WEAK ISOMETRIES IN PARTIALLY ORDERED GROUPS

M. JASEM

ABSTRACT. In this paper the author gives necessary and sufficient conditions under which to a stable weak isometry f in a directed group G there exists a direct decomposition $G = A \times B$ of G such that f(x) = x(A) - x(B) for each $x \in G$. Further, some results on weak isometries in partially ordered groups are established.

Isometries in an abelian lattice ordered group (l-group) have been introduced and investigated by Swamy [16], [17]. Jakubík [4] proved that for every stable isometry f in an l-group G there exists a direct decomposition $G = A \times B$ of Gsuch that f(x) = x(A) - x(B) for each $x \in G$. Isometries in non-abelian l-groups were also studied in [2] and [5]. Weak isometries in l-groups were introduced by Jakubík [6]. Rachůnek [14] generalized the notion of the isometry for any partially ordered group (po-group). Isometries and weak isometries in some types of pogroups have been investigated in [7], [8], [9], [10], [12], [13], [14]. In [11] it was proved that each stable weak isometry in a directed group is an involutory group automorphism (hence each weak isometry in a directed group is an isometry).

First we recall some notions and notations used in the paper.

Let G be a po-group. The group operation will be written additively. We denote $G^+ = \{x \in G; x \ge 0\}$. If a, b are elements of G, then we denote by U(a, b) and L(a, b) the set of all upper bounds and the set of all lower bounds of the set $\{a, b\}$ in G, respectively. If for $a, b \in G$ there exists the least upper bound (greatest lower bound) of the set $\{a, b\}$ in G, then it will be denoted by $a \lor b$ $(a \land b)$. For each $a \in G$, |a| = U(a, -a).

A partially ordered semigroup (po-semigroup) P with a neutral element is said to be the direct product of its po-subsemigroups P_1 and P_2 (notation: $P = P_1 \times P_2$) if the following conditions are fulfilled:

- (1) If $a \in P_1, b \in P_2$, then a + b = b + a.
- (2) Each element $c \in P$ can be uniquely represented in the form $c = c_1 + c_2$ where $c_1 \in P_1, c_2 \in P_2$.
- (3) If $g, h \in P$, $g = g_1 + g_2$, $h = h_1 + h_2$ where $g_1, h_1 \in P_1, g_2, h_2 \in P_2$, then $g \leq h$ if and only if $g_1 \leq h_1, g_2 \leq h_2$.

Received September 16, 1993; revised February 24, 1994.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 06F15.

In this case it is also spoken about the direct decomposition of the po-semigroup P.

The direct decomposition of a po-group is defined analogously.

If $G = P \times Q$ is a direct decomposition of a po-group G, then for $x \in G$ we denote by x(P) and x(Q) the components of x in the direct factors P and Q, respectively. Analogous denotation of components is also applied for the direct decomposition of the semigroup G^+ .

If G is a po-group, then a mapping $f: G \to G$ is called a weak isometry if |f(x) - f(y)| = |x - y| for each $x, y \in G$. A weak isometry f is called a stable weak isometry if f(0) = 0. A weak isometry f is called an isometry if f is a bijection.

A po-group G is called directed if $U(x, y) \neq \emptyset$ and $L(x, y) \neq \emptyset$ for each $x, y \in G$.

In [12] and [13] the above mentioned Jakubík's result concerning stable isometries and directed decompositions of *l*-groups was extended to Riesz and distributive multilattice groups.

The following example shows that this result cannot be extended to all directed groups.

Example. Let G be the additive group of all complex numbers x + iy such that x and y are integers. An element $z = x + iy \in G$ is positive if and only if $y \ge x$ and $y \ge -x$. Then G is an abelian non-distributive multilattice group. If we put f(x+iy) = y+ix for each $x+iy \in G$, then f is a stable weak isometry in G. If there exists a direct decomposition $G = A \times B$ of G such that f(z) = z(A) - z(B) for each $z \in G$ then z + f(z) = 2z(A) for each $z \in G$. For the element a = 1 we have a+f(a) = 1+i, but there does not exist an element b in G such that a+f(a) = 2b. Hence there does not exist the above mentioned direct decomposition of G.

