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SUBLATTICES OF TOPOLOGICALLY

REPRESENTED LATTICES

G. HARTUNG

1. Introduction

In [5], a representation of bounded lattices within so-called standard topological

contexts has been developed. Based on the theory of formal concept analysis

[14] it includes Stone’s representation of Boolean algebras by totally disconnected

compact spaces [10], Priestley’s representation of bounded distributive lattices by

totally order disconnected compact spaces [7] as well as Urquhardt’s representation

of bounded lattices by so-called L-spaces [11].

In the present paper we characterize the 0-1-sublattices of an arbitrary bounded

lattice within its standard topological context. To do so, the concept of a closed

relation of a formal context [16] is generalized to the concept of a topological

relation of a topological context. This is then used to describe finite subdirect

products of bounded lattices. Finally, the idea of a subdirect product construction

for complete lattices [13, 16] motivates an approach to the fusion of standard

topological contexts.

Several examples illustrate the theoretical results.

2. Preliminaries

We briefly sketch the duality between bounded lattices and standard topological

contexts worked out in [5]. For basic notions of the theory of formal concept anal-

ysis see [14]. By (X, τ) we denote a topological space where X is the underlying

set and τ is the family of all closed sets of the space.

We start with a triple Kτ := ((G, ρ), (M,σ), I) consisting of two topological

spaces (G, ρ), (M,σ) and a binary relation I ⊆ G ×M . For A ⊆ G and B ⊆ M

we define

A′ := {m ∈M | (g,m) ∈ I for all g ∈ A};

B′ := {g ∈ G | (g,m) ∈ I for all m ∈ B}.
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This establishes a Galois-connection between G and M and we obtain a complete

lattice by setting

B(G,M, I) := {(A,B) | A ⊆ G, B ⊆M, A′ = B, B′ = A}

where (A,B) ≤ (C,D) :⇔ A ⊆ C(⇔ B ⊇ D). The lattice B(G,M, I) is called the

concept lattice of the context (G,M, I). Its elements are called concepts of

(G,M, I). A set A ⊆ G is said to be an extent of (G,M, I) if (A,A′) is a concept

of (G,M, I). We call a set B ⊆M an intent of (G,M, I) if, analogously, (B′, B)

is a concept of (G,M, I). Subsequently, we write B(Kτ ) instead of B(G,M, I).

A closed concept of Kτ is a concept in each component consisting of a closed

set with respect to the given topologies ρ and σ. The ordered set of all closed

concepts is denoted by Bτ (Kτ ).

The structure Kτ := ((G, ρ), (M,σ), I) is called a topological context if the

following conditions are satisfied:

(i) A ∈ ρ ⇒ A′′ ∈ ρ; B ∈ σ ⇒ B′′ ∈ σ;

(ii) Sρ := {A ⊆ G | (A,A′) ∈ Bτ (Kτ )} is a subbasis of ρ and

Sσ := {B ⊆M | (B′, B) ∈ Bτ (Kτ )} is a subbasis of σ.

If Kτ is a topological context the lattice Bτ (Kτ ) is bounded but not necessarily

complete. In fact, it is a 0-1-sublattice of B(Kτ ). A topological context is called

a standard topological context if, in addition, the following hold:

(R) Kτ is reduced, i.e., the map g 7→ (g′′, g′) is a bijection between G and

the completely join-irreducible elements of B(Kτ ) and m 7→ (m′,m′′) is

a bijection between M and the completely meet-irreducible elements of

B(Kτ );

(S) For every (g,m) ∈ I there exists some (A,B) ∈ Bτ (Kτ ) such that g ∈ A
and m ∈ B;

(Q)
(
Ic, (ρ× σ)|Ic

)
is a quasicompact space where Ic := (G×M)\I and ρ×σ

denotes the product topology on G×M .

For every bounded lattice L a standard topological context Kτ (L) can be con-

structed as follows: A nonempty lattice filter F of L is called an I-maximal filter

[11] if there exists a nonempty lattice ideal I of L such that F ∩ I = Ø and every

proper superfilter E ⊃ F already contains an element of I. We denote the set of

all I-maximal filters of L by F0(L). Dually, the set I0(L) of all F -maximal ideals

of L is introduced. The standard topological context of L is then defined by

Kτ (L) := ((F0(L), ρ0), (I0(L), σ0),∆)

where (F, I) ∈ ∆ :⇔ F ∩ I 6= Ø and ρ0 and σ0 are given by the subbasis

Sρ0 := {{F ∈ F0(L) | a ∈ F} | a ∈ L} and Sσ0 := {{I ∈ I0(L) | a ∈ I} | a ∈ L},
respectively. For every bounded lattice L the mapping

ιL : L −→ Bτ (Kτ (L)) ιL(a) = (Fa,Ia)
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where Fa := {F ∈ F0(L) | a ∈ F} and Ia := {I ∈ I0(L) | a ∈ I}) is an

isomorphism. Moreover, every standard topological context Kτ is isomorphic to

Kτ (Bτ (Kτ )) via the following pair of homeomorphisms:

α : G −→ F0 (Bτ (Kτ )) α(g) = {(A,B) ∈ Bτ (Kτ ) | g ∈ A};

β : M −→ I0 (Bτ (Kτ )) β(m) = {(A,B) ∈ Bτ (Kτ ) | m ∈ B}.

