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MEAN SQUARED ERRORS OF PREDICTION BY

KRIGING IN LINEAR MODELS WITH AR(1) ERRORS

F. ŠTULAJTER

1. Introduction

Kriging, in the scientific literature, is used as a name for the theory of pre-

diction in random processes (random fields) with an unknown mean value and,

possibly, with an unknown covariance function. M. Stein in a series of articles

(1988), (1990a), (1990b) and (1990c) studies the case when the unknown covari-

ance function of the observed process is misspecified, but not estimated from the

data. Limit theory of prediction of time series with estimated parameters has been

studied by many authors including Bhansali (1981), Fuller and Hasza (1981), Ku-

nimoto and Yamamoto (1985) and Toyooka (1982). Some of these authors have

assumed that the mean value of the observed process is zero.

Harville (1985), Harville and Jeske (1992) and Zimmerman and Cressie (1992)

studied properties and approximations of the mean squared error of prediction with

unbiasedly estimated parameters in the case when a covariance function depends

linearly on unknown parameters.

The main aim of this paper is to derive an approximate expression for the mean

square error of a predictor with estimated parameters which is based on a finite

observation of a stochastic process following a linear regression model with AR(1)

errors. In this case the dependence of covariance function on unknown parameters

is nonlinear.

2. Kriging Predictors in a Linear Regression Model

Let X = (X(1), . . . ,X(n))′ be a finite observation of length n of a stochastic

process X = {X(t); t ∈ T} with the mean function m(t) =
∑k
i=1 βifi(t); t ∈ T

where f1, . . . , fk are known functions and β = (β1, . . . , βk)′ are unknown regression

parameters and with some covariance function R(s, t); s, t ∈ T . Then we can write

X = Fβ + ε
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with E[ε] = 0, E[εε′] = Σ, where Σij = R(i, j); i, j = 1, 2, . . . , n. Let us assume

that Σ is a positive definite n× n matrix.

Let U be a predicted random variable (for example U = X(n+1)) with Eβ [U ] =

f ′β, where f is a given vector, with a finite variance D[U ] and with a known vector

r of covariances between X and U : r = (Cov (X(1);U), . . . ,Cov (X(n);U))′.

Then the kriging predictor U∗ of U based on X is given by

(1) U∗ = f ′β∗ + r′Σ−1(X− Fβ∗)

where β∗ = (F ′Σ−1F )−1F ′Σ−1X is the best linear unbiased estimator (BLUE)

for β with the covariance matrix Σβ∗ = (F ′Σ−1F )−1. The mean square error of

the predictor U∗ is given by

(2) E[U∗ − U ]2 = D[U ]− r′Σ−1r + ‖f − F ′Σ−1r‖2Σβ∗

where ‖g‖2A = g′Ag denotes a norm defined by a positive definite matrix A.

The kriging predictor U∗ is in fact the best linear unbiased predictor (BLUP)

of U based on X (see Harville (1990)).

The practical use of (1) is limited, since we usually do not know the vector r

and the matrix Σ.

The properties of the estimator

(3) Û = f ′β̂ + r′Σ−1(X− Fβ̂),

where β̂ = (F ′F )−1F ′X is the least squares estimator (LSE) of β were studied by

Štulajter (1991). It was shown that

(4) E[Û − U ]2 = D[U ]− r′Σ−1r + ‖f − F ′Σ−1r‖2Σβ̂

where Σβ̂ = (F ′F )−1F ′ΣF (F ′F )−1. Since U∗ is the BLUP for U , it is clear that

‖f − F ′Σ−1r‖Σβ∗ ≤ ‖f − F
′Σ−1r‖Σβ̂ .

Let us assume now that the errors ε(t); t = 1, 2, . . . form an AR(1) process with

parameters σ2 and ρ, |ρ| < 1; that means ε(t + 1) = ρε(t) + e(t) for t = 1, 2, . . . ,

where E[e(t)] = 0, E[e(s)e(t)] = σ2δst. Then the observed process X is covariance

stationary with the covariance function R(t) = σ2 ρt

1−ρ2 , t = 0, 1, . . . .

Let U = X(n+ 1), then

Σ−1 =
1

σ2


1 −ρ 0 . . . 0 0 0

−ρ 1 + ρ2 −ρ . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −ρ 1 + ρ2 −ρ
0 0 0 . . . 0 −ρ 1

 ,

r′Σ−1 = (0, 0, . . . , ρ)′ and the estimator X̂(n+ 1) given by (3) can be rewritten as

(5) X̂(n+ 1) = f ′β̂ + ρ(X(n)− (Fβ̂)n)
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where (Fβ̂)n denotes the n-th coordinate of the vector Fβ̂. Next we get

(6) E[X̂(n+ 1)−X(n+ 1)]2 = σ2 + ‖f − F ′Σ−1r‖2Σβ̂ .

