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ON THE NUMBER OF CYCLES IN k–CONNECTED GRAPHS

M. KNOR

Abstract. We give estimations for the minimum number of cycles in three special
subclasses of the class of k-connected graphs.

1. Introduction

A collection of cycles (i.e., connected two-regular graphs) is said to be distin-

guishable if their vertex sets are pairwise distinct. As conjectured by Komlós, each

graph with the minimum degree δ contains at least 2δ+1−
(
δ+1

2

)
−δ−2 distinguish-

able cycles, i.e., the worst case is given by the complete graph Kδ+1. In [4] Tuza

proved the following theorem:

Theorem A. Each graph with the minimum degree δ ≥ 3 contains more than

2δ/2 distinguishable cycles.

Although the number of cycles is exponential in δ this gives no information on

whether or not it is also exponential in the number n of vertices of the graph.

Since the latter parameter is important when measuring input size in algorithmic

complexity questions, it could be interesting to describe classes of graphs whose

total number of cycles is bounded above by a polynomial in n.

Let G be a graph, G = (V (G), E(G)), such that V (G) = {ai, bi : 1 ≤ i ≤ n
2 }

and E(G) = {aibi, biai+1, aiai+1 : 1 ≤ i ≤ n
2 } (the addition is modulo n

2 ). Then G

has at least 2n/2 cycles (each of them traverses all ai and a prescribed subset of bi).

Thus, already in outerplanar graphs the number of cycles may be exponential in

the number of vertices.

Let c(G) denote the number of cycles in G and let Γ be a class of graphs. As

shown above, the function Cn(Γ) = max{c(G) : G ∈ Γ and |V (G)| = n} seems to

be exponential in non-trivial cases. However, we show that cn(Γ) = min{c(G) :

G ∈ Γ and |V (G)| = n} may be polynomial even if the graphs in Γ have large

connectivity and large minimum degree.

We consider the following three classes of graphs: Γk is the class of k-connected

graphs; Γk,δ denotes the class of k-connected graphs with minimum degree at
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least δ; and by Γk,δ,∆ we denote the class of k-connected graphs with minimum

degree at least δ and maximum degree at most ∆. In this paper we give polynomial

upper bounds on cn(Γk) and cn(Γk,δ), k < δ, and lower bounds on cn(Γk,δ) and

cn(Γk,δ,∆) for some values of k, δ, and ∆.

2. Preliminaries and Upper Bounds

All graphs considered in this paper are finite, without loops or multiple edges.

Let G be a graph. Then V (G) denotes the vertex set of G and E(G) the edge set

of G. By n we always denote the number of vertices in G. The distance between

two vertices u and v in G is denoted by dG(u, v); the complement of G is denoted

by G.

As usual, a graph G is said to be k-connected if and only if G has at least k+1

vertices and any two distinct vertices u, v are connected by at least k uv-paths

that are pairwise disjoint, except for the vertices u and v. Using Menger’s theorem

(see e.g. [1, Section 9.2]) one can obtain the following statement that is often used

throughout this paper: A graph G is k-connected if and only if G has at least k+1

vertices and each two sets X,Y ⊆ V (G), |X| ≥ k and |Y | ≥ k, are connected by

at least k XY -paths that are pairwise disjoint. Note that the sets X and Y are

not necessarily disjoint, and hence, some paths may have length 0.

We focus on the asymptotic behavior of cn(Γ). Let f(x) and g(x) be nonnegative

functions. We write f(x) = O(g(x)) and g(x) = Ω(f(x)) if and only if there

are numbers c and x0 such that f(x) ≤ c·g(x) for every x ≥ x0. Moreover, if

f(x) = O(g(x)) and f(x) = Ω(g(x)), we write f(x) = Θ(g(x)).

Definitions and notations not included here can be found in [2].

In what follows we give upper bounds on cn(Γk) and cn(Γk,δ) (by constructions).

Proposition 1. cn(Γ0) = cn(Γ1) = 0; cn(Γ2) = 1; cn(Γ3) = O(n2); and

cn(Γk) = O(nk) if k ≥ 4.

Proof. Discrete graphs and trees give cn(Γk) = 0 if k ≤ 1, and single cycles give

cn(Γ2) ≤ 1. Since each 2-connected graph contains a cycle, we have cn(Γ2) = 1.

Joining a vertex w to all vertices of a cycle on n−1 vertices we obtain a

wheel Wn. The Wn has just one cycle that does not pass through the vertex w, and

2
(
n−1

2

)
cycles that contain w. Since Wn is 3-connected, we have cn(Γ3) = O(n2).

The complete bipartite graph Kk,n−k on n vertices belongs to Γk if n ≥ 2k.