This establishes a dual equivalence between the category of bounded lattices with

onto-lattice-homomorphisms and the category of standard topological contexts

with so-called standard embeddings. In [6], an extended version of this duality is

presented keeping the objects in both categories and taking arbitrary 0-1-lattice-

homomorphisms as morphisms between bounded lattices and so-called multivalued

standard morphisms between standard topological contexts.

3. 0-1-Sublattices

Using the duality described in the previous section properties of lattices can

be reformulated in the language of topological contexts. This idea has already

been successfully used for complete lattices. These are investigated in terms of

their formal contexts (see e.g. [9, 8]) which can be viewed as a kind of spectral

representation. This gave rise to efficient algorithms calculating properties by

computer [3, 4, 17, 18]. Understanding data-sets as formal contexts this yields

meanings and interpretations of such properties for reality.

In this section we give a characterization of 0-1-sublattices ofBτ (Kτ ) where Kτ
is a standard topological context. We start by recalling the description of complete

sublattices of concept lattices [16]. Let (G,M, I) be a context. A relation J ⊆ I

is called a closed relation of (G,M, I) if every concept of (G,M, J) is already a

concept of (G,M, I). There is a bijection from the set of all complete sublattices

of B(G,M, I) onto the set of closed relations of (G,M, I). In particular, for every

complete sublattice S of B(G,M, I), the relation JS :=
⋃

(A,B)∈SA×B is closed

and B(G,M, JS) = S. The following lemma [16] gives a useful characterization

for closed relations.

Lemma 1. A relation J is a closed relation of (G,M, I) if and only if J is a

subset of I and satisfies the following conditions:

(g,m) ∈ I \ J implies (h,m) /∈ I for some h ∈ G with gJ ⊆ hJ and

(g, n) /∈ I for some n ∈M with mJ ⊆ nJ .

The generalization of closed relations for topological contexts are topological

relations.
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Figure 1. A topological context and its closed concepts.

Definition 1. Let Kτ := ((G, ρ), (M,σ), I) be a topological context. A triple

R := (ρR, σR, IR) is called a topological relation of Kτ if the following conditions

are satisfied:

(i) ρR ⊆ ρ and σR ⊆ σ;

(ii) IR is a closed relation of (G,M, I);

(iii) Kτ (R) := ((G, ρR), (M,σR), IR) is a topological context.

Note that Bτ (Kτ (R)) is a 0-1-sublattice of Bτ (Kτ ). But, unlike to the complete

case, we can not hope to get a bijection between 0-1-sublattices and topological

relations. We may have several choices to describe a given sublattice. To see this,

consider the context Kτ in Fig. 1 which is equipped with the topologies ρ and σ

generated by the subbases

Sρ := {{1, 2, 3, . . . , n} | n ∈ N} ∪ {{1′, 1, 2, . . . , n} | n ∈ N0}∪{1, 2, 3, . . . , ω + 1},

Sσ := {{0′, n, n+ 1, . . . , ω} | n ∈ N} ∪ {n, n+ 1, n+ 2, . . . , ω} | n ∈ N0} ∪ {0
′}.

This yields a topological context, which is already standard, and its closed concepts

form the lattice also shown in Fig. 1. We define two topological relations R1 :=

(ρ1, σ1, IR1) and R2 := (ρ2, σ2, IR2) of Kτ by the closed relations IR1 and IR2

shown in Fig. 2 and Fig. 3 and the topologies ρ1, σ1, ρ2 and σ2 generated by the

subbases

Sρ1 = Sρ2 := Sρ \ {{1
′}, {1′, 1}, {1′, 1, 2}} ;

Sσ1 = Sσ2 := Sσ \ {{0, 1, 2, . . . , ω}, {1, 2, 3, . . . , ω}, {2, 3, 4, . . . , ω}} .

But though R1 and R2 are different they establish the same 0-1-sublattice.

In the following we investigate the case of standard topological contexts. This

still includes the general situation in bounded lattices because of the duality de-

scribed in Section 1. Moreover, for every topological relation, quasicompactness is

available.
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Figure 2. The topological relation R1 and its corresponding 0-1-sublattice.

Figure 3. The topological relation R2 and its corresponding 0-1-sublattice.

Proposition 1. Let Kτ be a standard topological context and R := (ρR, σR, IR)

be a topological relation of Kτ . Then Kτ (R) fulfils (Q).

Proof. A subbasis of (ρR × σR)|IcR is given by

S = {{(g,m) ∈ IcR | g ∈ A} | (A,A
′) ∈ Bτ (Kτ (R))}

∪ {{(g,m) ∈ IcR | m ∈ B} | (B
′, B) ∈ Bτ (Kτ (R))} .

