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ERGODIC AVERAGES AND INTEGRALS OF COCYCLES

H. B. KEYNES, N. G. MARKLEY and M. SEARS

Abstract. This paper concerns the structure of the space C of real valued cocy-
cles for a flow (X,Zm). We show that C is always larger than the set of cocycles
cohomologous to the linear maps if the flow has a free dense orbit. By consider-
ing appropriate dual spaces for C, we obtain the concept of an invariant cocycle
integral. The extreme points of the set of invariant cocycle integrals parallel the
role of ergodic measures and enable us to investigate different ergodic averages for
cocycles and the uniform convergence of such averages. The cocycle integrals also
enable us to characterize the subspace of the closure of the coboundaries in C, and
to show that C is the direct sum of this space with the linear maps exactly when
the invariant cocycle integral is unique.

1. The Space of Cocycles

Let X be a compact metric space and let Zm denote the integer lattice in Rm,

m-dimensional Euclidean space. We will assume that Zm acts as a group of home-

omorphisms on X, that is we have a flow (X,Zm). A real valued (topological)

cocycle for such a flow is a continuous function h : X ×Zm → R such that for all

x ∈ X and all a, b ∈ Zm

h(x, a+ b) = h(x, a) + h(ax, b)

where ax denotes the action of a on x. This equation is called the cocycle equa-

tion. The theme of this paper is to investigate ergodic averages of these cocycles

and to describe an appropriate setting for invariant integrals of cocycles.

In earlier papers ([2], [4], and [5]), we have studied vector valued cocycles and

their role in understanding the structure of Rm actions on compact metric spaces.

Since the coordinates of a vector valued cocycle are real valued cocycles, the results

in this paper provide additional tools for the analysis of Rm actions. Specifically

they provide a natural definition of a nonsingular Rm valued cocycle. K. Madden

and the second author [7] have shown that the suspension flow of a nonsingular

cocycle is a time change of the constant one suspension and that every Rm action

with a free dense orbit has an almost one-to-one extension which is the suspension
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of a nonsingular cocycle. However, the present work stands on its own as an

extension of classical results about ergodic averages and coboundaries for a single

homeomorphism.

Let C denote the set of real valued cocycles for (X,Zm). Clearly C is a vector

space over R. Letting |a| =
∑m
i=1 |ai| for a = (a1, · · · , am) ∈ Zm,

‖h‖ = sup

{
|h(x, a)|

|a|
: x ∈ X and a ∈ Zm

}
defines a norm. Let e1, · · · , em denote the usual generators of Zm. Using the

cocycle equation it is not hard to show that

‖h‖ = sup{|h(x, ej)| : x ∈ X and 1 ≤ j ≤ m},

and that with this norm C is a separable Banach space.

Remark 1.1. If h ∈ C, then

|h(x, a)− h(x, b)| ≤ ‖h‖ |a− b|

for all x ∈ X and a, b ∈ Zm.

Proof. Clearly |h(y, c)| ≤ ‖h‖ |c| for any y and c. Since h(x, b) + h(bx, a− b) =

h(x, a), we have

|h(x, a)− h(x, b)| = |h(bx, a− b)| ≤ ‖h‖ |a− b|.
�

If h ∈ C and h(x, a) = h(y, a) for all x, y ∈ X and a ∈ Zm, then the map

a→ h(x, a) is linear. Conversely, if T ∈ L, the linear maps from Rm into R, then

h(x, a) = T (a) defines a cocycle in C. Consequently, L is a closed subspace of C
which is called the constant cocycles. In particular, the dual basis e∗1, · · · , e

∗
m of

e1, · · · , em are constant cocycles. We now seemingly have two norms on L; namely

the cocycle norm,

‖T‖ = sup{|T (ej)| : 1 ≤ j ≤ m}

and the linear functional norm,

|T | = sup{|T (v)| : |v| ≤ 1}

where as above |v| =
∑m
i=1 |vi|. However, it is easily verified that in our context

they are equal, and we will use the notation ‖T‖.
Let C(X) denote the Banach space of continuous real valued functions on X

with the usual norm. Given f ∈ C(X) we can construct h ∈ C by setting

h(x, a) = f(ax)− f(x).
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Such a cocycle is called a coboundary and the coboundaries, B, form another

subspace of C. It is important because two cocycles that differ by a coboundary

are in many ways indistinguishable.

When m = 1 we have a single homeomorphism ϕ of X generating the Z action.