Now we are going to establish necessary and sufficient conditions under which to a stable weak isometry f in a directed group G there exists a direct decomposition $G = A \times B$ of G such that f(x) = x(A) - x(B) for each $x \in G$.

First we establish the following theorem.

1. Theorem. Let f be a stable weak isometry in a po-group G, $A_1 = \{x \in G^+, f(x) = x\}$, $B_1 = \{x \in G^+, f(x) = -x\}$. Then the following conditions are equivalent:

- (i) For each $x \in G^+$ there exists the least upper bound of the set $\{0, f(x)\}$ in G^+ .
- (ii) For each $x \in G^+$, there exists $x_1 \in G^+$ such that $0 \le x_1 \le x$, $f(x) \le x_1 \le f(x) + x$.
- (iii) G^+ is the direct product of the po-semigroup A_1 and the commutative po-semigroup B_1 and $f(x) = x(A_1) x(B_1)$ for each $x \in G^+$.

Proof. (i) \implies (ii). Let $x \in G^+$ and let $x_1 = 0 \lor f(x)$. From |x| = |f(x)|we get $x \ge f(x) \ge -x$. Thus $0 \le x_1 \le x$. Further, we have $-x \le 0 \land f(x)$. Hence $-f(x) \lor 0 = -(f(x) \land 0) \le x$. This implies $0 \lor f(x) \le f(x) + x$. Therefore $f(x) \le x_1 \le f(x) + x$.

(ii) \implies (iii). Let $x \in G^+$ and let $0 \le x_1 \le x$. $f(x) \le x_1 \le f(x) + x$ for some $x_1 \in G^+$. From |x| = |f(x)| we get $x = -f(x) \lor f(x)$. Let $x_2 = x - x_1$. Then $x = x_2 + x_1, x \ge x_2 \ge 0$. Since $x_1 \le f(x) + x$, we have $-f(x) \le x_2$. Hence $x_1 \in U(0, f(x)), x_2 \in U(0, -f(x))$. Let $t \in U(0, f(x))$. Then $x_2 + t \in U(f(x), -f(x)) = |f(x)| = |x| = U(x_2 + x_1)$. This implies $t \ge x_1$. Therefore $x_1 = f(x) \lor 0$. Analogously we can show that $x_2 = -f(x) \lor 0$.

Let $z \in U(x_1, x_2)$. Then $z \in U(f(x), -f(x)) = |f(x)| = |x| = U(x)$. Since $x \in U(x_1, x_2)$, we have $x = x_1 \lor x_2$. Then clearly $x_1 \land x_2 = 0$ and $x_1 + x_2 = x_2 + x_1$.

Since $-x_2 = f(x) \land 0$, $f(x) = f(x) \lor 0 + f(x) \land 0$, we have $f(x) = x_1 - x_2$. From $|x_1| = |f(x_1)|$ we obtain $x_1 \ge f(x_1)$, $x_1 \ge -f(x_1)$. Then $f(x_1) + x_2 \ge -x_1 + x_2 = x_2 - x_1 = -f(x)$. From $|x_2| = |x - x_1| = |f(x) - f(x_1)| = |x_1 - x_2 - f(x_1)|$ we get $x_2 \ge x_1 - x_2 - f(x_1)$. This implies $f(x_1) + x_2 \ge -x_2 + x_1 = x_1 - x_2 = f(x)$. Hence $f(x_1) + x_2 \ge -f(x) \lor f(x) = x = x_1 + x_2$. This yields $f(x_1) \ge x_1$. Therefore $f(x_1) = x_1$.

From $|x_2| = |f(x_2)|$ we have $x_2 \ge f(x_2), x_2 \ge -f(x_2)$. Then $-f(x_2) + x_1 \ge -x_2 + x_1 = x_1 - x_2 = f(x)$. From $|x_1| = |x - x_2| = |f(x) - f(x_2)|$ we obtain $x_1 \ge f(x_2) - f(x)$. Thus $-f(x_2) + x_1 \ge -f(x)$. Hence $-f(x_2) + x_1 \ge x = x_2 + x_1$. This implies $-f(x_2) \ge x_2$. Therefore $f(x_2) = -x_2$.