Now, let A be a subset of S having the finite intersection property. We define

A1 := {(A,A′) ∈ Bτ (Kτ (R)) | {(g,m) ∈ IcR | g ∈ A} ∈ A} ,

A2 := {(B′, B) ∈ Bτ (Kτ (R)) | {(g,m) ∈ IcR | m ∈ B} ∈ A} .
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For any finite collection (A1, A
′
1), . . . , (An, A

′
n) ∈ A1 and (B′1, B1), . . . , (B′l , Bl) ∈

A2 there is a pair (g,m) ∈ IcR such that
∧n
i=1(Ai, A

′
i) ∈ α(g) and

∨l
j=1(B′j , Bj) ∈

β(m), i.e., the filter F generated by A1 in Bτ (Kτ (R)) and the ideal I generated

by A2 in Bτ (Kτ (R)) are disjoint. Hence there exists a pair (g̃, m̃) ∈ Ic such that

(α(g̃), β(m̃)) is a maximal pair of Bτ (Kτ (R)) with α(g̃) ⊇ F and β(m̃) ⊇ I an so

(g̃, m̃) ∈
⋂
A. �

IfS is a 0-1-sublattice ofBτ (Kτ ) then there are two canonical topologies coming

along with S, namely the topology ρS on G generated by the subbasis {A ⊆ G |
(A,A′) ∈ S} and the topology σS generated by the subbasis {B ⊆M | (B′, B) ∈
S}. Furthermore, S yields the canonical relation IS :=

⋃
(A,B)∈S(A×B).

Proposition 2. Let Kτ be a standard topological context and S be a

0-1-sublattice of Bτ (Kτ ). Then the following are equivalent:

(i) R := (ρR, σR, IR) is a topological relation of Kτ and Bτ (Kτ (R)) = S.

(ii) ρR = ρS, σR = σS and IR is a closed relation with IS ⊆ IR.

Proof. The implication (i) ⇒ (ii) is obvious. Conversely, let R := (ρS, σS, J)

be a triple where J is a closed relation with IS ⊆ J . First we prove that R

is a topological relation. The crucial point is to identify Kτ (R) as a topological

context. To see this, let A ∈ ρS, i.e.,

A =
⋂
t∈T

⋃
r∈Rt

Atr where (Atr, A
J
tr) ∈ S and Rt = {1, . . . , nt}.

We claim and prove further below that AJ =
⋃
Â∈BT

ÂJ (∗) where

Â ∈ BT :⇐⇒ Â =

 ⋃
ϕ∈×

t∈E
Rt

(⋂
t∈E

Atϕ(t)

)
JJ

for some finite E ⊆ T.

Since J is a closed relation (Â, Â′) ∈ S for every Â ∈ BT , i.e., BT ⊆ ρS. Then (∗)
implies AJJ =

⋂
Â∈BT

ÂJJ =
⋂
Â∈BT

Â ∈ ρS. Similar arguments show BJJ ∈ σS
for every B ∈ σS. Thus, Kτ (R) is a topological relation.

Now we prove (∗). Let m ∈ ÂJ for some Â ∈ BT and g ∈ A. For every t ∈ T
there exists r̂ ∈ Rt such that g ∈ Atr̂. Let Ê be the finite subset of T corresponding

to Â. Then there exists ϕ̂ ∈ ×t∈Ê Rt such that Atϕ̂(t) = Atr̂ for all t ∈ Ê and so

g ∈
⋂
t∈Ê Atϕ̂(t) ⊆ Â. Hence (g,m) ∈ J and therefore m ∈ AJ .

Now, let m /∈ ÂJ for all Â ∈ BT . Then, for every finite E ⊆ T , there is some

ϕ̂ ∈ ×t∈E Rt with m /∈
(⋂

t∈E Atϕ̂(t)

)J
, i.e., for every finite E ⊆ T , there exists a

function

fE : E −→
⋃
t∈E

{Atr | r ∈ Rt}
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such that fE(t) ∈ {Atr | r ∈ Rt} for all t ∈ E and m /∈
(⋂

t∈E fE(t)
)J

. Using

Rado’s Selection Theorem [1] we get the existence of a global function

f : T −→
⋃
t∈T

{Atr | r ∈ Rt}

such that f(t) ∈ {Atr | r ∈ Rt} for all t ∈ T . Moreover, for every finite E ⊆ T ,

there is some finite F ⊆ T such that E ⊆ F and f|E = fF |E . Let F̂ be the

filter of Bτ (Kτ ) generated by {(f(t), f(t)′) | t ∈ T}. For At1r1 , . . . , Atnrn ∈
f(T ) and E := {t1, . . . , tn} there is some finite F ⊇ E such that

⋂n
i=1 Atiri =⋂

t∈E f(t) =
⋂
t∈E fF (t) ⊇

⋂
t∈F fF (t). Since m /∈

(⋂
t∈F fF (t)

)J
we conclude

m /∈ (
⋂n
i=1Atnrn)

J
. Hence F̂ and β(m) := {(A,B) ∈ Bτ (Kτ ) | m ∈ B} form a

disjoint filter-ideal pair and, by [5, Lemma 2.1.5], there exists a maximal filter-

ideal pair (F̃ , Ĩ) such that F̃ ⊇ F̂ and Ĩ ⊇ β(m). By [5, Theorem 2.2.4], F̃ = α(g̃)

for some g̃ ∈ G and Ĩ = β(m̃) for some m̃ ∈ M . Then g̃ ∈ A and m̃ /∈ AJ imply

m /∈ AJ . Thus, (∗) is proved.