In this case C is isometrically isomorphic to C(X) because given f ∈ C(X)

h(x, n) =


∑n−1
k=0 f(ϕk(x)) n > 0

0 n = 0

−
∑−n
k=1 f(ϕ−k(x)) n < 0

defines a cocycle with h(x, 1) = f(x). Notice that

h(x, n)

n
=

1

n

n−1∑
k=0

f(ϕk(x))

is an ergodic average for f(x) = h(x, 1). Moreover, these averages converge uni-

formly in x for all f if and only if (X,ϕ) is uniquely ergodic. (See §6.5 in Walters

[9] for a general discussion of unique ergodicity.)

In general we can define a Zm action on C by setting ah(x, b) = h(ax, b) =

h(x, a+ b)− h(x, a) and then

1

Nm

∑
0≤ai<N

ah(x, b)

is a kind of an ergodic cocycle average and one expects its limits to be related

to integration. But it is not clear how to interpret h(x, a)/|a| as an ergodic av-

erage and fit it into an integration theory for cocycles. The main results in this

paper establish the concept of a cocycle integral which firmly links these two types

of averaging together for cocycles in the topological setting. Furthermore, these

integrals provide a characterization of B, and the equivalence of uniform conver-

gence and unique cocycle integral holds similarly to the equivalence of uniform

convergence and unique invariant measure.

2. Existence of Non-Trivial Cocycles

A constant cocycle plus a coboundary is neither a constant cocycle nor a

coboundary. Are there cocycles which are not of this form, that is, are there

cocycles which are not cohomologous to a constant cocycle? In this section we will

prove the unpublished folklore theorem that these cocycles are usually dense in C
because without it the rest of our results are pointless.

The linear map S : C(X) → C given by (Sf)(x, a) = f(ax) − f(x) is bounded

and has range B. The kernel of S consists of the continuous functions which are
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constant on orbits and hence constant on orbit closures. Because L is a closed

subspace of C, we can form the quotient Banach space C̃ = C/L and let π be

the bounded linear projection of C onto C̃. Note that C = B + L (every cocycle

is cohomologous to a constant cocycle) if and only if π ◦ S is onto. Hence, the

following theorem will answer the question:

Theorem 2.1. If (X,Zm) has a free dense orbit, then π ◦S : C(X)→ C̃ is not

onto.

Proof. Since (X,Zm) has a dense orbit, the kernel K of S is the constant

functions and there is an induced bounded linear map S̃ : C(X)/K → C̃. If π ◦ S
is onto, then S̃ is an isomorphism by the open mapping theorem. In particular,

S̃−1 is continuous and if gn is a sequence in C̃ such that ‖gn‖ converges to 0, then

‖S̃−1gn‖ also converges to 0. The following lemma establishes the existence of a

sequence which violates this condition and completes the proof of the theorem by

contradiction. (This proof is an adaption of a proof for m = 1 which R. Zimmer

showed us.) �

Lemma 2.2. If (X,Zm) has a free orbit, then given ε > 0 there exists f ∈ C(X)

such that ‖S(f)‖ ≤ ε and inf{‖f + c‖ : c ∈ R} = 1/2.

Proof. Suppose 0 < ε < 1 and the orbit of x0 is free, so a → ax0 is one-to-

one. Choose M , a positive integer, such that (1− ε)M < ε. There exists an open

neighborhood U of x0 such that aU ∩ bU = φ when −(M + 1) ≤ ai, bi ≤ M + 1

and there exists f0 ∈ C(X) such that f0(x0) = 1, f0(x) = 0 for x 6∈ U , and

0 ≤ f0(x) ≤ 1 for all x. Define fa by fa(x) = (1− ε)|a| f0((−a)x) and set

f(x) =
∑
{fa(x) : |ai| ≤M, i = 1, · · · ,m}.

Note that f(x) = 0 unless x ∈ aU for some a with |ai| ≤ M , i = 1, · · · ,m, in

which case f(x) = fa(x).

Next we show that ‖Sf‖ = sup{|f(eix)− f(x)| : x ∈ X and i = 1, · · · ,m} ≤ ε.
There are several cases for each ei. First suppose f(eix) and f(x) are not zero.

Hence x ∈ aU , eix ∈ (a+ei)U , |aj | ≤M for j 6= i, and −M ≤ ai < ai+1 ≤M+1.

When 0 ≤ ai we have

f(eix)− f(x) = (1− ε)|a|+1f0((−a)x)− (1− ε)|a|f0((−a)x)

= −ε(1− ε)|a|f0((−a)x)

and

|f(eix)− f(x)| ≤ ε .