Example 1. Let X be a stationary process with an unknown constant mean

value β. Then F = (1, . . . , 1)′, f = 1, (F ′F )−1 = 1
n

, F ′ΣF = n(R(0) +

2
∑n
t=1(1− t

n
)R(t)) and we get from (5) and (6) that

X(n+ 1) = β̂ + ρ(X(n)− β̂) and

E[X̂(n+ 1)−X(n+ 1)]2 = σ2 + (1− ρ)2

(
R(0)

n
+

2

n

n∑
t=1

(
1−

t

n

)
R(t)

)
,

where β̂ = 1
n

∑n
t=1X(t) is the LSE of the unknown (constant) mean value β. It

is easy to prove that

lim
n→∞

E[X̂(n+ 1)−X(n+ 1)]2 = σ2 for every ρ ∈ (−1, 1).

Example 2. Let X be a covariance stationary AR(1) process with a linear

trend Eβ [X(t)] = β1 + β2t; t = 1, 2, . . . . Then

F = Fn =

(
1 1 . . . 1

1 2 . . . n

)′
,

f = fn =

(
1

n+ 1

)
and

gn = fn − F
′
nΣ−1

n rn

(
1

n+ 1

)
−

(
ρ

nρ

)
depend on n. Again, X̂(n+ 1) = f ′nβ̂ + ρ(X(n)− (Fβ̂)n), β̂ = (F ′F )−1F ′X and

E[X̂(n + 1) − X(n + 1)]2 = σ2 + ‖fn − F ′nΣnrn‖2Σβ̂n
. Our aim is to show that,

again, limn→∞E[X̂(n + 1) −X(n+ 1)]2 = σ2. This result follows from the next

theorem.

Theorem 1. Let X and U fulfil the conditions given in the beginning of this

paragraph and let gn = f ′n − F ′nΣ−1
n rn. If g′n(F ′nFn)−1gn = O(1/n) and if

limn→∞
‖Σn‖
n = 0, where ‖ · ‖ denotes the Euclidean matrix norm, then

(7) lim
n→∞

E[Ûn − U ]2 = D[U ]− lim
n→∞

r′nΣ−1
n rn.

Proof. Since r′nΣ−1
n rn; n = 1, 2, . . . is non decreasing and bounded by D[U ],

it is enough to prove that limn→∞ ‖gn‖Σβ̂n = 0 if the conditions of the theorem

are fulfilled. Using the Schwarz inequality we get ‖gn‖2Σβ̂n
≤ ‖Σn‖g′n(F ′nFn)−1gn,

from which the theorem follows. �
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Example 2 (continuation). For the linear trend matrix Fn given in the Exam-

ple 2 we get (see Štulajter (1991)) (F ′nFn)−1 = 1
nGn, where Gn =

(
2(2n+1)
n−1 − 6

n−1

− 6
n−1

12
n2−1

)
.

Thus

g′nGngn = (1− ρ)2

[
2(2n+ 1)

n− 1
− 12

1 + n(1− ρ)

(n− 1)(1− ρ)
+ 12

(1 + n(1− ρ))2

(n2 − 1)(1− ρ)2

]
,

lim
n→∞

g′nGngn = 4(1− ρ)2 and

lim
n→∞

‖Σn‖

n
= lim
n→∞

(
R2(0)

n
+

2

n

n∑
t=1

(
1−

t

n

)
R2(t)

)1/2

= 0

from which we have that limn→∞E[X̂(n+ 1)−X(n+ 1)]2 = σ2.

Remark. The predictor Û given by (3) for which the condition (7) holds can

be called adaptive, since the right hand side of (7) is equal to the limit of the mean

square error of the best linear predictor of U based on the random process X with

mean value equal to zero.

3. Kriging Predictors with Estimated Parameters

in a Regression Model with AR(1) Errors

As we can see from (5) the predictor X̂(n+ 1) depends only on the last obser-

vation X(n) of X and can be written in the form

(8) X̂(n+ 1) = f ′β̂ +
R(1)

R(0)
(X(n)− (Fβ̂)n),

since for the AR(1) process R(1)
R(0) = ρ. Our aim is now to substitute suitable

estimates R̂(0) and R̂(1) for the unknown R(0) and R(1) respectively and to

consider the predictor

(9)
ˆ̂
X(n+ 1) = f ′β̂ +

R̂(1)

R̂(0)
(X(n)− (Fβ̂)n).