It remains to show Bτ (Kτ (R)) = S. Clearly, S ⊆ Bτ (Kτ (R)). If (A,B) ∈
Bτ (Kτ (R)) with A 6= Ø then A =

⋂
Â∈B Â for some suitable B ⊆ {A ⊆ G |

(A,A′) ∈ S}. Suppose that, for every finite E ⊆ B, the extent A is a proper

subset of
⋂
Â∈E Â. We define a nonempty family of closed sets by N := (NE)E∈ET

where ET := {E ⊆ B | E is finite } and

NE := {(g,m) ∈ IcR | g ∈
⋂
Â∈E

Â and m ∈ B}.

Since NE ∩NF = NE∪F 6= Ø the family N has the finite intersection property. By

quasicompactness, there exists some (ĝ, m̂) ∈
⋂
N, i.e. , ĝ ∈ A and m̂ ∈ B. This

is a contradiction. Hence there exists some finite E ⊆ B such that A =
⋂
Â∈E Â

which proves (A,B) =
∧
Â∈E(Â, Â′) ∈ S. �

Of course, I is a closed relation and therefore FS := (ρS, σS, I) is the great-

est topological relation among all topological relations describing a given 0-1-

sublattice S. On the other hand, given a topological relation R := (ρR, σR, I),

we immediately conclude ρR = ρBτ (Kτ (R)) and σR = σBτ (Kτ (R)) since in both

cases the generating subbases coincide. Let us call a topological relation R :=

(ρR, σR, IR) full if IR = I. We proved the following theorem.

Theorem 1. Let Kτ be a standard topological context. Then there is a bijection

from the set of all 0-1-sublattices of Bτ (Kτ ) onto the set of all full topological

relations. In particular, for a 0-1-sublattice S, the relation FS := (ρS, σS, I) is a

full topological relation with S = Bτ (Kτ (FS)).

In fact, there is also a smallest topological relation among all topological rela-

tions describing a given 0-1-sublattice S.
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Proposition 3. Let S be a 0-1-sublattice of Bτ (Kτ ) where Kτ is a standard

topological context. Then IS is a closed relation.

Proof. We use the characterization given in Lemma 1. Let (g,m) ∈ I \ IS and

define

N(g,m) := {{(h, n) ∈ Ic | h ∈ A} | g ∈ A and (A,A′) ∈ S}

∪ {{(h, n) ∈ Ic | n ∈ B} | m ∈ B and (B′, B) ∈ S} .

Then N(g,m) is a nonempty family of closed sets. Moreover, N(g,m) has the finite

intersection property because otherwise

{(h, n) ∈ Ic | h ∈ A} ∩ {(h, n) ∈ Ic | n ∈ B} = Ø

for some A fulfilling g ∈ A and (A,A′) ∈ S and for some B fulfilling m ∈ B

and (B′, B) ∈ S. This implies (A,A′) ≤ (B′, B) which is a contradiction to

(g,m) /∈ IS. By quasicompactness, there exists some (h̃, ñ) ∈
⋂
N(g,m), i.e.,

α(h̃) ⊇ α(g) ∩S and β(ñ) ⊇ β(m) ∩S which means h̃IS ⊇ gIS and ñIS ⊇ mIS .

Thus, by Lemma 1, IS is a closed relation. �
We call a topological relation R := (ρR, σR, IR) separating if Kτ (R) satisfies

condition (S). Clearly, given a 0-1-sublattice S, the topological context Kτ (SS) is

separating where SS := (ρS, σS, IS). Conversely, separating topological relations

are characterized by this construction.

Figure 4. The topological relation R3 and its corresponding 0-1-sublattice.

Proposition 4. Let Kτ be a standard topological context and R := (ρR, σR, IR)

be a separating topological relation. Then R = SBτ (Kτ (R)).

Proof. The family {A ⊆ G | (A,A′) ∈ Bτ (Kτ (R))} is a subbasis for both, ρR
and ρBτ (Kτ (R)), and {B ⊆ M | (B′, B) ∈ Bτ (Kτ (R))} is a subbasis for σR and

σBτ (Kτ (R)).
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Clearly, IBτ (Kτ (R)) ⊆ IR. Since R is separating, for every (g,m) ∈ IR, there

is a concept (A,B) ∈ Bτ (Kτ (R)) such that g ∈ A and m ∈ B. Hence (g,m) ∈
A×B ⊆ IBτ (Kτ (R)). �

Theorem 2. Let Kτ be a standard topological context. Then there is a bijection

from the set of all 0-1-sublattices ofBτ (Kτ ) onto the set of all separating topological

relations. In particular, for a 0-1-sublattice S, the relation SS := (ρS, σS, IS) is

a separating topological relation with S = Bτ (Kτ (SS)).

