WEAK ISOMETRIES IN PARTIALLY ORDERED GROUPS

M. JASEM

Abstract

In this paper the author gives necessary and sufficient conditions under which to a stable weak isometry f in a directed group G there exists a direct decomposition $G=A \times B$ of G such that $f(x)=x(A)-x(B)$ for each $x \in G$. Further, some results on weak isometries in partially ordered groups are established.

Isometries in an abelian lattice ordered group (l-group) have been introduced and investigated by Swamy [16], [17]. Jakubík [4] proved that for every stable isometry f in an l-group G there exists a direct decomposition $G=A \times B$ of G such that $f(x)=x(A)-x(B)$ for each $x \in G$. Isometries in non-abelian l-groups were also studied in [2] and [5]. Weak isometries in l-groups were introduced by Jakubík [6]. Rachůnek [14] generalized the notion of the isometry for any partially ordered group (po-group). Isometries and weak isometries in some types of pogroups have been investigated in $[\mathbf{7}],[\mathbf{8}],[\mathbf{9}],[\mathbf{1 0}],[\mathbf{1 2}],[\mathbf{1 3}],[\mathbf{1 4}]$. In $[\mathbf{1 1}]$ it was proved that each stable weak isometry in a directed group is an involutory group automorphism (hence each weak isometry in a directed group is an isometry).

First we recall some notions and notations used in the paper.
Let G be a po-group. The group operation will be written additively. We denote $G^{+}=\{x \in G ; x \geq 0\}$. If a, b are elements of G, then we denote by $U(a, b)$ and $L(a, b)$ the set of all upper bounds and the set of all lower bounds of the set $\{a, b\}$ in G, respectively. If for $a, b \in G$ there exists the least upper bound (greatest lower bound) of the set $\{a, b\}$ in G, then it will be denoted by $a \vee b(a \wedge b)$. For each $a \in G,|a|=U(a,-a)$.

A partially ordered semigroup (po-semigroup) P with a neutral element is said to be the direct product of its po-subsemigroups P_{1} and P_{2} (notation: $P=P_{1} \times P_{2}$) if the following conditions are fulfilled:
(1) If $a \in P_{1}, b \in P_{2}$, then $a+b=b+a$.
(2) Each element $c \in P$ can be uniquely represented in the form $c=c_{1}+c_{2}$ where $c_{1} \in P_{1}, c_{2} \in P_{2}$.
(3) If $g, h \in P, g=g_{1}+g_{2}, h=h_{1}+h_{2}$ where $g_{1}, h_{1} \in P_{1}, g_{2}, h_{2} \in P_{2}$, then $g \leq h$ if and only if $g_{1} \leq h_{1}, g_{2} \leq h_{2}$.

[^0]In this case it is also spoken about the direct decomposition of the po-semigroup P.

The direct decomposition of a po-group is defined analogously.
If $G=P \times Q$ is a direct decomposition of a po-group G, then for $x \in G$ we denote by $x(P)$ and $x(Q)$ the components of x in the direct factors P and Q, respectively. Analogous denotation of components is also applied for the direct decomposition of the semigroup G^{+}.

If G is a po-group, then a mapping $f: G \rightarrow G$ is called a weak isometry if $|f(x)-f(y)|=|x-y|$ for each $x, y \in G$. A weak isometry f is called a stable weak isometry if $f(0)=0$. A weak isometry f is called an isometry if f is a bijection.

A po-group G is called directed if $U(x, y) \neq \emptyset$ and $L(x, y) \neq \emptyset$ for each $x, y \in G$.
In $[\mathbf{1 2}]$ and $[\mathbf{1 3}]$ the above mentioned Jakubík's result concerning stable isometries and directed decompositions of l-groups was extended to Riesz and distributive multilattice groups.

The following example shows that this result cannot be extended to all directed groups.

