) |∈ E(T )}, and let Eu ⊆ E be the

subset of pairs (e, Ce) where Ce contains a fixed vertex u ∈ V (T ). If (e, Ce) is in

this subset then e has at least one of its endvertices at distance ≤ ru = b 1
2 (k − 1)c
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from u. Therefore |Eu| ≤ 2 ∆b(k+1)/2c =: h(k,∆). Fix a pair (e, Ce) ∈ E and let

Ce = u1 − u2 − · · · − uk − u1. Then

|{(f, Cf ) ∈ E | Cf ∩ Ce 6= ∅}| ≤ 1 +
k∑
i=1

(|Eui | − 1) < k h(k,∆).

It follows that in T there are at least |E|/(k h(k,∆)) = |E(T )|/(k h(k,∆)) pairwise

disjoint essential k-cycles. At least |E(T )|/(k(k + 1)h(k,∆)) are also pairwise

nonhomotopic by Lemma 6.2. But this number is bounded above by some constant

O(χΣ) by Proposition 2.1. This gives a bound on |E(T )|. �

7. Proof of the Main Theorem

Let T be a k-minimal triangulation of Σ and let ∆ be its maximal vertex de-

gree. By Theorem 6.1 there exists a function such that |E(T )| ≤ const (∆, k, χΣ).

As this function is strictly increasing in ∆ > 1 and since ∆ ≤ const (k, χΣ) by

Theorem 5.1, we have the upper bound on the number of edges of T in terms of

the representativity and the Euler characteristic of the surface. Hence there exists

a bound on the number of vertices as well and therefore, of triangulations (up to

homeomorphism). The bound is O((cχΣ)k). �

8. Minor-minimal Embeddings

A surface minor of an embedded graph is obtained by successive deletions

of edges, edge contractions (without contracting loops), or removal of isolated

vertices (cf. [24] for details). By GΣ(≥ k) we denote all graph embeddings in Σ

(up to homeomorphism) with representativity ≥ k ≥ 0. By GmΣ (= k) we denote

the subclass of minor-minimal embeddings in GΣ(≥ k) (k ≥ 1), that is, every

edge deletion or edge contraction gives rise to an embedding of representativity

< k. Since a single edge deletion or edge contraction lowers the representativity

by at most 1, embeddings in GmΣ (= k) indeed have representativity k.

Proposition 8.1. Let G be an embedded graph into Σ 6≈ S2 with rpΣG = k ≥
2. If G is 2-connected then its barycentric subdivision BG in Σ is a triangulation

with rpΣBG = 2k. If G ∈ GmΣ (= k) then G is 2-connected and BG is a 2k-minimal

triangulation. Conversely, if G is 2-connected and BG a 2k-minimal triangulation,

then G ∈ GmΣ (= k).

Proof. Since G is 2-connected and rpΣG ≥ 2, the embedding is a closed-cell

embedding [24]. Hence BG is a triangulation (i.e., simplicial). Let C ⊂ BG be

some essential cycle of length rpΣBG, and suppose C contains a vertex e ∈ V (BG)

which represents the edge e = uv of G. Let x and y be the vertices in BG
representing faces of G such that e lies in the common boundary of their closures.



k–MINIMAL TRIANGULATIONS OF SURFACES 75

Clearly x 6= y. Now C contains either the vertices u, e, v ∈ V (BG) or the vertices

x, e, y ∈ V (BG). In both cases there is a cycle in BG, homotopic to C and of the

same length, which avoids the vertex e. Consequently, there is an essential cycle

C′ ⊂ BG with |C′| = |C|, using no vertices which represent edges of G, and those

representing vertices and faces of G alternate on C. Hence rpΣBG = |C| = |C′| =
2l and k ≤ l. In fact, we have equality. Indeed, take an essential simple closed

curve γ on Σ which intersects G in k vertices and traverses each face of G at most

once. Then γ is free isotopic to some 2k-cycle in BG.

We now prove the second part of the proposition. Let the embedding be minor-

minimal. First of all, it is easily verified that a minor-minimal embedding of

representativity ≥ 2 must be 2-connected. So by the first part of this proposition

its barycentric subdivision is indeed a triangulation of representativity 2k. We

show that each edge of BG is contained in an essential 2k-cycle. Typical edges to

be considered are ue, ux and ex. Since G is minor-minimal and since contraction

of an edge drops the representativity by at most 1, the embedding G/e obtained by

contracting the edge e has representativity k − 1. Take an essential simple closed

curve γ which intersects G/e in exactly k− 1 vertices, traversing each face of G/e

at most once. Clearly, γ contains the vertex of G/e to which e has collapsed.

Therefore, there is a simple u− v path δ : [0, 1]→ Σ which intersects G in exactly

k vertices, using each face of G at most once and such that δ ∪ e represents

an essential simple closed curve. This curve can be moved isotopically to two

2k-cycles of BG, one containing the edge ue, and the other one containing the

edge ux. Finally, consider G − e. There is a (k − 1)-representative simple closed

curve γ intersecting G − e in k − 1 vertices and traversing each face of G − e at

most once. Clearly, γ intersects e of G (in its interior!). It is again trivial to show

that γ can be moved isotopically to a 2k-cycle of BG containing the edge ex.

The converse statement is proved in the same way. �

It follows from the Robertson-Seymour’s proof of the Wagner’s conjecture that

the class GmΣ (= k) (k ≥ 1) is finite. This fact follows trivially also from our Main

Theorem.

Corollary 8.2. Let Σ 6≈ S2 be a closed surface. Then the class of minor-

minimal embeddings with representativity k ≥ 1 is finite (up to homeomorphism).

Proof. Clearly, GmΣ (= 1) consists of a bouquet of circles with a fixed number

of loops. If G ∈ GmΣ (= k) (k ≥ 2) then BG is a 2k-minimal triangulation by

Proposition 8.1. Since a triangulation is the barycentric subdivision of at most 2

different embeddings, the claim follows from our Main theorem. �

Note added in proof. Recently, a shorter proof of our Main Theorem was

obtained by Gao, Richter and Seymour [9]. As they point out, this theorem is
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indeed equivalent to Corollary 8.2. They also list some unpublished references not

included here. Another very short proof is found in [12].
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