Since in Kk,n−k there are at most
∑k
i=2

(
k
i

)(
n−k
i

)
different vertex sets of cycles,

the Kk,n−k contains at most
∑k
i=2

(
k
i

)(
n−k
i

) (2i−1)!
2 = O(nk) cycles if k ≥ 2. Thus,

cn(Γk) = O(nk) if k ≥ 4. �

The graphs in the proof of Proposition 1 have the smallest possible minimum

degree. One can expect that in k-connected graphs with greater minimum degree,
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Γk,δ, there are much more cycles. In the next section we show that this is true if

k ≤ 3 (see Corollary 10). However, first we give an upper bound for cn(Γk,δ):

Proposition 2. We have cn(Γk,δ) = O(n) if k ≤ 1 and δ ≥ 3; and cn(Γk,δ) =

O(nk) if k ≥ 2 and δ > k.

Proof. Let G1
m consist of m > δ copies of the complete graph Kδ+1−k, and let

G2
m consist of k isolated vertices. Let Gm consist of G1

m, G2
m, and the edges u1u2,

u1 ∈ V (G1
m) and u2 ∈ V (G2

m). Clearly, Gm ∈ Γk,δ .

Since c(Kt) =
∑t
i=3

(
t
i

)
i!
2i < 2t!, there are at most 2m(δ+1−k)! cycles in Gm

that contain no vertex of G2
m. Further, Kt contains exactly

∑t
i=1

(
t
i

)
i! labelled

paths. Note that
∑t
i=1

(
t
i

)
i! = t!

∑t
i=1

1
(t−i)! < t!

∑∞
i=0

1
i! = et!. Hence, there are

at most
(
m
i

)
e(δ+1−k)!

(
k
i

) (2i)!
2i cycles in Gm that contain exactly i vertices of G2

m.

Since m = n−k
δ+1−k , we have c(Gm) < 2m(δ+1−k)! +

∑k
i=1

(
m
i

)
e(δ+1−k)!

(
k
i

) (2i)!
2i <

3(δ+1−k)!( n−k
δ+1−k +

∑k
i=1

( n−k
δ+1−k
i

)(
k
i

) (2i)!
2i ). Thus, cn(Γ0,δ) = O(n), and cn(Γk,δ) =

O(nk) if k ≥ 1. �

3. Lower Bounds

In this section we give some lower bounds on cn(Γ) using k-minimal subgraphs.

Since Γk,δ ⊇ Γk,δ+1 and Γk,δ,∆ ⊇ Γk,δ+1,∆ if k ≤ δ < ∆, we have cn(Γk,δ) ≤
cn(Γk,δ+1) and cn(Γk,δ,∆) ≤ cn(Γk,δ+1,∆). Hence, it is enough to give “good” lower

bounds for “small” values of δ.

Proposition 3. Let k ≤ 1. Then cn(Γk,3) = Ω(n).

Proof. Let G ∈ Γk,3, k ≤ 1, and let H be a subgraph of G with maximum

number of edges containing no cycle. Clearly, |E(H)| ≤ n−1.

Let e ∈ E(G)−E(H). Then there is exactly one cycle in H ∪ e containing e.

Since there are at least 3n
2 − (n−1) > n

2 edges in E(G)−E(H), we have cn(Γk,δ) =

Ω(n). �

In what follows we utilize the simple idea of the previous proof.

A graph H is called k-minimal if H is k-connected, but loses this property

after the deletion of any edge (see [3]). We remark that each k-connected graph

always contains a k-minimal spanning subgraph. In [3] Mader proved the following

lemma:

Lemma 4. Each k-minimal graph on n vertices contains at least k−1
2k−1n vertices

of degree k.

Before an analogue of Proposition 3 will be given for higher connectivities, we

need to prove two auxiliary results:
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Lemma 5. Let H ∈ Γ2 and e1, e2 ∈ E(H). Then H ∪{e1, e2} contains a cycle

passing through e1 and e2.

Proof. Let ei = uivi, 1 ≤ i ≤ 2. Since H is 2-connected, there are two disjoint

paths (possibly of length 0) connecting the vertex sets {v1, u1} and {v2, u2} in H.

Thus, there is a cycle in H ∪ {e1, e2} containing e1 and e2. �
Lemma 6. Let H ∈ Γ3, and let e1, e2, e3 ∈ E(H) be edges that do not form

a claw (i.e., the complete bipartite graph K1,3). Then H ∪ {e1, e2, e3} contains a

cycle passing through e1, e2, and e3.

Proof. Let ei = uivi, 1 ≤ i ≤ 3, be edges that do not form a claw. We

distinguish two cases:

1. Suppose that u1 = u2. Then u3, v3 ∈ V (H)−u1, since e1, e2, and e3 do not

form a claw. Moreover, H−u1 is 2-connected (by Menger’s theorem). Hence, there

are two disjoint paths (possibly of length 0) connecting the vertex sets {v1, v2} and

{u3, v3} in H−u1. Thus, there is a cycle in H∪{e1, e2, e3} containing e1, e2, and e3.