For every closed relation J of a standard topological context Kτ we obtain a

0-1-sublattice ofBτ (Kτ ) by SJ := Bτ (Kτ )∩B(G,M, J). Hence RJ := (ρJ , σJ , J)

is a topological relation where ρJ is generated by {A ⊆ G | (A,A′) ∈ SJ} and σJ
is generated by {B ⊆M | (B′, B) ∈ SJ}. We call a closed relation J of a standard

topological context separating if RJ is separating.

Corollary 1. Let Kτ be a standard topological context. Then there is a bijection

from the set of all 0-1-sublattices of Bτ (Kτ ) onto the set of all separating closed

relations. In particular, for a 0-1-sublattice S, the relation IS is a separating

closed relation with S = Bτ (Kτ (RIS)).

Figure 5. The topological relation R4 and its corresponding 0-1-sublattice.

The only full and separating topological relation is (ρ, σ, I). Of course, every

full topological relation satisfies (R). Separating topological relations may or may

not satisfy (R). There are topological relations being neither full nor separating.

Among these some fulfil (R) and others do not. For illustration we consider some

examples. The topological relation R1 in Fig. 2 is separating and reduced. The

relation R2 in Fig. 3 is neither full nor separating but reduced. The topological

relation R3 shown in Fig. 4 is separating but not reduced whereas R4 in Fig. 5

is neither full nor separating and, in addition, not reduced. (R3 := (ρ3, σ3, IR3)
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and R4 := (ρ4, σ4, IR4) are topological relations of the context Kτ in Fig. 1. Their

topologies ρ3, σ3, ρ4 and σ4 are generated by

Sρ3 = Sρ4 := Sρ1 \ {1},

Sσ3 = Sσ4 := Sσ1 \ {0
′, 1, 2, . . . , ω}.)

4. Direct Products

Before we can start to investigate subdirect products it is necessary to char-

acterize direct products of bounded lattices within the corresponding standard

topological contexts. For an arbitrary family of contexts (Kt)t∈T it is well-known

(see e.g. [16]) that

×
t∈T
B(Kt) ∼= B

(∑
t∈T

Kt

)
where∑
t∈T

Kt =
∑
t∈T

(Gt,Mt, It) :=

(⋃̇
t∈T

Gt,
⋃̇

t∈T
Mt,

⋃̇
t∈T

It∪̇
⋃̇

s,t∈T
s 6=t

(Gs ×Mt)

)
is called the sum of the contexts (Kt)t∈T . An isomorphism is given by

ιc : ×
t∈T
B (Kt) −→ B

(∑
t∈T

Kt

)
ιc
(
((At, Bt))t∈T

)
:=

(⋃̇
t∈T

At,
⋃̇

t∈T
Bt

)
.

Let us define the sum of the topological contexts (Kτt )t∈T by∑
t∈T

Kτt =
∑
t∈T

((Gt, ρt), (Mt, σt), It)

:=

((⋃̇
t∈T

Gt, ρ

)
,

(⋃̇
t∈T

Mt, σ

)
,
⋃̇

t∈T
It∪̇
⋃̇

s,t∈T
s 6=t

(Gs ×Mt)

)
where A ∈ ρ :⇔ A∩Gt ∈ ρt for all t ∈ T and B ∈ σ :⇔ B ∩Mt ∈ σt for all t ∈ T .

It is straightforward to see that this definition yields again a topological context.

Moreover, we get a description for the direct product.

Proposition 5. Let (Kτt )t∈T be a family of topological contexts. Then

×
t∈T
Bτ (Kτt ) ∼= Bτ

(∑
t∈T

Kτt

)
.

Proof. An isomorphism is given by

ιb : ×
t∈T
Bτ (Kτt )→ Bτ

(∑
t∈T

Kτt

)
ιb
(
((At, Bt))t∈T

)
:=

(⋃̇
t∈T

At,
⋃̇

t∈T
Bt

)
.

�
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Taking a family of standard topological contexts their sum satisfies (R) and (S).

But unfortunately, if the given family has infinite cardinality (Q) is no longer valid.

Therefore, the infinite sum is not isomorphic to the standard topological context

of the direct product. As an example we take the countable direct product 2N

where 2 is the two-element lattice. The set G of the standard topological context

Kτ (2) consists of exactly one element and therefore the set G of the sum contains

countably many elements. On the other hand, every element of the set G of the

standard topological context of 2N is an I-maximal filter of 2N. But this lattice

has uncountably many I-maximal filters since those are exactly the ultrafilters.

However, if we restrict ourselves to finite families of standard topological contexts

the sum stays standard.

Proposition 6. Let (Kτi )i=1,... ,n be a family of standard topological contexts.

Then
n∑
i=1

Kτi ∼= Kτ
(

n

×
i=1
Bτ (Kτi )

)
.

