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ON SWELL–COLORED COMPLETE GRAPHS

C. WARD and S. SZABÓ

Abstract. An edge-colored graph is said to be swell-colored if each triangle
contains exactly 1 or 3 colors but never 2 colors and if the graph contains more
than one color. It is shown that a swell-colored complete graph with n vertices
contains at least

√
n + 1 colors. The complete graph with n2 vertices has a swell

coloring using n+ 1 colors if and only if there exists a finite affine plane of order n.

A graph with its edges colored is said to be well-colored if each triangle contains

exactly 1 or 3 colors but never 2 colors. Since all graphs can be well-colored using

exactly one color, those graphs which are well-colored with more than one color

will be referred to as swell-colored graphs or swell graphs for short.

We shall investigate the number of colors with which a complete graph can

be swell-colored. The complete graph on n vertices (generically denoted Kn) can

never be swell-colored with exactly two colors. A simple investigation shows that

K3 and K4 are the only Kn swell-colorable with exactly 3 colors; the other Kn

require more colors since they are more highly connected.

For a particular value of n, what is the fewest number of colors that can give a

swell Kn? This minimum completely characterizes the possible number of colors

found in other swell-colorings of Kn:

Proposition 1. If the complete graph on n vertices can be swell-colored using

exactly ρ colors, ρ <

(
n

2

)
, then it can be swell-colored using exactly ρ+ 1 colors.

Before we prove this, we shall specify some terms and notation.

Definition. A color-component of edge-colored graph G is a maximally con-

nected subgraph (with edge colorings inherited from G) whose edges are all of the

same color. If a color-component of G has edges of color c, then we call it a c-

component of G. If G is complete, then every two vertices v1, v2 are contained

in a color-component, which we denote←→v1v2. This is to be distinguished from v1v2

which denotes the edge connecting v1 and v2.
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First we shall make some simple observations.

(1) Two color-components of the same color cannot share a common vertex.

(2) If G is complete and well-colored, then distinct color-components of G can

share at most one vertex.

(3) A complete graph G is well-colored if and only if all its color-components

are complete.

(4) Suppose G is swell and complete, and H is a c-component of G containing

vertices v1 and v2, and P is a vertex of G not in H. Then the colors of

Pv1 and Pv2 are distinct and different from c.

(5) If color-component H of G is re-colored so that each edge of H becomes

a color-component, then the newly colored G is swell.

Proof of Propostion 1. Let G denote a Kn which is swell-colored with ρ colors.

Suppose G has two distinct c-components of the same color, c. According to

observation 1, these c-components are disjoint; re-color one of them with a new

color not occurring in G. In view of observation 3, the resulting graph is swell-

colored with ρ+ 1 colors. Thus, we shall suppose, without loss of generality, that

G is the union of ρ distinctly colored color-components. It is sufficient to show

that we can re-color G so that the resulting graph, G′, still has ρ colors in all, still

is swell but has two color-components of the same color.

Since ρ <

(
n

2

)
, there must be some color-component, say H, containing m ≥ 3

vertices. According to observation 3, H is a complete subgraph with vertices,

say v1, . . . , vm. Since ρ > 1, H is a proper subgraph of G, thus there exists a

vertex of G not contained in H, say P . Denote the colors of H and Pvk by

c0 and ck respectively. Since G is swell, c0, c1, . . . , cm are m + 1 distinct colors.

For every two vertices of H, vi and vj , re-color edge vivj with color ck where

k ≡ i+ j (mod m + 1). We shall refer to the newly colored G and H as G′ and

H ′ respectively.

Every color of G′ occurs in G, and every color of G is found in G′ (v1vm still

has color c0.) Thus, G′ uses exactly ρ colors.