A similar calculation holds for ai < 0.
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Now suppose f(x) 6= 0 and f(eix) = 0. In this case x ∈ aU with |aj | ≤ M for

j 6= i and ai = M . Thus |a| ≥M and

|f(eix)− f(x)| = | − (1− ε)|a|f0((−a)x)| ≤ (1− ε)M < ε .

A similar calculation works when f(eix) 6= 0 and f(x) = 0.

Finally we calculate inf{‖f + c‖ : c ∈ R} = 1/2. First note that ‖f + c‖ =

sup{|f + c| : x ∈ X} ≥ 1 for c ≥ 0 and c ≤ −1. For −1 < c < 0 it is the maximum

of −c and 1 + c which takes its minimum value when c = −1/2. �

Theorem 2.3. Every open set in C contains cocycles which are not cohomolo-

gous to a constant cocycle.

Proof. Let V be an open set in C. Then π(V ) is open in C̃. If π(V ) ⊆
π ◦ S(C(X)), then π ◦ S would be onto. �

The following result also follows readily from the above lemma.

Theorem 2.4. If (X,Zm) has a free dense orbit, then B is not closed.

Proof. If B was closed, than the induced map of C(X)/K onto B would be a

Banach isomorphism. Lemma 2.2 shows that the inverse would not be continuous.

Thus B is not closed. �

In contrast to Theorem 2.3, there is the question of what kind of functions are

in L + B. For example, when the underlying system is an irrational rotation of

the circle, then cosnθ and sinnθ are in B [3, p. 563] and consequently, all finite

trigonometric polynomials are in L+ B. In a recent paper Schmidt [8] has shown

that for some subshifts of finite type cocycles with a summable variation are in

L+ B. He also gives some concrete examples of cocycles not in L+ B.

3. Invariant Linear Functionals on C

There is a natural map from C into C(X)m which we can use to study C∗,
the dual of C. Define Θ: C → C(X)m by Θ(h) = (h(·, e1), · · · , h(·, em)) where

h(·, ej) denotes the function x → h(x, ej). Using the norm ‖(f1, · · · , fm)‖ =

sup
1≤j≤m

‖fj‖, Θ is an isometric isomorphism of C onto the closed subspace

{(f1, · · · , fm) : fi(ejx)− fi(x) = fj(eix)− fj(x) for i 6= j}

of C(X)m.

The dual of C(X)m can be identified with C∗(X)m. Explicitly, given

f = (f1, · · · , fm) ∈ C(X)m and γ = (γ1, · · · , γm) ∈ C∗(X)m,
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set

γ(f) =
m∑
i=1

γi(fi).

Moreover,

‖γ‖ = sup{|γ(f)| : ‖f‖ = sup
1≤j≤m

‖fi‖ ≤ 1} =
m∑
i=1

‖γi‖.

Proposition 3.1. If γ ∈ C∗, then there exists γ = (γ1, · · · , γm) ∈ C∗(X)m

with the following properties

a) γ(h) = γ(Θ(h))

b) ‖γ‖ = ‖γ‖
c) γ(e∗j ) = γj(1)

d) |γ(e∗j )| ≤ ‖γj‖.

Proof. Use the Hahn-Banach theorem for a) and b). For c) note that Θ(e∗j ) =

(0, · · · , 0, 1, 0, · · · , 0), and then d) follows from c). �

Theorem 3.2. If γ ∈ C∗, then ‖γ | L‖ =
∑m
i=1 |γ(e∗i )| and the following are

equivalent

a) ‖γ | L‖ = ‖γ‖
b) ‖γ‖ =

∑m
j=1 |γ(e∗j )|

c) there exist Borel probability measures µ1, · · · , µm such that

γ(h) =
m∑
j=1

γ(e∗j )

∫
X

h(x, ej) dµj .

Proof. First we calculate ‖γ | L‖. Let T ∈ L with ‖T‖ = sup
1≤j≤m

|T (ej)| ≤ 1

and write T =
∑m
i=1 T (ei)e

∗
i . Then

|γ(T )| = |
m∑
i=1

T (ei)γ(e∗i )| ≤
m∑
i=1

|γ(e∗i )|

and ‖γ | L‖ ≤
∑m
i=1 |γ(e∗i )|. Now define T by setting T (ei) = 1,−1, or 0 according

as γ(e∗i ) is positive, negative or zero. Then ‖T‖ = 1 and γ(T ) =
∑m
i=1 |γ(e∗i )| ≤

‖γ | L‖. It follows that ‖γ | L‖ =
∑m
i=1 |γ(e∗i )| and a) and b) are equivalent.