Proof. The set
(⋃̇n

i=1Ii∪̇
⋃̇

j,i∈{1,... ,n}
j 6=i

(Gj ×Mi)
)c

=
⋃̇n
i=1(Ii)

c
is a finite dis-

joint union of quasicompact spaces and therefore quasicompact. �

5. Subdirect Products

The last two sections suggest a method how to find finite subdirect products of

bounded lattices within the sum of the corresponding standard topological con-

texts. We have to look for certain topological relations. For two reasons we

concentrate on separating topological relations. Firstly, they give a minimal de-

scription of 0-1-sublattices providing the existence-property (S). Secondly, they fit

in with the theory of bonds [16] which we briefly review in the following.

A bond from a context (Gi,Mi, Ii) to a context (Gj ,Mj, Ij) is a subset Jij of

Gi ×Mj such that for every g ∈ Gi the set gj := {m ∈ Mj | (g,m) ∈ Jij} is an

intent of (Gj ,Mj, Ij) and for every m ∈Mj the set mi := {g ∈ Gi | (g,m) ∈ Jij} is

an extent of (Gi,Mi, Ii). If Jij is a bond from (Gi,Mi, Ii) to (Gj ,Mj , Ij) and Jjk
is a bond from (Gj ,Mj, Ij) to (Gk,Mk, Ik) then Jij ◦ Jjk := {(g,m) ∈ Gi ×Mk |
gjj ⊆ mj} is a bond from (Gi,Mi, Ii) to (Gk,Mk, Ik).

Now, let (Kt)t∈T be a family of contexts and ιc be the isomorphism from

×t∈T B (Kt) onto B
(∑

t∈T Kt
)
. Furthermore, let J be a subset of

⋃̇
t∈TGt ×⋃̇

t∈TMt and let Jst := J ∩ (Gs ×Mt) for s, t ∈ T . Then the following conditions

are equivalent (see [16, Theorem 6]):

(i) ι−1
c

(
B
(⋃̇

t∈TGt,
⋃̇
t∈TMt, J

))
is a complete subdirect product of the

(B(Kt))t∈T .

(ii) J is a closed relation of
∑
t∈T Kt with Jtt = It for all t ∈ T .
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(iii) The Jst are bonds from (Gs,Ms, Is) to (Gt,Mt, It) with Jtt = It and

Jrt ⊆ Jrs ◦ Jst for all r, s, t ∈ T .

Figure 6.

If we consider the finite sum of standard topological contexts closed relations

fulfilling those conditions may occur which are not separating. Fig. 6 presents a

standard topological context Kτ and its lattice of all closed concepts where the

topologies ρ and σ are given by the subbases

Sρ := {{1}, {1, 2}, {1, 2, 3} . . .}},

Sσ := {{1, 2, 3, . . . , ω}, {2, 3, 4, . . . , ω}, {3, 4, 5, . . . , ω}, . . .} .

Now, there is a sublattice of B(Kτ +Kτ ), boldface in the line diagram in Fig. 7,

corresponding to a complete subdirect product of (B(Kτ ))2 which does not induce

a subdirect product of (Bτ (Kτ ))2. But then this yields a closed relation which is

not separating (Fig. 8).

Let us call a bond Jij from a topological context Kτi to a topological context

Kτj topological if (g,m) ∈ Jij always implies g×m ⊆ Jij where g and m are the

topological closures of g and m in (Gi, ρi) and (Mj , σj), respectively.

Proposition 7. Let Jij be a topological bond from Kτi to Kτj and Jjk be a

topological bond from Kτj to Kτk. Then Jij ◦ Jjk is a topological bond from Kτi
to Kτk.

Proof. Let (g,m) ∈ Jij ◦ Jjk. For h ∈ g we conclude gj ⊆ hj since Jij is a

topological bond and so gjjk ⊆ hjjk. On the other hand, gjj ⊆ mj is equivalent

to m ∈ gjjk. Since Jjk is a topological bond we obtain n ∈ gjjk for every n ∈ m
showing n ∈ hjjk which is equivalent to hjj ⊆ nj . Hence g ×m ⊆ Jij ◦ Jjk. This

proves that Jij ◦ Jjk is a topological bond. �
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Figure 7. B(Kτ +Kτ ).

Figure 8. A closed relation of Kτ +Kτ which is not separating.
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Before we can give the characterization of the separating closed relations of∑n
i=1(Kτi ) corresponding to subdirect products of the (Bτ (Kτi ))i∈{1,... ,n} we prove

a result about standard topological contexts which needs similar arguments as we

have already used in the proof of Proposition 2.

Lemma 2. Let Kτ be a standard topological context, let S be a proper

0-1-sublattice of Bτ (Kτ ) and let (A,B) ∈ Bτ (Kτ )\S. Then A /∈ ρS and B /∈ σS.

Proof. Suppose A ∈ ρS, i.e.,

A =
⋂
t∈T

⋃
r∈Rt

Atr where (Atr, A
′
tr) ∈ S and Rt = {1, . . . , nt}.