Thus $x = x_1 + x_2$, where $x_1 \in A_1$, $x_2 \in B_1$. By Lemmas 1.8 and 1.9 [13], A_1 is a semigroup and B_1 is a commutative semigroup. Let x = a + b, where $a \in A_1$, $b \in B_1$. From Theorem 1.13 [13] it follows that f(a + b) = a - b. Then $b \in U(0, -f(x))$. Hence $b \ge x_2$. Since $a + b = x_1 + x_2$, $a - b = x_1 - x_2$, we obtain $x_2 - b = -x_2 + b \ge 0$. Therefore $x_2 = b$. Then $x_1 = a$. From this also follows that c + d = d + c for each $c \in A_1$, $d \in B_1$.

Let $u, v \in G^+$, $u \leq v$. Let $u = u_1 + u_2$, $v = v_1 + v_2$, $v - u = (v - u)_1 + (v - u)_2$ where $u_1, v_1, (u - v)_1 \in A_1, u_2, v_2, (u - v)_2 \in B_1$. From $v - u = v_1 + v_2 - u_2 - u_1$ we get $(v - u)_1 + u_1 + (v - u)_2 + u_2 = v_1 + v_2$. Then we have $v_1 - u_1 = (v - u)_1 \geq 0$, $v_2 - u_2 = (v - u)_2 \geq 0$. Hence $v_1 \geq u_1, v_2 \geq u_2$. Therefore G^+ is the direct product of partially ordered semigroups A_1 and B_1 .

(iii) \implies (i). Let G^+ be the direct product of the po-semigroup A_1 and the commutative po-semigroup B_1 and $f(z) = z(A_1) - z(B_1)$ for each $z \in G^+$. Let $x \in G^+$. Then $x(A_1) \in U(0, f(x))$. Let $y \ge 0, y \ge f(x)$. Thus $y(B_1) \ge 0$ $y(A_1) + y(B_1) + x(B_1) \ge x(A_1)$. Since $G^+ = A_1 \times B_1$, from the last inequality we get $y(A_1) \ge x(A_1)$ Then $y = y(A_1) + y(B_1) \ge x(A_1)$. Therefore $x(A_1) = 0 \lor f(x)$. \Box

2. Theorem. Let f be a stable isometry in a directed group G. Let $A_1 = \{x \in G^+, f(x) = x\}$, $B_1 = \{x \in G^+, f(x) = -x\}$, $A = A_1 - A_1$, $B = B_1 - B_1$. Then the following conditions are equivalent:

M. JASEM

- (i) For each $x \in G^+$ there exists the least upper bound of $\{0, f(x)\}$ in G^+ .
- (ii) For each $x \in G^+$ there exists $x_1 \in G^+$ such that $0 \le x_1 \le x$, $f(x) \le x_1 \le f(x) + x$.
- (iii) G is the direct product of the po-group A and the abelian po-group B and f(z) = z(A) z(B) for each $z \in G$.

Proof. In view of 1 it suffices to verify that (ii) implies (iii) and (iii) implies (i). (ii) \implies (iii). In [13] it was proved that A is a group, $A^+ = A_1$ [Lemma 1.8], B is an abelian group, $B^+ = B_1$ [Lemma 1.9] and f(a+b) = a-b for each $a \in A$, $b \in B$ [Theorem 1.13]. By 1, $G^+ = A_1 \times B_1$. Then from Theorem 2.3 [3] it follows that $G = A \times B$.

(iii) \implies (i). Since $A^+ = A_1$ and $B^+ = B_1$, we get $G^+ = A_1 \times B_1$. Then the desired result follows from 1.

3. Theorem. Let G be a directed group. Let for each $x \in G^+$ there exists $y \in G^+$ such that x = 2y. Then for each stable isometry f in G there exists a direct decomposition $G = A \times B$ of G with B abelian such that f(z) = z(A) - z(B) for each $z \in G$.

Proof. Let $x \in G^+$. Let $y \in G^+$ such that x = 2y. From Theorem 1 [11] it follows that $y + f(y) = 0 \lor f(x)$. Then the required statement follows from 2. \Box

Throughout the rest of this paper let f be a stable weak isometry in a po-group G and let S be the subgroup of G generated by G^+ . It is clear that S is a directed convex subgroup of G^+ . In [15] Shimbireva proved that S is a normal subgroup of G.