2. Suppose that the six nodes ui, vi, 1 ≤ i ≤ 3, are distinct. Let S1 =

{u1, v1, u3} and S2 = {u2, v2, v3}. Since H is 3-connected, there are three pair-

wise disjoint paths, say P1, P2, and P3, connecting S1 with S2, see Fig. 1. If

F = ∪3
i=1(Pi ∪ ei) forms a cycle, we are done. Otherwise, F consists of two dis-

joint cycles C1 = P1 ∪ e1 ∪ P2 ∪ e2 and C2 = P3 ∪ e3. Let S′1 = V (C1) and

S′2 = V (C2). Clearly, |S′1| ≥ 3 and |S′2| ≥ 3. Since H is 3-connected, there are

at least three pairwise disjoint paths, say R1, R2, and R3, connecting S′1 with S′2.

Obviously, at least two of them, say R1 and R2, connect P3 with Pj for some j,

1 ≤ j ≤ 2. Then F ∪ R1 ∪ R2 contains a cycle passing through the ei, 1 ≤ i ≤ 3,

see Fig. 1. �

Figure 1.

Theorem 7. cn(Γ2,3) = Ω(n2).

Proof. Let G ∈ Γ2,3, and let H be a spanning subgraph of G that is 2-minimal.

Then |E(G)−E(H)| ≥ 1
6n, since H contains at least 1

3n vertices of degree 2, by

Lemma 4.
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By Lemma 5 for each pair of edges e1, e2 ∈ E(G)−E(H) there is a cycle in

H ∪{e1, e2} containing e1 and e2. Since different pairs of edges from E(G)−E(H)

give different cycles in G, we have c(G) ≥
(
n/6
2

)
. Thus cn(Γ2,3) = Ω(n2). �

Since the minimum degree of each 3-connected graph is at least three, the

following corollary is implied by Proposition 1 and Theorem 7:

Corollary 8. For Γ3 it is cn(Γ3) = Θ(n2).

Clearly cn(Γ3,4) = Ω(n2), since Γ3,4 ⊆ Γ3. However, for 3-connected graphs

with minimum degree at least 5 we have the following theorem:

Theorem 9. cn(Γ3,5) = Ω(n3).

Proof. Let G ∈ Γ3,5, and let H be a spanning subgraph of G that is 3-minimal.

Then |E(G)−E(H)| ≥ 2
5n, since H contains at least 2

5n vertices of degree 3, by

Lemma 4.

Let e1 and e2 be two edges from E(G)−E(H). Then there are at least 2n
5 − 4

vertices of degree 3 in H that are not endvertices of e1 or e2. Since minimum

degree in G is at least 5, each one of the 2n
5 − 4 vertices belongs to an edge from

E(G)−E(H) that does not form a claw with e1 and e2. Since there are at least(
2n/5

2

)
pairs of edges in E(G)−E(H), there are at least 1

3

(
2n/5

2

)
(2n

5 − 4) = Ω(n3)

triples of edges in E(G)−E(H) that do not form a claw.

By Lemma 6 for each triple of edges e1, e2, e3 ∈ E(G)−E(H) that do not

form a claw there is a cycle in H ∪ {e1, e2, e3} containing e1, e2, and e3, so that

cn(Γ3,5) = Ω(n3). �

The following corollary summarizes our results concerning cn(Γk,δ):

Corollary 10. cn(Γk,δ) = Θ(n) if k ≤ 1 and δ ≥ 3; cn(Γ2,δ) = Θ(n2) if δ ≥ 3;

and cn(Γ3,δ) = Θ(n3) if δ ≥ 5.

Although we are not able to give the expected lower bound for cn(Γ3,4), sur-

prisingly, we have such bound for cn(Γ3,4,∆). (One can expect that if large degrees

are allowed, then more cycles will appear. But in fact cn(Γk,δ) ≤ cn(Γk,δ,∆), since

Γk,δ ⊇ Γk,δ,∆ if k ≤ δ ≤ ∆.)

Theorem 11. We have cn(Γ3,4,∆) = Ω(n3) for any fixed ∆ ≥ 4.

Proof. Let G ∈ Γ3,4,∆, and letH be a spanning subgraph of G that is 3-minimal.

Then |E(G)−E(H)| ≥ 1
5n, by Lemma 4.