For every finite E ⊆ T we find A ⊂
⋂
t∈E

⋃
r∈Rt

Atr because otherwise

A =
⋂
t∈E

⋃
r∈Rt

Atr =

 ⋃
ϕ∈×t∈E Rt

(⋂
t∈E

Atϕ(t)

)
′′

would be an extent belonging to a concept in S which is contrary to our assump-

tion. Hence, for every finite E ⊆ T , there is a function

fE : E −→
⋃
t∈E

{Atr | r ∈ Rt}

such that fE(t) ∈ {Atr | r ∈ Rt} for all t ∈ E and A ⊂
⋂
t∈E fE(t). By Rado’s

Selection Theorem [1] we get the existence of a global function

f : T −→
⋃
t∈T

{Atr | r ∈ Rt}

such that f(t) ∈ {Atr | r ∈ Rt} for all t ∈ T . Moreover, for every finite E ⊆ T ,

there is some finite F ⊆ T such that E ⊆ F and f|E = fF |E . Let F̂ be the

filter of Bτ (Kτ ) generated by {(f(t), f(t)′) | t ∈ T}. For At1r1 , . . . , Atnrn ∈
f(T ) and E := {t1, . . . , tn} there is some finite F ⊇ E such that

⋂n
i=1 Atiri =⋂

t∈E f(t) =
⋂
t∈E fF (t) ⊇

⋂
t∈F fF (t) ⊃ A. Then (A,B) /∈ F̂ . By

[5, Lemma 2.1.5], there is some F̃ ∈ F0(Bτ (Kτ )) such that F̂ ⊆ F̃ and (A,B) /∈ F̃ .

By [5, Theorem 2.2.4], F̃ = α(g) for some g ∈ G. But then,

g ∈
(⋂

t∈T

⋃
r∈Rt

Atr
)

and g /∈ A which is a contradiction. Analogous arguments

show B /∈ σS. �

Theorem 3. Let (Kτi )i=1,... ,n be a family of standard topological contexts and

let ιb be the isomorphism from ×n
i=1B

τ (Kτi ) onto Bτ (
∑n
i=1Kτi ). Furthermore,
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let J be a subset of
⋃̇n
i=1Gi ×

⋃̇n
i=1Mi and let Jij := J ∩ (Gi ×Mj) for i, j ∈

{1, . . . , n}. Then the following conditions are equivalent:

(i) J is a separating closed relation and ι−1
b (Bτ (Kτ (RJ ))) is a subdirect prod-

uct of the (Bτ (Kτi ))i=1,... ,n.

(ii) J is a separating closed relation of
∑n
i=1Kτi with Jii = Ii and ρJ |Gi = ρi

and σJ |Mi
= σi for all i ∈ {1, . . . , n}.

(iii) The Jij are topological bonds from Kτi to Kτj with Jii = Ii, Jik ⊆ Jij ◦ Jjk
and ρJ |Gi = ρi and σJ |Mi

= σi for all i, j, k ∈ {1, . . . , n}.

Proof. (i)⇒ (ii): For a closed relation J of
∑n
i=1Kτi we always have ρJ |Gi ⊆ ρi

and σJ |Mi
⊆ σi for all i ∈ {1, . . . , n}. Now, ι−1

b (Bτ (Kτ (RJ ))) is a subdirect

product of the (Bτ (Kτ i))i∈{1,... ,n} if and only if, for every i ∈ {1, . . . , n} and for

every (A,B) ∈ Bτ (Kτi ), there is some (C,D) ∈ Bτ (Kτ (RJ )) such that C∩Gi = A

and D ∩Mi = B. This implies ρJ |Gi ⊇ ρi and σJ |Mi
⊇ σi for all i ∈ {1, . . . , n}

and since Kτi satisfies (S) we get Jii = Ii for all i ∈ {1, . . . , n}.

(ii) ⇒ (iii): Since J is closed the Jij are bonds from Kτi to Kτj satisfying

Jik ⊆ Jij ◦ Jjk for all i, j, k ∈ {1, . . . , n}. Let i, j ∈ {1, . . . , n} and (g,m) ∈ Jij.
Since J is separating there is some (C,D) ∈ Bτ (Kτ (RJ )) such that g ∈ C and

m ∈ D. Then g ×m ⊆ (C ∩Gi)× (D ∩Mj) ⊆ Jij and Jij is a topological bond.

(iii) ⇒ (i): Certainly, J is a closed relation. First we show that

ι−1
b (Bτ (Kτ (RJ ))) is a subdirect product of the (Bτ (Kτ i))i=1,... ,n. Let (A,B) ∈
Bτ (Kτi ) for some i ∈ {1, . . . , n}. Then A ∈ ρJ |Gi . This topology is generated by

the subbasis

Si := {C ∩Gi | (C,C
J ) ∈ Bτ (Kτ (RJ ))}.