The problem of estimating an unknown covariance function of stationary errors in

a linear regression model was considered in Štulajter (1991), where it was shown

that the estimators

(10) R̂(t) =
1

n− t
−
n−t∑
s=1

(X(s+ t)− (Fβ̂)s+t)(X(s)− (Fβ̂)s)

are consistent estimators of R(t) for every fixed t if limt→∞R(t) = 0 and X is a

Gaussian process. The estimates R̂(·) can be written in the form R̂(t) = ε′C(t)ε,

where C(t); t = 0, 1, . . . , n−1 are symmetric n×n matrices (see Štulajter (1989)).
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These estimators are “nonparametric”, while the covariance function R of our

model is “parametric”, it depends nonlinearly on the parameter θ = (σ2, ρ)′.

To estimate this parameter let us consider the nonlinear regression model

(11) R̂(t) = Rθ(t) + (R̂(t)−Rθ(t)); t = 0, 1

with the parametric function Rθ(t) = σ2 ρt

1−ρ2 ; t = 0, 1. Now we prove the following

lemma.

Lemma 1. The estimator θ̂ = (σ̂2, ρ̂)′ =
(
R̂(0)2−R̂(1)2

R̂(0)
,
R̂(1)

R̂(0)

)′
is the least

squares estimator of θ = (σ2, ρ)′ in the nonlinear regression model (11).

Proof. We are looking for arg minθ∈Θ[(Rθ(0) − R̂(0))2 + (Rθ(1) − R̂(1))2] =

arg minθ∈Θ k(θ). It is easy to show that θ̂ satisfies the normal equations

∂

∂σ2
k(θ)|

θ̂
= 0

∂

∂ρ
k(θ)|

θ̂
= 0

and that k(·) has its minimum at θ̂. �

Using this result we can write the predictor
ˆ̂
X(n+ 1) in the form

ˆ̂
X(n+ 1) = f ′β̂ + ρ̂(X(n)− (Fβ̂)n),

where ρ̂ = R̂(1)

R̂(0)
is the least squares estimator of ρ.

Now we’ll investigate properties of a predictor which approximate the predictor
ˆ̂
X(n + 1). We shall proceed as follows: the least squares estimator ρ̂ will be

approximated by some random variable ρ̃ and instead of the estimator
ˆ̂
X(n + 1)

we’ll consider its approximation X̃(n+ 1) given by

(12) X̃(n+ 1) = f ′β̂ − ρ̃(X(n)− (Fβ̂)n).

The approximation ρ̃ of ρ̂ can be obtained in the following manner. The nonlinear

regression model (11) can be written in the form

R̂ = Rθ + (ε′Cε−Rθ),

where R̂ = (R̂(0), R̂(1))′ = ε′Cε = (ε′C(0)ε, ε′C(1)ε)′, Rθ = (Rθ(0), Rθ(1))′ and

C(0) and C(1) are symmetric n× n matrices.

It was shown in Štulajter (1992) that the LSE θ̂ can be well approximated by

θ̃ = θ + θ, where

θ = A(ε′Cε−R(θ)) + (J ′J)−1
[
(ε′Cε−Rθ)

′N(ε′Cε−Rθ)(13)

−
1

2
J ′(ε′Cε−Rθ)

′D(ε′Cε−Rθ)
]
,



252 F. ŠTULAJTER

where J = ∂Rθ
∂θ is a 2× 2 matrix, A = (J ′J)−1J ′, and N and D are arrays which

are given in Štulajter (1991).

Remark. Since ε′Cε converges, as n → ∞, in probability to Rθ if ε is a

Gaussian AR(1) process, the estimator θ̃ converges in probability to θ if ε is a

Gaussian AR(1) process.

Thus we can approximate ρ̂ by ρ̃ = ρ+ ρ, where ρ contains only linear combi-

nations of quadratic forms in ε and linear combinations of products of two such

quadratic forms.

Since X(n)− (Fβ̂)n = (Mε)n, where M = I − F (F ′F )−1F ′ we can write

(14) X̃(n+ 1) = f ′β̂ + (ρ+ ρ)(Mε)n

and we see that

Eβ [X̃(n+ 1)] = f ′β for all β

if the errors ε are such that all the first, the third and the fifth moments are equal

to zero, which is fulfilled if ε are e.g. normally distributed.

Since

X̃(n+ 1) = f ′β + f ′P 1ε+ (ρ+ ρ)(Mε)n,

where P1 = (F ′F )−1F ′ and since X(n+ 1) = f ′β + εn+1, we can write

E[X(n+ 1)− X̃(n+ 1)]2 = E[εn+1 − f
′P 1ε− (ρ+ ρ)(Mε)n]2

= E[X(n+ 1)− X̂(n+ 1)]2 − 2E[ρ(Mε)n(εn+1

− f ′P 1ε− ρ(Mε)n)]E[ρ(Mε)n]2.