We now show that G′ is swell. Consider some edge, vivj , of H ′ with color ck
where k ≡ i+ j (mod m + 1). In light of the formula defining the edge-coloring

of H ′, we see that no edge of H ′ adjacent to vivj shares color ck. In addition,

k is neither i nor j. Thus, Pvi and Pvj are colored differently than vivj . Now,

consider any vertex Q 6= P of G′ which is outside of H ′. We claim that Qvi
cannot have color ck. Certainly, if k = 0, Qvi can’t have color ck since H is a

c0-component of G. Suppose k 6= 0. Then, Pvk has color ck, and vivk has color c0
in G. By assumption, G can’t have two distinct ck-components, so the swellness

of G implies that Qvi can’t have color ck. An identical argument shows that Qvj
can’t have color ck. We have shown that no edge adjacent to vivj shares its color

and so vivj =←→vivj . According to observation 5, G′ is swell.
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G′ has several color-components of the same color. In particular,
←→
Pv1 and←−→v2vm

are disjoint c1-components. This is sufficient to complete the proof. �
A pigeonhole argument gives us a lower bound on the number of colors in a

swell Kn. We will use dm e to denote the smallest integer not less than m.

Proposition 2. The complete graph on n vertices cannot be swell-colored with

fewer than d
√
n e+ 1 colors.

Proof. LetKn be swell-colored with exactly ρ distinct colors. Let N(v, c) denote

the number of edges incident to vertex v which have color c. Let α = N(v0, c0) =

maxN(v, c), where the maximum is taken over all vertex-color combinations (v, c).

The n − 1 edges incident to any particular vertex can be sorted into ρ color

classes, each with α or fewer members, and therefore,

(1) αρ ≥ n− 1.

Let v1, v2, . . . , vα be the vertices connected to v0 by the α edges of color c0. Let

G denote the subgraph of Kn induced by the vertex subset {v0, v1, . . . , vα}. The

well-coloredness of Kn is inherited by G and so all edges of G have color c0. Since

Kn is assumed to be properly well-colored, there must be some vertex of Kn not

in subgraph G, call it v∗. It will be shown that the α + 1 edges connecting v∗ to

G are all distinctly colored with colors other than c0. A consequence is that

(2) ρ ≥ α+ 2.

If an edge connecting v∗ to G, say v∗vj , 0 ≤ j ≤ α, has color c0 then by the

well-coloredness of G, v∗v0 would have color c0, contrary to the definition of v∗.

Furthermore, if any two edges connecting v∗ to G, say v∗vj and v∗vk, 0 ≤ j, k ≤ α,

k 6= j, have the same color, then the well-coloredness of Kn implies that vjvk
shares this same color. But vjvk belongs to G, hence has color c0 and so v∗vj
would have color c0 which we have seen is impossible. Thus, inequality (2) has

been established.

Inequalities (1) and (2) imply that ρ2 ≥ 2ρ + n − 1. It is easy to see that

ρ ≥ d
√
n e+ 1. �

Is the lower bound of Proposition 2 ever obtained? In the next Theorem we

show that it is when n is an even power of a prime. We do this by algebraically

constructing the desired well-coloring. There are several approaches that work;

one is to use difference quotients. Assume n is any power of a prime. Label each

vertex of Kn with an element of the Galois field F = GF (n). Also, associate each

element of F with a unique color. Fix an arbitrary function Φ: F → F . The

difference quotient of Φ, defined for distinct elements x, y of F , is

∆(x, y) = (Φ(x) − Φ(y))(x− y)−1.

Color each edge of Kn using color ∆(x, y) for the edge with vertices labelled x

and y. It is easy to show that this gives a well-coloring which we call the well-

coloring generated by the difference quotient of Φ.
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Theorem 3. Suppose n = p2k where p is prime. The complete graph on n

vertices can be swell-colored with pk + 1 colors but not with fewer.

Proof. Let F be the Galois field of order p2k. Define Φ: F → F by Φ(x) = xp
k

.

Consider the well-coloring generated by the difference quotient of Φ,

∆(x, y) = (Φ(x) − Φ(y))(x− y)−1

= (xp
k

− yp
k

)(x− y)−1

= (x− y)p
k

(x− y)−1

= (x− y)p
k−1.