If c) holds, then it follows that ‖γ‖ ≤
∑m
j=1 |γ(e∗j )| = ‖γ | L‖ ≤ ‖γ‖ and a)

holds. So it remains to show that b) implies c).
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Assuming b), let γ = (γ1, · · · , γm) ∈ C∗(X)m be given by Proposition 3.1. We

now have

‖γ‖ = ‖γ‖ =
m∑
j=1

‖γj‖ ≥
m∑
j=1

|γ(e∗j)| = ‖γ‖

and it follows that |γj(1)| = |γ(e∗j )| = ‖γj‖.
For γ(e∗i ) 6= 0 consider (1/γ(e∗i ))γi = µi ∈ C∗(X). Clearly ‖µi‖ = 1 = µi(1).

By the Riesz Representation Theorem µi is given by a Borel probability measure,

that is, µi(f) =
∫
X
f(x) dµi. For γ(e∗j ) = 0 let µj be any Borel probability

measure. Finally

γ(h) = γ(Θ(h)) =
m∑
j=1

γj(h(·, ej))

=
∑

γ(e∗j )6=0

γ(e∗j )
1

γ(e∗j )
γj(h(·, ej))

=
m∑
j=1

γ(e∗j )

∫
X

h(x, ej) dµj

to complete the proof. �
For η ∈ C∗(X) it is clear that η(1) = ‖η‖ if and only if η(f) =

∫
X
f(x) dµ for

some Borel measure µ. This can be rephrased as follows: η(f) =
∫
X
f(x) dµ for all

f ∈ C(X) or η(f) = −
∫
X
f(x) dµ for all f ∈ C(X) if and only if

‖η | constant functions‖ = ‖η‖. Hence the elements γ ∈ C∗ such that ‖γ | L‖ =

‖γ‖ provide analogs of measures for C and can be viewed as integration in the∑m
i=1 γ(e∗i )ei direction. (An ordinary Borel measure providing integration in the

positive direction of R).

The natural action of Zm on C, given by ah(x, b) = h(ax, b), is clearly norm

preserving and hence continuous. We say γ ∈ C∗ is invariant if γ(ah) = γ(h) for

all a ∈ Zm and h ∈ C.

Proposition 3.3. If γ ∈ C∗ is invariant, then there exists γ = (γ1, · · · , γm) ∈
C∗(X)m such that

a) γ(h) = γ(Θ(h))

b) ‖γ‖ = ‖γ‖
c) γ(e∗j ) = γj(1)

d) |γ(e∗j )| ≤ ‖γj‖
e) γj is invariant.

Proof. Apply Proposition 3.1 to get γ0 satisfying a) through d), and observe

that

γN =
1

Nm

∑
0≤ai<N

aγ0
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also satisfies a) through d) because γ is invariant. There exists a subsequence of

γN converging coordinate-wise in the weak∗ topology and its limit will satisfy a)

through e). �
Given w ∈ Rm with |w| = 1, we define the invariant cocycle integrals in the w

direction by

I(w) = {γ ∈ C∗ : ‖γ‖ = 1, γ(e∗i ) = wi, γ is invariant}.

Theorem 3.4. If γ ∈ I(w), then there exist invariant Borel probability mea-

sures µ1, · · · , µm on X such that

γ(h) =
m∑
j=1

wj

∫
X

h(x, ej) dµj .

Furthermore, I(w) is non-empty, convex, and compact in the weak∗ topology on C∗.

Proof. Let γ ∈ I(w). Clearly

m∑
j=1

|γ(e∗j)| =
m∑
j=1

|wj | = |w| = 1 = ‖γ‖

and Theorem 3.2 applies using the γ given by Proposition 3.3 to produce the

required invariant measures. The rest is obvious. �
We now have a set of invariant cocycle integrals for each direction in Rm and it

is natural to ask if there is a unifying concept of cocycle integral from which the

I(w)′s can be extracted. This requires a different dual of C.

4. Invariant Cocycle Integrals

In this section we define a new dual of C based on the idea that the integral of

a cocycle should be a constant cocycle. Define C# = {σ : C → L : σ is bounded

and linear} with norm

‖σ‖ = sup
‖h‖≤1

‖σ(h)‖ = sup
‖h‖≤1

sup
|w|≤1

|σ(h)(w)|

where h ∈ C and w ∈ Rm. Clearly C# is a Banach space.

We can also define a weak∗ topology on C# by σn → σ if and only if σn(h)→
σ(h) for all h ∈ C. As usual a neighborhood base at σ0 is all sets of the form

{σ : |σ(hi)− σ0(hi)| < ε, i = 1, · · · , k}.