Since the maximum degree in G is at most ∆, there are at least 1
6

1
5n(1

5n −
2∆)(1

5n − 4∆) = Ω(n3) triples of non-adjacent edges in E(G)−E(H). Thus,

cn(Γ3,4,∆) = Ω(n3) by Lemma 6, as non-adjacent edges do not form a claw. �

We conclude this section with a theorem that generalizes Theorem 11 for higher

connectivities:
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Theorem 12. Let l be the largest integer such that l ≤
√
k−1, k ≥ 4. Then

cn(Γk,k+1,∆) = Ω(n2l) for any fixed ∆ ≥ k + 1.

Proof. Let G ∈ Γk,k+1,∆, and let H be a spanning subgraph of G that is

k-minimal. By Lemma 4 |E(G)−E(H)| ≥ k−1
2k−1

n
2 ≥

n
6 , since k ≥ 2.

Let ei = uivi, 1 ≤ i ≤ 2l, be edges from E(G)−E(H), such that dG(ei, ej) ≥
k−2

2 for each i 6= j. (By dG(ei, ej) we mean min{dG(x, y) : x ∈ {ui, vi} and y ∈
{uj, vj}}.) We show that there is a cycle in H∗ = H ∪{ei : 1 ≤ i ≤ 2l} containing

the edges ei, 1 ≤ i ≤ 2l.

Let S1 = {ui, vi : 1 ≤ i ≤ l} and S2 = {ui, vi : l+1 ≤ i ≤ 2l}. Then

|S1| = |S2| = 2l. Since H is k-connected and k ≥ 2l, there are 2l pairwise disjoint

paths, say P1, . . . , P2l, connecting the vertices from S1 to the vertices in S2. The

paths Pi together with the edges ei, 1 ≤ i ≤ 2l, form a collection of m pairwise

disjoint cycles, say C1, . . . , Cm, in H∗. If m = 1, we are done. Suppose that

m ≥ 2. Moreover, suppose that there is no collection of m−1 pairwise disjoint

cycles containing the edges ei, 1 ≤ i ≤ 2l, in H∗.

Let S′1 = V (C1) and S′2 = V (C2) ∪ · · · ∪ V (Cm). Since dG(ei, ej) ≥
k−2

2 if

i 6= j, we have |S′1| ≥ k and |S′2| ≥ k. Since H is k-connected, there are k pairwise

disjoint paths, say P ′1, . . . , P
′
k, connecting the vertices from S′1 to the vertices in

S′2. Note that k ≥ l2 + 1 as l ≤
√
k−1. Suppose that C1 contains p paths among

P1, . . . , P2l. Since p(2l−p) ≤ l2 < k, there are at least two paths among P ′1, . . . , P
′
k,

say P ′1 and P ′2, that connect two distinct vertices from Pi1 in S′1 to two distinct

vertices in Pi2 in S′2, for some i1 and i2. Assume that Pi2 is contained in C2. Then

C1 ∪C2 ∪P ′1 ∪P
′
2 contains a cycle C′, passing through all those edges ei that have

been in C1 and C2. Hence, there is a collection C′, C3, . . . , Cm of m−1 pairwise

disjoint cycles containing the edges ei, 1 ≤ i ≤ 2l, a contradiction.

Finally, we show that there is “many” 2l-tuples of edges e1, . . . , e2l in

E(G)−E(H), such that dG(ei, ej) ≥ k−1 whenever i 6= j. (Clearly, k−1 ≥ k−2
2 .)

Let e ∈ E(G)−E(H). Then there are at most 2∆ edges in G at distance 0

from e; 2∆(∆−1) edges in G at distance 1 from e; etc. Thus, there are at most

2∆
∑k−1
j=0 (∆−1)j = 2∆ (∆−1)k−1

∆−2 ≤ 4∆k edges in G at distance at most k−1 from e.

Since E(G)−E(H) ≥ n
6 , there are at least 1

(2l)!
n
6 (n6 − 4∆k)(n6 − 2·4∆k) . . . (n6 −

(2l−1)4∆k) = Ω(n2l) required 2l-tuples of edges in E(G)−E(H). �

4. Concluding Remarks

We remark that Theorems 7, 9, 11, and 12 can be slightly improved. Namely,

the class Γk,δ (Γk,δ,∆) can be replaced by the class of k-connected graphs in which

each graph contains at least c · n vertices with degree at least δ (and maximum

degree at most ∆), c > k
2k−1 . Analogously Proposition 3 can be improved.

Further, classes of graphs can be constructed such that cn(Γk,δ,δ) = O(nk) if

k = 1, 2 and δ ≥ 3. However, no polynomial upper bound for cn(Γk,δ,δ) seems to
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be known if k ≥ 3. Moreover, we know no polynomial upper bound for cn(Γk,δ,∆)

if k ≥ 3 and ∆ ≥ k + 1. (Note that the graphs in the proof of Proposition 2 have

not bounded maximum degree.) We conjecture that cn(Γk,δ,∆) = Θ(nk) if k > 2

and k < δ < ∆.
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