Example. Let G be the additive group of all complex numbers $x+i y$ such that x and y are integers. An element $z=x+i y \in G$ is positive if and only if $y \geq x$ and $y \geq-x$. Then G is an abelian non-distributive multilattice group. If we put $f(x+i y)=y+i x$ for each $x+i y \in G$, then f is a stable weak isometry in G. If there exists a direct decomposition $G=A \times B$ of G such that $f(z)=z(A)-z(B)$ for each $z \in G$ then $z+f(z)=2 z(A)$ for each $z \in G$. For the element $a=1$ we have $a+f(a)=1+i$, but there does not exist an element b in G such that $a+f(a)=2 b$. Hence there does not exist the above mentioned direct decomposition of G.

Now we are going to establish necessary and sufficient conditions under which to a stable weak isometry f in a directed group G there exists a direct decomposition $G=A \times B$ of G such that $f(x)=x(A)-x(B)$ for each $x \in G$.

First we establish the following theorem.

1. Theorem. Let f be a stable weak isometry in a po-group $G, A_{1}=\{x \in$ $\left.G^{+}, f(x)=x\right\}, B_{1}=\left\{x \in G^{+}, f(x)=-x\right\}$. Then the following conditions are equivalent:
(i) For each $x \in G^{+}$there exists the least upper bound of the set $\{0, f(x)\}$ in G^{+}.
(ii) For each $x \in G^{+}$, there exists $x_{1} \in G^{+}$such that $0 \leq x_{1} \leq x, f(x) \leq$ $x_{1} \leq f(x)+x$.
(iii) G^{+}is the direct product of the po-semigroup A_{1} and the commutative po-semigroup B_{1} and $f(x)=x\left(A_{1}\right)-x\left(B_{1}\right)$ for each $x \in G^{+}$.

Proof. (i) \Longrightarrow (ii). Let $x \in G^{+}$and let $x_{1}=0 \vee f(x)$. From $|x|=|f(x)|$ we get $x \geq f(x) \geq-x$. Thus $0 \leq x_{1} \leq x$. Further, we have $-x \leq 0 \wedge f(x)$. Hence $-f(x) \vee 0=-(f(x) \wedge 0) \leq x$. This implies $0 \vee f(x) \leq f(x)+x$. Therefore $f(x) \leq x_{1} \leq f(x)+x$.
(ii) \Longrightarrow (iii). Let $x \in G^{+}$and let $0 \leq x_{1} \leq x . f(x) \leq x_{1} \leq f(x)+x$ for some $x_{1} \in G^{+}$. From $|x|=|f(x)|$ we get $x=-f(x) \vee f(x)$. Let $x_{2}=x-x_{1}$. Then $x=x_{2}+x_{1}, x \geq x_{2} \geq 0$. Since $x_{1} \leq f(x)+x$, we have $-f(x) \leq x_{2}$. Hence $x_{1} \in U(0, f(x)), x_{2} \in U(0,-f(x))$. Let $t \in U(0, f(x))$. Then $x_{2}+t \in$ $U(f(x),-f(x))=|f(x)|=|x|=U\left(x_{2}+x_{1}\right)$. This implies $t \geq x_{1}$. Therefore $x_{1}=f(x) \vee 0$. Analogously we can show that $x_{2}=-f(x) \vee 0$.

Let $z \in U\left(x_{1}, x_{2}\right)$. Then $z \in U(f(x),-f(x))=|f(x)|=|x|=U(x)$. Since $x \in U\left(x_{1}, x_{2}\right)$, we have $x=x_{1} \vee x_{2}$. Then clearly $x_{1} \wedge x_{2}=0$ and $x_{1}+x_{2}=x_{2}+x_{1}$.