The proof of Alaoglu’s Theorem applies here and the unit ball in C# is weak∗

compact. For x ∈ X we define σx ∈ C# by σx(h) =
∑m
j=1 h(x, ej)e

∗
j . It follows

that ‖σx‖ = 1, σx(T ) = T for T ∈ L, and x→ σx is a homeomorphism of X into

C# with the weak∗ topology.
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Theorem 4.1. Let σ ∈ C#. If for all T ∈ L, σ(T ) = ‖σ‖T , then there exist

Borel probability measures µ1, · · · , µm on X such that

σ(h) = ‖σ‖
m∑
j=1

∫
X

h(x, ej) dµje
∗
j .

Proof. Set γi(h) = σ(h)(ei). Clearly γi ∈ C∗ and σ(h) =
∑m
j=1 γj(h)e∗j . We

also have

‖σ‖e∗j = σ(e∗j ) =
m∑
i=1

γi(e
∗
j )e
∗
i

and hence γi(e
∗
j ) = ‖σ‖δij.

Now

‖γi‖ = sup
‖h‖≤1

|γi(h)| = sup
‖h‖≤1

|σ(h)(ei)| ≤ sup
‖h‖≤1

‖σ(h)‖ = ‖σ‖

=
m∑
j=1

‖σ‖δij =
m∑
j=1

|γi(e
∗
j )| ≤ ‖γi‖

and thus

‖γi‖ =
m∑
j=1

|γi(e
∗
j )|.

Therefore, by Theorem 3.2

γi(h) = ‖σ‖

∫
X

h(x, ei) dµi

for some Borel probability measure µi on X. �

Theorem 4.2. Let γ ∈ C∗. Then ‖γ | L‖ = ‖γ‖ if and only if there exists

σ ∈ C# and w ∈ Rm such that

σ(T ) = ‖σ‖T

for all T ∈ L and

γ(h) = σ(h)(w)

for all h ∈ C.

Proof. Suppose ‖γ | L‖ = ‖γ‖. Then by Theorem 3.2

γ(h) =
m∑
j=1

γ(e∗j )

∫
X

h(x, ej) dµj
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where µ1, · · · , µm are Borel probability measures on X. Define σ ∈ C# by

σ(h) =
m∑
j=1

∫
X

h(x, ej) dµje
∗
j ,

set w = (γ(e∗1), · · · , γ(e∗m)) and check the details.

For the converse observe that

γ(e∗j) = σ(e∗j )(w) = ‖σ‖wj

and

‖γ‖ = sup
‖h‖≤1

|σ(h)(w)| ≤ ‖σ‖ |w| =
m∑
j=1

|γ(e∗j )| = ‖γ | L‖ ≤ ‖γ‖.

This completes the proof. �

Definition 4.3. An invariant cocycle integral is an element σ of C# satis-

fying:

1) ‖σ‖ = 1

2) σ(ah) = σ(h) for all h ∈ C and a ∈ Zm

3) σ(T ) = T for all T ∈ L.

The set of invariant cocycle integrals for (X,Zm) will be denoted by I(X,Zm) or

simply I.

Theorem 4.4. Let σ ∈ C#. Then σ ∈ I if and only if there exist invariant

Borel probability measures µ1, · · · , µm such that

σ(h) =
m∑
j=1

∫
X

h(x, ej) dµje
∗
j .

Proof. Again define γi(h) = σ(h)(ei). Note that γi(ah) = σ(ah)(ei) = σ(h)(ei)

= γi(h) for all a and h. Consequently by Theorems 3.4 and 4.1 it has the required

form. The converse is just a matter of checking that properties 1), 2) and 3) hold.�

We do not know whether or not the measures µj are uniquely determined by σ.

In other words are there always enough cocycles so that the functions h(·, ej) can

distinguish invariant measures?

It is also now a routine calculation to prove the following:

Theorem 4.5. If w ∈ Rm with |w| = 1, then

I(w) = {γ : ∃σ ∈ I 3 γ(h) = σ(h)(w)}.
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Theorem 4.6. The set I of invariant cocycle integrals is a non-empty convex

weak∗ compact subset of C#. Moreover, there is an affine weak∗ homeomorphism

Φ from I onto I(e1)× · · · × I(em).

The ideas and formulas in Sections 3 and 4 can also be expressed in the language

of tensor products. In particular, C# is naturally identified with the continuous

bilinear forms on C × Rm and hence is isomorphic to (C ⊗ Rm)∗. Working from

this point of view K. Madden [6] has shown that C# is naturally isometrically

isomorphic to the Banach space of all bounded linear functions ρ : Cm → Lm such

that ρ(Tg) = Tρ(g) for g ∈ Cm, the Rm valued cocycles, and T ∈ Lm, the linear

maps of Rm into itself.