We can see from (13) that θ̃ can be written in the form

θ̃ = θ +ABS(θ) +QUAD(θ) +QUAR(θ), where

ABS(θ) = −ARθ + (J ′J)−1(R′θNRθ −
1

2
J ′R′θDRθ)

QUAD(θ) = Aε′Cε− (J ′J)−1(2R′θNε
′Cε− J ′R′θDε

′Cε)

QUAR(θ) = (J ′J)−1(ε′CεNε′Cε−
1

2
J ′ε′CεDε′Cε).

We’ll use only the terms ABS(ρ) and QUAD(ρ) in the sequal, and we’ll neglect

the terms of higher power then four by computing the mean square error. Then

we can write:

E[ρ(Mε)n(εn+1 − f
′P 1ε− ρ(Mε)n)](15)

.
= ABS(ρ)E[(Mε)n(εn+1 − f

′P 1ε− ρ(Mε)n)]

+E[(QUAD(ρ))(Mε)n(εn+1 − f
′P 1ε− ρ(Mε)n)]
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where ABS(ρ) depends only on θ and QUAD(ρ) = a0(θ)ε′C(0)ε + a1(θ)ε′C(1)ε.

It is easy to show that

E[(Mε)nεn+1] = m′nr, where r = (Rθ(n), . . . , Rθ(1))′

and m′n is the n-th row of the matrix M ,

E[(Mε)nf
′P 1ε] = m′nΣP ′1f and E[ρ(Mε)2

n] = ρm′nΣmn.

For computing the second expectation in (15) we need to compute

E[ε′C(T )ε(Mε)n(εn+1 − f
′P 1ε− ρ(Mε)n)],

where C(t) is a symmetric n×n matrix. This can be done as follows. We can write:

ε′C(t)ε = ε′(n+ 1)C(t)n+1ε(n+ 1), where C(t)n+1 is the (n+ 1)× (n+ 1) matrix,

C(t)n+1 =

(
C 0

0 0

)
, ε(n + 1) = (ε1, . . . , εn+1)′, (Mε)nε(n + 1) = m′nεεn+1 =

ε′(n+ 1)Bn+1ε(n+ 1), where m′n denotes the n-th row of the matrix M and Bn+1

is the (n + 1)× (n + 1) matrix, Bn+1 = 1
2

(
0 mn

m′n 0

)
. Thus ε′Cε(Mε)nεn+1 =

ε′(n+ 1)Cn+1ε(n+ 1)ε′(n+ 1)Bn+1ε(n+ 1), where Cn+1 and Bn+1 are symmetric

(n+ 1)× (n+ 1) matrices.

By analogy every other product of two linear (in ε) forms can be written as a

quadratic form ε′Bε with some symmetric matrix B and we can use the expression

E[ε′Cεε′Bε] = 2 tr (CΣBΣ) + tr (CΣ) tr (BΣ)

which holds (see Štulajter (1989)) for every random vector ε which is N(0,Σ)

distributed.

It remains to express E[ρ(Mε)n]2 as

E[ρ(Mε)n]2
.
= ABS(ρ)E[(Mε)2

n] + 2ABS(ρ)E[QUAD(ρ)(Mε)2
n]

and to compute the expectations by the same manner as before.

Thus we are able to write an approximate expression for the mean square error

E[X̃(n + 1) − X(n + 1)]2 for the case when the AR(1) process is Gaussian. A

closed form of this expression is rather complicated and we’ll not write it.

Since θ̃ is a good approximation for θ̂ (see Štulajter (1992)) E[
ˆ̂
X(n+1)−X(n+

1)]2 can be well approximated by the same expression as E[X̃(n+ 1)−X(n+ 1)]2.

Remark. The approach described can be used also for covariance functions

which we get after a reparametrization of AR(1) model. For example if the errors

have covariance function Rθ(t) = σ2e−αt then the predictor given by (8) can

be regarded as one in which the residual correction term is based only on the
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last observation. In this case R(1)/R(0) = e−α , where α is the only unknown

parameter. This parameter can be estimated from R̂ = (R̂(0), . . . , R̂(m))′ using

the nonlinear regression model

R̂ = Rθ + (R̂−Rθ)

where Rθ = (Rθ(0), . . . , Rθ(m))′ and m is a number, m < n. The problem of

choosing m is open (usually m ≤ n/2). The approximation α̃ for for α is given by

(13) and and R̂(1)/R̂(0) = e−α̂ can be approximated using α̃ and the Taylor series

axpansion of the function e−t at the point α, the true value of the parameter.
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