Note that all values of ∆ must be non-zero perfect pk − 1 -th powers. There

are exactly pk + 1 such elements of F . Therefore, the well-coloring generated by

the difference quotient of Φ uses exactly pk + 1 colors. This equals the bound of

Proposition 2 and so no fewer colors can suffice. �

Rédei [1, Theorem 24], shows when F = GF (pk), p prime, then the number of

distinct values of the difference quotient of any non-linear Φ: F → F must lie in

one of the intervals[
1 +

pk − 1

pe + 1
,
pk − 1

pe − 1

]
, e = 1, . . . ,

⌊
k

2

⌋
;

[
pk + 1

2
, pk
]
.

When k = 2m is even then the smallest of Rédei’s intervals becomes [pm, pm + 1].

According to Proposition 1, the value pm is never attained, whereas Theorem 3

— as well as Rédei — shows that value pm + 1 is attained. It would be interesting

to find other simple characteristics of swell Kn, n = pk, that guarantee that they

are not generated by difference quotients.

What can be said about the Kj2 where j is not a prime power? A geometric

view provides a partial answer:

A finite affine plane is a finite system of points and lines and an incidence

relation satisfying the following three Axioms:

(1) Every two distinct points, P and Q, determine a unique line, l, such that

both P and Q lie on l. We say that two lines are parallel if they are

identical or if they share no common points.

(2) Given a point, P , and a line, l, there exists a unique line, parallel to l that

contains P .

(3) There exist three points which do not all lie on the same line.

Any finite affine plane contains exactly j2 points for some integer j, called its

order. A plane of order j contains exactly j + 1 pencils of parallel lines, each

containing j lines. Each line contains j points and each point lies on j + 1 lines.
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Theorem 4. The graph Kj2 (j > 1) can be swell-colored with exactly j + 1

colors if and only if there exists a finite affine plane of order j.

Proof. Suppose that the graph Kj2 is swell-colored with exactly j + 1 colors.

Let the points of the putative affine plane consist of the vertices of the graph.

We define the lines be the color-components of Kj2 . We take point P to be

incident to line l if and only if vertex P belongs to color-component l. The color

components of a certain color form a pencil of parallel lines. From inequalities (1)

and (2) of Proposition 2, it follows that α = j − 1. This means that every vertex

belongs to exactly j+1 color-components, exactly one of each color. Thus, Axiom

2 is satisfied; the other two Axioms are obviously satisfied.

To show the converse, suppose that we have an finite affine plane, Π, of order j.

Choose some correspondence betweeen the vertices of Kj2 and the points of Π and

associate some unique color with each of the j + 1 pencils of parallel lines of Π.

In order to define a swell-coloring, consider two distinct vertices, v1 and v2, of

Kj2 . Let l be the line in Π determined by the points associated with v1 and v2.

Line l belongs to exactly one of the j + 1 pencils of Π. Color v1v2 with the color

associated with this pencil.

The graph, Kj2 , is now swell-colored by virtue of the fact that the parallel

relation is an equivalence relation in Π. �

For certain j, it is unknown whether there exists a finite affine plane of order j.

The orders of the known affine planes are all powers of a prime. In 1949, Bruck

and Ryser [2] proved that if j is congruent to 1 or 2 (mod 4) and if j cannot be

written as the sum of two squares, then there is no finite affine plane of order j.

In 1988, it was shown [3] (by extensive computer calculation) that no affine plane

of order 10 exists. At present, order 12 is the smallest order for which the issue

is undecided. We view this in terms of the minimum number of colors in a swell

Kj2 ; let Ψ(n) denote the smallest number of colors that could give a swell Kn.

Corollary 5. We know that Ψ(36) = 8 and Ψ(100) = 12. Also, Ψ(144) is

either 13 or 14 — the exact value being unknown.

Proof. There is no affine plane of order 6, thus no 7 color swell K36 exists. To

produce one with 8 colors, one can just swell color K49 with 8 colors and remove

any 13 vertices. All 8 colors must remain in the subgraph and so Ψ(36) = 8. The

arguments for K100 and K144 are similar. �

Many interesting questions remain open. It is unknown whether the only in-

creases in Ψ occur between n = m2 and n = m2 + 1. In particular, where does

Ψ(n) first exceed 6? Does Ψ ever equal 7? It is also unknown whether there is an

m for which Ψ(m2) > m+ 2.
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