5. Extreme Points and Ergodic Averages

Let µ ∈ M, the invariant Borel probability measures for (X,Zm). So M is a

compact convex set in the weak∗ topology and its extreme points are the ergodic

measures E . If µ ∈ E , then by the ergodic theorem there exists x ∈ X such that

for all f ∈ C(X) ∫
X

f dµ = lim
N→∞

1

Nm

∑
0≤ai<N
1≤i≤m

f(ax)

and the ergodic averages provide an access to the extreme points ofM and hence

to M. In this section we establish two similar approaches to the extreme points

of I(ej).

For N ∈ N, x ∈ X, and h ∈ C let ANσx denotes the element of C# defined by

ANσx(h) =
1

Nm

m∑
j=1

∑
0≤ai<N
1≤i≤m

h(ax, ej)e
∗
j .

It is easily checked that ‖ANσx‖ = 1, and ANσx(T ) = T for T ∈ L. If ANkσxk
converges to σ in the weak∗ topology and Nk goes to infinity, then σ ∈ I because

|ANσx(ekh)−ANσx(h)| ≤
2mNm−1

Nm
‖h‖ =

2m‖h‖

N
.

Let σ be a weak∗ limit of a sequence ANkσxk with Nk going to infinity. ANkσxk
can be regarded as acting on C(X) so that σ ∈ C∗(X). Thus there exists µ ∈M
such that

σ(h) =
m∑
j=1

∫
X

h(x, ej) dµe
∗
j .

The map Θ: C → C(X)m has a dual Θ∗ : C∗(X)m → C∗ defined by Θ∗(γ)(h) =

γ(Θ(h)) and we can look at this coordinate-wise, that is θ∗j : C∗(X) → C∗ by
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θ∗j (η) = Θ∗(0, · · · , η, · · · , 0) or θ∗j (η)(h) = η(h( · , ej)). It follows from Theorem 3.4

that θ∗j (M) = I(ej), and the extreme points of I(ej) all have the form γ(h) =∫
X
h(x, ej) dµ for some µ ∈ M. (In fact, we will see in a minute that we could

even assume µ is ergodic.)

Because there is an affine homeomorphism from I onto I(e1)×· · ·×I(em), the

extreme points of I have the same structure as the extreme points of a cartesian

product of compact convex sets. As soon as two of the sets I(ej) contain more

than one point, there exists an extreme point σ of I that does not have the form

of σ(h) shown above with a single µ ∈ M. Consequently we turn our attention to

the extreme points of I(ej).

Theorem 5.1. If γ is an extreme point of I(ej), then there exists x ∈ X such

that ANσx converges in the weak∗ topology to σ ∈ I satisfying γ(h) = σ(h)(ej).

Proof. Consider the compact convex set {µ ∈ M : θ∗j (µ) = γ}. It is easily

checked that its extreme points are also extreme point of M. Hence there exists

µ ∈ E such that θ∗j (µ) = γ and the required σ is given by

σ(h) =
m∑
j=1

∫
X

h(x, ej) dµe
∗
j .

�

For m = 1 and a = ne1, n > 0 we have

h(x, a)

|a|
=

1

n

n−1∑
k=0

h((ke1)x, e1)

which is an ergodic average. How do we interpret h(x, a)/|a| as an ergodic average

in general? We will show that when a goes to infinity in a particular direction,

h(x, a)/|a| will determine an invariant integral in that direction.

Given x ∈ X and a ∈ Zm, a 6= 0, define γ(x,a) ∈ C
∗ by

γ(x,a)(h) =
h(x, a)

|a|
.

Obviously, ‖γ(x,a)‖ ≤ 1 because |h(x, a)| ≤ ‖h‖ |a|. Using T =
∑m
j=1 sign(aj)e

∗
j

∈ L, we have ‖T‖ = 1 and γ(x,a)(T ) = 1. Hence ‖γ(x,a)‖ = ‖γ(x,a) | L‖ = 1.

Theorem 5.2. Let {xk} and {ak} be sequences in X and Zm. If γ(xk,ak)

converges to γ in the weak∗ topology and |ak| goes to infinity, then ak/|ak| converges

to w and γ ∈ I(w).

Proof. Observe that

γ(e∗j ) = lim
k→∞

γ(xk,ak)(e
∗
j ) = lim

k→∞

(ak)j
|ak|

,
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and hence limk→∞ ak/|ak| converges to w = (γ(e∗1), · · · , γ(e∗m)). Clearly |w| = 1

and ‖γ‖ ≤ 1 =
∑m
j=1 |γ(e∗j )| = ‖γ | L‖ ≤ ‖γ‖. So ‖γ‖ = 1 and it remains to show

that γ is invariant.

It suffices to show that γ(ejh) = γ(h), which is equivalent to showing that

0 = lim
k→∞

(
γ(xk,ak)(ejh)− γ(xk,ak)(h)

)
= lim
k→∞

h(ejxk, ak)− h(xk, ak)

|ak|
.

This follows from

|h(ejxk, ak)− h(xk, ak)| = |h(xk, ak + ej)− h(xk, ej)− h(xk, ak)|

≤ |h(xk, ak + ej)− h(xk, ak)|+ |h(xk, ej)|

≤ ‖h‖ |ak + ej − ak|+ ‖h‖ |ej| = 2‖h‖

because |ak| goes to infinity. �

Let Mj denote the invariant Borel measures for Tj(x) = ejx and let Ej denote

the ergodic measures for Tj . So M =
⋂m
j=1Mj.

Theorem 5.3. For j = 1, · · · ,m, I(ej) = θ∗j (Mj). If γ is an extreme point of

I(ej), there exists x ∈ X such that γ(x,Nej) converges to γ in the weak∗ topology.

Proof. Because M ⊂ Mj we know I(ej) ⊂ θ∗j (Mj). Since θ∗j is linear, it

suffices to show that θ∗j (Ej) ⊂ I(ej) to prove that θ∗j (Mj) = I(ej).

If µ ∈ Ej , then because µ is ergodic there are points x ∈ X such that for all

f ∈ C(X)

µ(f) = lim
N→∞

1

N

N−1∑
k=0

f(T kj (x)).

Thus for h ∈ C

θ∗j (µ)(h) = lim
N→∞

h(x,Nej)

N
= lim
N→∞

γ(x,Nej)(h)

and by the previous proposition the weak∗ limit of γ(x,Nej) is in I(ej).

To prove the second part proceed as in the proof of Theorem 5.1. �

6. Uniform Convergence of Ergodic Averages

In this section we will show that for uniform convergence the two types of

ergodic averages, ANσx(h) and h(x, a)/|a|, have the same behavior. The invariant

cocycle integrals provide the link between them and clean generalizations of the

classical results for Z. These results then lead to characterizations of a unique

cocycle integral and of the closure of the coboundaries.
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Proposition 6.1. Let h ∈ C. The ergodic average

1

Nm

∑
0≤ai<N

h(ax, ej)

converges to 0 uniformly in x if and only if γ(h) = 0 for all γ ∈ I(ej).

Proof. Suppose it does not converge uniformly to 0. Then there exists ε > 0

and sequences {xk} and {Nk} in X and Z such that Nk goes to infinity and

|ANkσxk(h)(ej)| ≥ ε .

We can assume without loss of generality that ANkσxk converges in the weak∗

topology to σ ∈ I. Then clearly |σ(h)(ej)| ≥ ε and γ(h) 6= 0 for all γ ∈ I(ej).

Now suppose the average does converge uniformly to 0. It suffices to show

that γ(h) = 0 for every extreme point of I(ej). If γ is an extreme point of

I(ej), then using Theorem 5.1 it follows from the uniform convergence to 0 that

γ(h) = σ(h)(ej) = 0.

Proposition 6.2. Let h ∈ C and let w ∈ Rm with |w| = 1. If γ(h) = 0

for all γ ∈ I(w), then h(x, ak)/|ak| converges to 0 uniformly in x whenever

limk→∞ ak/|ak| = w and limk→∞ |ak| =∞.

Proof. Suppose the convergence is not uniform to 0. By choosing a subsequence

of ak we can assume

|γ(xk,ak)(h)| =
|h(xk, ak)|

|ak|
≥ ε

for some ε > 0 and a sequence {xk} from X. Then by taking a weak∗ limit of a

subsequence of γ(xk,ak), we obtain γ ∈ I(w) such that |γ(h)| ≥ ε. �

The converse holds for w = ej .

Proposition 6.3. Let h ∈ C. The sequence h(x, nej)/n converges to 0 uni-

formly in x as n goes to infinity if and only if γ(h) = 0 for all γ ∈ I(ej).

Proof. The “if” part follows from the previous proposition. Assume the con-

vergence is uniform and let γ be an extreme point of I(ej). Then by Theorem 5.3

γ is the weak∗ limit of γ(x,Nej) with N going to infinity, and

γ(h) = lim
N→∞

h(x,Nej)

N
= 0 .

�

Propositions 6.1 and 6.3 have the following corollary
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Corollary 6.4. Let h ∈ C. The ergodic average

1

Nm

∑
0≤ai<N

h(ax, ej)

converges to 0 uniformly in x as N goes to infinity if and only if the sequence

h(x, nej)/n converges to 0 uniformly in x as n goes to infinity.

These three propositions can also be assembled into the following global result.

Theorem 6.5. Let h ∈ C. The following are equivalent:

(1) The average ANσx(h) converges to 0 uniformly in x as N goes to infinity.

(2) As |a| goes to infinity h(x, a)/|a| converges to 0 uniformly in x.

(3) σ(h) = 0 for all σ ∈ I.

The now obvious proof that (3) implies (2) is precisely where a real advantage

has been gained from the use of I. The next theorem is an application that builds

on the full strength of Theorem 6.5.

Theorem 6.6. The following are equivalent:

(1) There exists a unique invariant cocycle integral σ0.

(2) For h ∈ C there exists Th ∈ L such that ANσx(h) converges uniformly in

x to Th as N goes to infinity.

(3) For h ∈ C there exists Th ∈ L such that

|h(x, a)− Th(a)|

|a|

goes to 0 uniformly in x as |a| goes to infinity.

Proof. Assuming (1) holds we can apply Theorem 6.5 to h − σ0(h) because

σ0(h−σ0(h)) = σ0(h)−σ0(h) = 0 and obtain ANσx(h−σ0(h)) = ANσx(h)−σ0(h)

converging uniformly to 0. Similarly (2) implies (3) because Theorem 6.5 can be

applied to h−Th. Finally if (3) holds, Theorem 6.5 can be used again to conclude

that σ(h−Th) = 0 for all σ ∈ I. It follows that σ(h) = Th for all σ ∈ I and hence

I contains at most one element. �
If σ ∈ I is given by a single ergodic measure, that is

σ(h) =
m∑
j=1

∫
X

h(x, ej) dµe
∗
j

where µ is an extreme point of M, then the results of Boivin and Derriennic [1]

apply. In particular, their Theorem 1 implies that for h ∈ C

lim
|a|→∞

|h(x, a)− σ(h)(a)|

|a|
= 0
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µ-almost everywhere. Theorem 5.3 can be interpreted as a generalization of this

result, but may not be the best possible. Although working with elements of I
given by several invariant measures may seem cumbersome, these cocycle invariant

integrals do lead to a characterization of B as the next theorem shows.

Our final result is to use I to identify the subspace B of C. As in Section 2,

define S : C(X)→ C by Sf(x, a) = f(ax)− f(x) and B is the set of coboundaries

of the range of S. Clearly σ(Sf) = 0 and hence σ(h) = 0 for all h ∈ B. We will

prove the converse.

The following calculation which H. Furstenberg showed us will be essential.

Given h ∈ C, set

fN (x) = −
1

Nm

∑
0≤ai<N

h(x, a).

Clearly fN ∈ C(X). Now set

hN = h− SfN

so hN and h differ by a coboundary.

Now using the cocycle formula we have

hN (x, ej) = h(x, ej) +
1

Nm

∑
0≤ai<N

{h(ejx, a)− h(x, a)}

= h(x, ej) +
1

Nm

∑
0≤ai<N

{h(ax, ej)− h(x, ej)}

= ANσx(h)(ej).

We can now prove:

Theorem 6.7. B = {h : σ(h) = 0 for all σ ∈ I}.

Proof. We have already pointed out that σ(h) = 0 for all σ ∈ I when h ∈ B.

Suppose that σ(h) = 0 for all σ ∈ I. By Proposition 6.1 ANσx(h)(ej) converges

to 0 uniformly in x for j = 1, · · · ,m. But hN (x, ej) = ANσx(h)(ej), so

‖h− SfN‖ = ‖hN‖

converges to 0 and h ∈ B. �
Theorem 6.8. There is a unique invariant cocycle integral if and only if C =

L ⊕ B.

Proof. If I = {σ0}, then Theorem 6.7 applies to h− σ0(h). If C = L ⊕ B, then

h ∈ C can be uniquely expressed as h = T + g with T ∈ L and g ∈ B. Hence

σ(h) = T for σ ∈ I and there is a unique cocycle integral. �
Clearly unique ergodicity implies there is a unique cocycle integral. The con-

verse is an interesting open question.
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