4. Theorem. (i) f(x + y) = f(x) + f(y) for each x, y ∈ S.
(ii) f²(x) = x for each x ∈ S.
(iii) f(S) = S.

Proof. The proof of (i) and (ii) is the same as the proof of analogous propositions in Theorem 3 [11] concerning directed groups.

(iii) Let $x \in S$. Then x = a - b for some $a, b \in G^+$. By (i), f(x) = f(a) - f(b). Since $a, b \in G^+$, from the relations |a| = |f(a)|, |b| = |f(b)| we get $a \ge f(a)$, $b \ge -f(b)$. Hence $a + b \ge f(a) - f(b) = f(x)$, $a + b \ge 0$. Then $f(x) = (a + b) - [-f(x) + (a + b)] \in S$. In view of (ii) we have f(S) = S.

5. Corollary. Restriction of a stable weak isometry f in a po-group G to the subgroup S is an involutory group automorphism.

Proof. It is easy to see that each stable weak isometry in G is an injection. Then 4 ends the proof.

6. Theorem. Let $x \in G^+$. Then

- (i) $f([0,x]) \subseteq [-x,x] \cap [-x+f(x),x+f(x)],$
- (ii) if there exists the least upper bound of the set $\{0, f(x)\}$ in G, then $f([0,x]) \subseteq [0 \land f(x), 0 \lor f(x)].$

Proof. (i) Let $y \in [0, x]$. From |x - y| = |f(x) - f(y)| we get $x - y \ge f(y) - f(x)$, $x - y \ge f(x) - f(y)$. Then $f(x) - f(y) + x \ge y \ge 0$, $f(y) - f(x) + x \ge y \ge 0$. Hence $x + f(x) \ge f(y) \ge -x + f(x)$. Since $x \in |y| = |f(y)|$, we have $x \ge f(y) \ge -x$.

(ii) From the assumption it follows that there exist $0 \wedge f(x)$ and $0 \vee -f(x)$ in G, too. From |x| = |f(x)| we have $x = -f(x) \vee f(x)$. Then $[0 \wedge f(x)] + [0 \vee -f(x)] = 0 \vee [f(x) \vee -f(x)] = 0 \vee x = x$. This implies $0 \vee f(x) = x - [0 \vee -f(x)] = x + [0 \wedge f(x)] = x \wedge (x+f(x)), 0 \wedge f(x) = -[0 \vee -f(x)] = -x + [0 \vee f(x)] = -x \vee [-x+f(x)]$. Then (i) ends the proof.

7. Theorem. Let $x \in G^+$. Then

- (i) $[-x, x] \cap [-x + f(x), x + f(x)] \subseteq f([0, x]),$
- (ii) if there exists the least upper bound of the set $\{0, f(x)\}$ in G, then $[0 \land f(x), 0 \lor f(x)] \subseteq f([0, x])$.

Proof. (i) Let $z \in G$ such that $-x \leq z \leq x, -x + f(x) \leq z \leq x + f(x)$. Then $0 \leq z + x \leq 2x, 0 \leq z - f(x) + x \leq 2x$. According to 4, $f(x) \in S$. By Theorem 1 [11], $x + f(x) = 0 \lor f(2x), -x + f(x) = 0 \land f(2x)$. Since x, f(x), zare elements of S, from 4 and 6(ii) we get $f(z) + f(x) = f(z + x) \leq x + f(x)$, $f(z) - x + f(x) = f(z - x + f(x)) \geq -x + f(x)$. Thus $0 \leq f(z) \leq x$. In view of 4 we have $f^2(z) = z \in f([0, x])$.

(ii) By the same way as in the proof of 6(ii) we can prove that $0 \lor f(x) = x \land [x + f(x)], 0 \land f(x) = -x \lor [-x + f(x)]$. Then (i) completes the proof.

From 6 and 7 we immediately obtain

8. Theorem. Let $x \in G^+$. Then

- (i) $f([0,x]) = [-x,x] \cap [-x + f(x), x + f(x)],$
- (ii) if there exists the least upper bound of the set $\{0, f(x)\}$ in G, then $f([0, x]) = [0 \land f(x), 0 \lor f(x)].$

If C is a normal convex subgroup of a po-group H then the factor group H/C can be partially ordered by the induced order. See [1, p. 20].