Then Jii = Ii yields that

Ti := {(C ∩Gi, C
J ∩Mi) | (C,C

J ) ∈ Bτ (Kτ (RJ ))}

is a 0-1-sublattice of Bτ (Kτi ) and therefore, by Lemma 2, (A,B) ∈ Ti. Hence

there is some (C,CJ ) ∈ Bτ (Kτ (RJ ))} such that (A,B) = (C ∩Gi, CJ ∩Mi) and

the lattice ι−1
b (Bτ (Kτ (RJ))) is a subdirect product.

Finally, we prove that J is separating. To see this, let (g,m) ∈ Jij for some

i, j ∈ {1, . . . , n} and suppose that there is no (C,D) ∈ Bτ (Kτ (RJ )) such that

g ∈ C and m ∈ D. We get a nonempty family of nonempty closed sets by

N(g,m) :={{(h, n) ∈ J | h ∈ C} | (C,C′) ∈ Bτ (Kτ (RJ )) and g ∈ C}

∪ {{(h, n) ∈ J | n ∈ D} | (D′, D) ∈ Bτ (Kτ (RJ )) and m ∈ D}.

Quasicompactness yields the existence of a pair (ĥ, n̂) ∈
⋂
N(g,m), i.e., ĥ ∈ g and

n̂ ∈ m. This contradicts the fact that Jij is a topological bond. �
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6. Fusion of Standard Topological Contexts

Subdirect products are of course not uniquely determined by their factors.

Nevertheless, uniqueness can be obtained if some additional conditions about

the linkage of the factors are required. This has been studied extensively (e.g.

[12, 13, 16]).

We follow this idea and give a finite subdirect product construction for bounded

lattices in terms of standard topological contexts. We introduce some notions

which are similar to those in [16]: For a set P the pair (L, α) is called a bounded

P -lattice if L is a bounded lattice and α maps P onto a generating subset of L.

Given bounded P -lattices (L1, α1), . . . , (Ln, αn) their (finite) P -product is de-

fined by (L, α) where α(p) := (α1(p), . . . , αn(p)) for all p ∈ P and L is the 0-1-

sublattice of×n
i=1 Li generated by α(P ).

For a given topological context Kτ let us call the pair (Kτ , α) a topological

P -context if (Bτ (Kτ ), α) is a bounded P -lattice. In the following, (Api , B
p
i ) de-

notes the concept αi(p). Now, let (Kτ1 , α1), . . . , (Kτn, αn) be standard topological

P -contexts. We define their standard topological P -fusion to be(((⋃̇n

i=1
Gi, ρJ

)
,

(⋃̇n

i=1
Mi, σJ

)
, J

)
, α

)
where J and α are determined by the following conditions:

(i) Jii = Ii for all i ∈ {1, . . . , n};
(ii) For all i 6= j ∈ {1, . . . , n}, the relation Jij is the smallest topological bond

from Kτi to Kτj containing the set (Api ×B
p
j ) for every p ∈ P ;

(iii) α(p) := (
⋃̇n
i=1A

p
i ,
⋃̇n
i=1B

p
i ) for all p ∈ P .

The relations Jij in (ii) are well-defined since the intersection of topological bonds

is again a topological bond.

Theorem 4. Let ((Kτi , αi))i=1,... ,n be standard topological P -contexts. Then

(((⋃̇n

i=1
Gi, ρJ

)
,

(⋃̇n

i=1
Mi, σJ

)
, J

)
, α

)
is a topological P -context, J is a separating closed relation of the context

∑n
i=1K

τ
i

and ι−1
b

(
Bτ
(

(
⋃̇n
i=1Gi, ρJ), (

⋃̇n
i=1Mi, σJ ), J

))
is the P -product of the bounded

P -lattices ((Bτ (Kτi ), αi))i=1,... ,n.

Proof. We check (iii) of Theorem 3. Let i, j, k ∈ {1, . . . , n} and Api ×B
p
k ⊆ Jik.

Then, for any (g,m) ∈ Api × Bpk), we have gjj ⊆ Apj ⊆ mj . Hence (g,m) ∈
Jij ◦ Jjk. Proposition 7 yields Jik ⊆ Jij ◦ Jjk. In particular, J is a closed relation

of
∑n
i=1Kτi and B

(
(
⋃̇n
i=1Gi, ρJ), (

⋃̇n
i=1Mi, σJ ), J

)
is a complete sublattice of
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B (
∑n
i=1Kτi ) containing α(P ). If (A,B) ∈ Bτ (Kτi ) for some i ∈ {1, . . . , n} there

is some (C,D) ∈ Bτ
(

(
⋃̇n
i=1Gi, ρJ), (

⋃̇n
i=1Mi, σJ ), J

)
such that A = C ∩ Gi and

B = D ∩Mi because αi(P ) is a generating set of Bτ (Kτi ). This shows ρJ |Gi = ρi
and σJ |Mi

= σi. Theorem 3 yields that J is a separating closed relation such that

ι−1
b

(
Bτ
((⋃̇n

i=1
Gi, ρJ

)
,
(⋃̇n

i=1
Mi, σJ

)
, J

))
is a subdirect product of the (Bτ (Kτi ))i=1,... ,n containing their P -product (L, α).

Since J ⊆ Iιb(L) we obtain equality. �
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