Since $-x_{2}=f(x) \wedge 0, f(x)=f(x) \vee 0+f(x) \wedge 0$, we have $f(x)=x_{1}-x_{2}$. From $\left|x_{1}\right|=\left|f\left(x_{1}\right)\right|$ we obtain $x_{1} \geq f\left(x_{1}\right), x_{1} \geq-f\left(x_{1}\right)$. Then $f\left(x_{1}\right)+x_{2} \geq-x_{1}+x_{2}=$ $x_{2}-x_{1}=-f(x)$. From $\left|x_{2}\right|=\left|x-x_{1}\right|=\left|f(x)-f\left(x_{1}\right)\right|=\left|x_{1}-x_{2}-f\left(x_{1}\right)\right|$ we get $x_{2} \geq x_{1}-x_{2}-f\left(x_{1}\right)$. This implies $f\left(x_{1}\right)+x_{2} \geq-x_{2}+x_{1}=x_{1}-x_{2}=f(x)$. Hence $f\left(x_{1}\right)+x_{2} \geq-f(x) \vee f(x)=x=x_{1}+x_{2}$. This yields $f\left(x_{1}\right) \geq x_{1}$. Therefore $f\left(x_{1}\right)=x_{1}$.

From $\left|x_{2}\right|=\left|f\left(x_{2}\right)\right|$ we have $x_{2} \geq f\left(x_{2}\right), x_{2} \geq-f\left(x_{2}\right)$. Then $-f\left(x_{2}\right)+x_{1} \geq$ $-x_{2}+x_{1}=x_{1}-x_{2}=f(x)$. From $\left|x_{1}\right|=\left|x-x_{2}\right|=\left|f(x)-f\left(x_{2}\right)\right|$ we obtain $x_{1} \geq f\left(x_{2}\right)-f(x)$. Thus $-f\left(x_{2}\right)+x_{1} \geq-f(x)$. Hence $-f\left(x_{2}\right)+x_{1} \geq x=x_{2}+x_{1}$. This implies $-f\left(x_{2}\right) \geq x_{2}$. Therefore $f\left(x_{2}\right)=-x_{2}$.

Thus $x=x_{1}+x_{2}$, where $x_{1} \in A_{1}, x_{2} \in B_{1}$. By Lemmas 1.8 and 1.9 [$\left.\mathbf{1 3}\right]$, A_{1} is a semigroup and B_{1} is a commutative semigroup. Let $x=a+b$, where $a \in A_{1}, b \in B_{1}$. From Theorem $1.13[\mathbf{1 3}]$ it follows that $f(a+b)=a-b$. Then $b \in U(0,-f(x))$. Hence $b \geq x_{2}$. Since $a+b=x_{1}+x_{2}, a-b=x_{1}-x_{2}$, we obtain $x_{2}-b=-x_{2}+b \geq 0$. Therefore $x_{2}=b$. Then $x_{1}=a$. From this also follows that $c+d=d+c$ for each $c \in A_{1}, d \in B_{1}$.

Let $u, v \in G^{+}, u \leq v$. Let $u=u_{1}+u_{2}, v=v_{1}+v_{2}, v-u=(v-u)_{1}+(v-u)_{2}$ where $u_{1}, v_{1},(u-v)_{1} \in A_{1}, u_{2}, v_{2},(u-v)_{2} \in B_{1}$. From $v-u=v_{1}+v_{2}-u_{2}-u_{1}$ we get $(v-u)_{1}+u_{1}+(v-u)_{2}+u_{2}=v_{1}+v_{2}$. Then we have $v_{1}-u_{1}=(v-u)_{1} \geq 0$, $v_{2}-u_{2}=(v-u)_{2} \geq 0$. Hence $v_{1} \geq u_{1}, v_{2} \geq u_{2}$. Therefore G^{+}is the direct product of partially ordered semigroups A_{1} and B_{1}.
(iii) \Longrightarrow (i). Let G^{+}be the direct product of the po-semigroup A_{1} and the commutative po-semigroup B_{1} and $f(z)=z\left(A_{1}\right)-z\left(B_{1}\right)$ for each $z \in G^{+}$. Let $x \in G^{+}$. Then $x\left(A_{1}\right) \in U(0, f(x))$. Let $y \geq 0, y \geq f(x)$. Thus $y\left(B_{1}\right) \geq 0$ $y\left(A_{1}\right)+y\left(B_{1}\right)+x\left(B_{1}\right) \geq x\left(A_{1}\right)$. Since $G^{+}=A_{1} \times B_{1}$, from the last inequality we get $y\left(A_{1}\right) \geq x\left(A_{1}\right)$ Then $y=y\left(A_{1}\right)+y\left(B_{1}\right) \geq x\left(A_{1}\right)$. Therefore $x\left(A_{1}\right)=0 \vee f(x)$. \square
2. Theorem. Let f be a stable isometry in a directed group G. Let $A_{1}=\{x \in$ $\left.G^{+}, f(x)=x\right\}, B_{1}=\left\{x \in G^{+}, f(x)=-x\right\}, A=A_{1}-A_{1}, B=B_{1}-B_{1}$. Then the following conditions are equivalent:
(i) For each $x \in G^{+}$there exists the least upper bound of $\{0, f(x)\}$ in G^{+}.
(ii) For each $x \in G^{+}$there exists $x_{1} \in G^{+}$such that $0 \leq x_{1} \leq x, f(x) \leq x_{1} \leq$ $f(x)+x$.
(iii) G is the direct product of the po-group A and the abelian po-group B and $f(z)=z(A)-z(B)$ for each $z \in G$.

Proof. In view of 1 it suffices to verify that (ii) implies (iii) and (iii) implies (i).
(ii) \Longrightarrow (iii). In $[\mathbf{1 3}]$ it was proved that A is a group, $A^{+}=A_{1}$ [Lemma 1.8], B is an abelian group, $B^{+}=B_{1}[$ Lemma 1.9] and $f(a+b)=a-b$ for each $a \in A$, $b \in B$ [Theorem 1.13]. By $1, G^{+}=A_{1} \times B_{1}$. Then from Theorem $2.3[\mathbf{3}]$ it follows that $G=A \times B$.
(iii) \Longrightarrow (i). Since $A^{+}=A_{1}$ and $B^{+}=B_{1}$, we get $G^{+}=A_{1} \times B_{1}$. Then the desired result follows from 1.
3. Theorem. Let G be a directed group. Let for each $x \in G^{+}$there exists $y \in G^{+}$such that $x=2 y$. Then for each stable isometry f in G there exists a direct decomposition $G=A \times B$ of G with B abelian such that $f(z)=z(A)-z(B)$ for each $z \in G$.

Proof. Let $x \in G^{+}$. Let $y \in G^{+}$such that $x=2 y$. From Theorem 1 [11] it follows that $y+f(y)=0 \vee f(x)$. Then the required statement follows from 2 .

Throughout the rest of this paper let f be a stable weak isometry in a po-group G and let S be the subgroup of G generated by G^{+}. It is clear that S is a directed convex subgroup of G^{+}. In [15] Shimbireva proved that S is a normal subgroup of G.
4. Theorem. (i) $f(x+y)=f(x)+f(y)$ for each $x, y \in S$.
(ii) $f^{2}(x)=x$ for each $x \in S$.
(iii) $f(S)=S$.

Proof. The proof of (i) and (ii) is the same as the proof of analogous propositions in Theorem 3 [$\mathbf{1 1}]$ concerning directed groups.
(iii) Let $x \in S$. Then $x=a-b$ for some $a, b \in G^{+}$. By (i), $f(x)=f(a)-f(b)$. Since $a, b \in G^{+}$, from the relations $|a|=|f(a)|,|b|=|f(b)|$ we get $a \geq f(a)$, $b \geq-f(b)$. Hence $a+b \geq f(a)-f(b)=f(x), a+b \geq 0$. Then $f(x)=(a+b)-$ $[-f(x)+(a+b)] \in S$. In view of (ii) we have $f(S)=S$.
5. Corollary. Restriction of a stable weak isometry f in a po-group G to the subgroup S is an involutory group automorphism.

Proof. It is easy to see that each stable weak isometry in G is an injection. Then 4 ends the proof.
6. Theorem. Let $x \in G^{+}$. Then
(i) $f([0, x]) \subseteq[-x, x] \cap[-x+f(x), x+f(x)]$,
(ii) if there exists the least upper bound of the set $\{0, f(x)\}$ in G, then $f([0, x]) \subseteq[0 \wedge f(x), 0 \vee f(x)]$.

Proof. (i) Let $y \in[0, x]$. From $|x-y|=|f(x)-f(y)|$ we get $x-y \geq f(y)-f(x)$, $x-y \geq f(x)-f(y)$. Then $f(x)-f(y)+x \geq y \geq 0, f(y)-f(x)+x \geq y \geq 0$. Hence $x+f(x) \geq f(y) \geq-x+f(x)$. Since $x \in|y|=|f(y)|$, we have $x \geq f(y) \geq-x$.
(ii) From the assumption it follows that there exist $0 \wedge f(x)$ and $0 \vee-f(x)$ in G, too. From $|x|=|f(x)|$ we have $x=-f(x) \vee f(x)$. Then $[0 \wedge f(x)]+[0 \vee-f(x)]=$ $0 \vee[f(x) \vee-f(x)]=0 \vee x=x$. This implies $0 \vee f(x)=x-[0 \vee-f(x)]=x+[0 \wedge$ $f(x)]=x \wedge(x+f(x)), 0 \wedge f(x)=-[0 \vee-f(x)]=-x+[0 \vee f(x)]=-x \vee[-x+f(x)]$. Then (i) ends the proof.
7. Theorem. Let $x \in G^{+}$. Then
(i) $[-x, x] \cap[-x+f(x), x+f(x)] \subseteq f([0, x])$,
(ii) if there exists the least upper bound of the set $\{0, f(x)\}$ in G, then $[0 \wedge$ $f(x), 0 \vee f(x)] \subseteq f([0, x])$.

Proof. (i) Let $z \in G$ such that $-x \leq z \leq x,-x+f(x) \leq z \leq x+f(x)$. Then $0 \leq z+x \leq 2 x, 0 \leq z-f(x)+x \leq 2 x$. According to $4, f(x) \in S$. By Theorem $1[\mathbf{1 1}], x+f(x)=0 \vee f(2 x),-x+f(x)=0 \wedge f(2 x)$. Since $x, f(x), z$ are elements of S, from 4 and 6 (ii) we get $f(z)+f(x)=f(z+x) \leq x+f(x)$, $f(z)-x+f(x)=f(z-x+f(x)) \geq-x+f(x)$. Thus $0 \leq f(z) \leq x$. In view of 4 we have $f^{2}(z)=z \in f([0, x])$.
(ii) By the same way as in the proof of 6 (ii) we can prove that $0 \vee f(x)=$ $x \wedge[x+f(x)], 0 \wedge f(x)=-x \vee[-x+f(x)]$. Then (i) completes the proof.

From 6 and 7 we immediately obtain
8. Theorem. Let $x \in G^{+}$. Then
(i) $f([0, x])=[-x, x] \cap[-x+f(x), x+f(x)]$,
(ii) if there exists the least upper bound of the set $\{0, f(x)\}$ in G, then $f([0, x])=[0 \wedge f(x), 0 \vee f(x)]$.

If C is a normal convex subgroup of a po-group H then the factor group H / C can be partially ordered by the induced order. See [1, p. 20].
9. Theorem. The factor group G / S of a po-group G with respect to S is trivially ordered with regard to induced order.

Proof. Let $S+a \leq S+b$ for some $a, b \in G$. Then there exist $h, g \in S$ such that $h+a \leq g+b$. This yields $0 \leq-h+g+b-a$. Thus $-h+g+b-a \in S$ and hence $b-a \in S$. This implies that $b=(b-a)+a \in S+a$. Therefore $S+a=S+b$.
10. Theorem. Let $a \in G$. Then $f(x)=\bar{h}(x-a)+f(a)$ for each $x \in S+a$, where \bar{h} is a stable weak isometry in S.

Proof. Let $h(z)=f(z+a)-f(a)$ for each $z \in G$. Then h is a stable weak isometry in G. By $4, h(S)=S$. Thus the restriction \bar{h} of h to S is a stable weak isometry in S. Let $x \in S+a$. Hence $x=y+a$ for some $y \in S$. Then $\bar{h}(y)=\bar{h}(x-a)=f(x)-f(a)$. From this we get $f(x)=\bar{h}(x-a)+f(a)$.
11. Theorem. Let $a \in G$. Then $f(S+a)=S+f(a)$.

Proof. From 10 it follows that $f(S+a) \subseteq S+f(a)$. Let $z=t+f(a)$ where $t \in S$. By $10, f(x)=\bar{h}(x-a)+f(a)$ for each $x \in S+a$ where \bar{h} is a stable weak isometry in S. Since $z-f(a) \in S$, then there exists $u \in S$ such that $\bar{h}(u)=z-f(a)$. In view of 10 we have $f(u+a)=\bar{h}(u)+f(a)=z$. Therefore $S+f(a) \subseteq f[S+a]$. \square
12. Theorem. Let $S+a, S+b \in G / S$ such that $S+a \neq S+b$. Then $f(S+a) \neq f(S+b)$.

Proof. Since f is an injection, it follows from 11.
13. Theorem. If the factor group G / S is finite, then f is a bijection.

Proof. Since f is an injection, the desired assertion follows from 12.
Remark. There exist a nontrivially ordered group H and a stable weak isometry in H which is not a bijection.

References

1. Fuchs L., Partially ordered algebraic systems, Pergamon Press, Oxford, 1963.
2. Holland Ch., Intrinsic metrics for lattice ordered groups, Algebra Universalis 19 (1984), 142-150.
3. Jakubík J., Direct decompositions of partially ordered groups II., Czech. Math. J. 11 (1961), 490-515. (Russian)
4._, Isometries of lattice ordered groups, Czech. Math. J. 30 (1980), 142-152.
4. On isometries of non-abelian lattice ordered groups, Math. Slovaca 31 (1981), 171-175.
5. Weak isometries of lattice ordered groups, Math. Slovaca 38 (1988), 133-138.
6. Jakubík J. and Kolibiar M., Isometries of multilattice groups, Czech. Math. J. 33 (1983), 602-612.
7. Jasem M., Isometries in Riesz groups, Czech. Math. J. 36 (1986), 35-43.
9._, On weak isometries in multilattice groups, Math. Slovaca 40 (1990), 337-340.
8. , On isometries in partially ordered groups, Math. Slovaca 43 (1993), 21-29.
9. , Weak isometries in directed groups, Math. Slovaca, (to appear).
12._, Isometries in non-abelian multilattice groups, (submitted).
10. \qquad Weak isometries and isometries in partially ordered groups, (submitted).
11. Rachůnek J., Isometries in ordered groups, Czech. Math. J. 34 (1984), 334-341.
12. Shimbireva H., On the theory of partially ordered groups, Mat. Sb. 20(62) (1947), 145-178. (Russian)
13. Swamy K. L. N., Isometries in autometrized lattice ordered groups, Algebra Universalis 8 (1978), 59-64.
14. , Isometries in autometrized lattice ordered groups II, Seminar Notes Kobe Univ. 5 (1977), 211-214.
M. Jasem, Department of Mathematics, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, 81237 Bratislava, Slovakia

[^0]: Received September 16, 1993; revised February 24, 1994.
 1980 Mathematics Subject Classification (1991 Revision). Primary 06F15.