9. Theorem. The factor group G/S of a po-group G with respect to S is trivially ordered with regard to induced order.

Proof. Let $S + a \leq S + b$ for some $a, b \in G$. Then there exist $h, g \in S$ such that $h + a \leq g + b$. This yields $0 \leq -h + g + b - a$. Thus $-h + g + b - a \in S$ and hence $b - a \in S$. This implies that $b = (b - a) + a \in S + a$. Therefore S + a = S + b. \Box

10. Theorem. Let $a \in G$. Then $f(x) = \overline{h}(x-a) + f(a)$ for each $x \in S + a$, where \overline{h} is a stable weak isometry in S.

Proof. Let h(z) = f(z+a) - f(a) for each $z \in G$. Then h is a stable weak isometry in G. By 4, h(S) = S. Thus the restriction \overline{h} of h to S is a stable weak isometry in S. Let $x \in S + a$. Hence x = y + a for some $y \in S$. Then $\overline{h}(y) = \overline{h}(x-a) = f(x) - f(a)$. From this we get $f(x) = \overline{h}(x-a) + f(a)$.

11. Theorem. Let $a \in G$. Then f(S + a) = S + f(a).

Proof. From 10 it follows that $f(S+a) \subseteq S+f(a)$. Let z = t+f(a) where $t \in S$. By 10, $f(x) = \overline{h}(x-a) + f(a)$ for each $x \in S + a$ where \overline{h} is a stable weak isometry in S. Since $z - f(a) \in S$, then there exists $u \in S$ such that $\overline{h}(u) = z - f(a)$. In view of 10 we have $f(u+a) = \overline{h}(u) + f(a) = z$. Therefore $S + f(a) \subseteq f[S+a]$.

12. Theorem. Let S + a, $S + b \in G/S$ such that $S + a \neq S + b$. Then $f(S+a) \neq f(S+b).$

Proof. Since f is an injection, it follows from 11.

13. Theorem. If the factor group G/S is finite, then f is a bijection.

Proof. Since f is an injection, the desired assertion follows from 12.

Remark. There exist a nontrivially ordered group H and a stable weak isometry in H which is not a bijection.

References

- 1. Fuchs L., Partially ordered algebraic systems, Pergamon Press, Oxford, 1963.
- 2. Holland Ch., Intrinsic metrics for lattice ordered groups, Algebra Universalis 19 (1984), 142 - 150.
- 3. Jakubík J., Direct decompositions of partially ordered groups II., Czech. Math. J. 11 (1961), 490-515. (Russian)
- 4. _____, Isometries of lattice ordered groups, Czech. Math. J. 30 (1980), 142–152.
- , On isometries of non-abelian lattice ordered groups, Math. Slovaca **31** (1981), 5. . 171 - 175.
- ___, Weak isometries of lattice ordered groups, Math. Slovaca 38 (1988), 133–138. 6. ____
- 7. Jakubík J. and Kolibiar M., Isometries of multilattice groups, Czech. Math. J. 33 (1983), 602 - 612.
- 8. Jasem M., Isometries in Riesz groups, Czech. Math. J. 36 (1986), 35-43.
- 9. ____, On weak isometries in multilattice groups, Math. Slovaca 40 (1990), 337-340.
- 10. _____, On isometries in partially ordered groups, Math. Slovaca 43 (1993), 21–29.
- 11. _____, Weak isometries in directed groups, Math. Slovaca, (to appear).
- 12. ____
- _____, Isometries in non-abelian multilattice groups, (submitted). _____, Weak isometries and isometries in partially ordered groups, (submitted).
- 14. Rachunek J., Isometries in ordered groups, Czech. Math. J. 34 (1984), 334-341.

- 15. Shimbireva H., On the theory of partially ordered groups, Mat. Sb. 20(62) (1947), 145–178. (Russian)
- Swamy K. L. N., Isometries in autometrized lattice ordered groups, Algebra Universalis 8 (1978), 59–64.
- 17. _____, Isometries in autometrized lattice ordered groups II, Seminar Notes Kobe Univ. 5 (1977), 211–214.

M. Jasem, Department of Mathematics, Faculty of Chemical Technology, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia