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WEAK ISOMETRIES IN PARTIALLY ORDERED GROUPS

M. JASEM

Abstract. In this paper the author gives necessary and sufficient conditions under
which to a stable weak isometry f in a directed group G there exists a direct
decomposition G = A × B of G such that f(x) = x(A) − x(B) for each x ∈ G.
Further, some results on weak isometries in partially ordered groups are established.

Isometries in an abelian lattice ordered group (l-group) have been introduced

and investigated by Swamy [16], [17]. Jakub́ık [4] proved that for every stable

isometry f in an l-group G there exists a direct decomposition G = A × B of G

such that f(x) = x(A) − x(B) for each x ∈ G. Isometries in non-abelian l-groups

were also studied in [2] and [5]. Weak isometries in l-groups were introduced by

Jakub́ık [6]. Rach̊unek [14] generalized the notion of the isometry for any partially

ordered group (po-group). Isometries and weak isometries in some types of po-

groups have been investigated in [7], [8], [9], [10], [12], [13], [14]. In [11] it was

proved that each stable weak isometry in a directed group is an involutory group

automorphism (hence each weak isometry in a directed group is an isometry).

First we recall some notions and notations used in the paper.

Let G be a po-group. The group operation will be written additively. We denote

G+ = {x ∈ G;x ≥ 0}. If a, b are elements of G, then we denote by U(a, b) and

L(a, b) the set of all upper bounds and the set of all lower bounds of the set {a, b}
in G, respectively. If for a, b ∈ G there exists the least upper bound (greatest

lower bound) of the set {a, b} in G, then it will be denoted by a ∨ b (a ∧ b). For

each a ∈ G, |a| = U(a,−a).

A partially ordered semigroup (po-semigroup) P with a neutral element is said

to be the direct product of its po-subsemigroups P1 and P2 (notation: P = P1×P2)

if the following conditions are fulfilled:

(1) If a ∈ P1, b ∈ P2, then a+ b = b+ a.

(2) Each element c ∈ P can be uniquely represented in the form c = c1 + c2
where c1 ∈ P1, c2 ∈ P2.

(3) If g, h ∈ P , g = g1 + g2, h = h1 + h2 where g1, h1 ∈ P1, g2, h2 ∈ P2, then

g ≤ h if and only if g1 ≤ h1, g2 ≤ h2.
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In this case it is also spoken about the direct decomposition of the po-semi-

group P .

The direct decomposition of a po-group is defined analogously.

If G = P × Q is a direct decomposition of a po-group G, then for x ∈ G we

denote by x(P ) and x(Q) the components of x in the direct factors P and Q,

respectively. Analogous denotation of components is also applied for the direct

decomposition of the semigroup G+.

If G is a po-group, then a mapping f : G → G is called a weak isometry if

|f(x) − f(y)| = |x − y| for each x, y ∈ G. A weak isometry f is called a stable

weak isometry if f(0) = 0. A weak isometry f is called an isometry if f is a

bijection.

A po-group G is called directed if U(x, y) 6= ∅ and L(x, y) 6= ∅ for each x, y ∈ G.

In [12] and [13] the above mentioned Jakub́ık’s result concerning stable isome-

tries and directed decompositions of l-groups was extended to Riesz and distribu-

tive multilattice groups.

The following example shows that this result cannot be extended to all directed

groups.

Example. Let G be the additive group of all complex numbers x+iy such that

x and y are integers. An element z = x+ iy ∈ G is positive if and only if y ≥ x

and y ≥ −x. Then G is an abelian non-distributive multilattice group. If we put

f(x+iy) = y+ix for each x+iy ∈ G, then f is a stable weak isometry in G. If there

exists a direct decomposition G = A × B of G such that f(z) = z(A) − z(B) for

each z ∈ G then z + f(z) = 2z(A) for each z ∈ G. For the element a = 1 we have

a+f(a) = 1+i, but there does not exist an element b in G such that a+f(a) = 2b.

Hence there does not exist the above mentioned direct decomposition of G.

Now we are going to establish necessary and sufficient conditions under which to

a stable weak isometry f in a directed group G there exists a direct decomposition

G = A×B of G such that f(x) = x(A) − x(B) for each x ∈ G.

First we establish the following theorem.

1. Theorem. Let f be a stable weak isometry in a po-group G, A1 = {x ∈
G+, f(x) = x}, B1 = {x ∈ G+, f(x) = −x}. Then the following conditions are

equivalent:

(i) For each x ∈ G+ there exists the least upper bound of the set {0, f(x)}
in G+.

(ii) For each x ∈ G+, there exists x1 ∈ G+ such that 0 ≤ x1 ≤ x, f(x) ≤
x1 ≤ f(x) + x.

(iii) G+ is the direct product of the po-semigroup A1 and the commutative

po-semigroup B1 and f(x) = x(A1)− x(B1) for each x ∈ G+.
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Proof. (i) =⇒ (ii). Let x ∈ G+ and let x1 = 0 ∨ f(x). From |x| = |f(x)|
we get x ≥ f(x) ≥ −x. Thus 0 ≤ x1 ≤ x. Further, we have −x ≤ 0 ∧ f(x).

Hence −f(x) ∨ 0 = −(f(x) ∧ 0) ≤ x. This implies 0 ∨ f(x) ≤ f(x) + x. Therefore

f(x) ≤ x1 ≤ f(x) + x.

(ii) =⇒ (iii). Let x ∈ G+ and let 0 ≤ x1 ≤ x. f(x) ≤ x1 ≤ f(x) + x for

some x1 ∈ G+. From |x| = |f(x)| we get x = −f(x) ∨ f(x). Let x2 = x − x1.

Then x = x2 + x1, x ≥ x2 ≥ 0. Since x1 ≤ f(x) + x, we have −f(x) ≤ x2.

Hence x1 ∈ U(0, f(x)), x2 ∈ U(0,−f(x)). Let t ∈ U(0, f(x)). Then x2 + t ∈
U(f(x),−f(x)) = |f(x)| = |x| = U(x2 + x1). This implies t ≥ x1. Therefore

x1 = f(x) ∨ 0. Analogously we can show that x2 = −f(x) ∨ 0.

Let z ∈ U(x1, x2). Then z ∈ U(f(x),−f(x)) = |f(x)| = |x| = U(x). Since

x ∈ U(x1, x2), we have x = x1∨x2. Then clearly x1∧x2 = 0 and x1 +x2 = x2 +x1.

Since −x2 = f(x)∧0, f(x) = f(x)∨0+f(x)∧0, we have f(x) = x1−x2. From

|x1| = |f(x1)| we obtain x1 ≥ f(x1), x1 ≥ −f(x1). Then f(x1)+x2 ≥ −x1 +x2 =

x2−x1 = −f(x). From |x2| = |x−x1| = |f(x)− f(x1)| = |x1−x2− f(x1)| we get

x2 ≥ x1−x2−f(x1). This implies f(x1)+x2 ≥ −x2 +x1 = x1−x2 = f(x). Hence

f(x1) + x2 ≥ −f(x) ∨ f(x) = x = x1 + x2. This yields f(x1) ≥ x1. Therefore

f(x1) = x1.

From |x2| = |f(x2)| we have x2 ≥ f(x2), x2 ≥ −f(x2). Then −f(x2) + x1 ≥
−x2 + x1 = x1 − x2 = f(x). From |x1| = |x − x2| = |f(x) − f(x2)| we obtain

x1 ≥ f(x2)−f(x). Thus −f(x2)+x1 ≥ −f(x). Hence −f(x2)+x1 ≥ x = x2 +x1.

This implies −f(x2) ≥ x2. Therefore f(x2) = −x2.

Thus x = x1 + x2, where x1 ∈ A1, x2 ∈ B1. By Lemmas 1.8 and 1.9 [13],

A1 is a semigroup and B1 is a commutative semigroup. Let x = a + b, where

a ∈ A1, b ∈ B1. From Theorem 1.13 [13] it follows that f(a + b) = a − b. Then

b ∈ U(0,−f(x)). Hence b ≥ x2. Since a+ b = x1 + x2, a− b = x1 − x2, we obtain

x2− b = −x2 + b ≥ 0. Therefore x2 = b. Then x1 = a. From this also follows that

c+ d = d+ c for each c ∈ A1, d ∈ B1.

Let u, v ∈ G+, u ≤ v. Let u = u1 + u2, v = v1 + v2, v− u = (v− u)1 + (v− u)2

where u1, v1, (u− v)1 ∈ A1, u2, v2, (u− v)2 ∈ B1. From v−u = v1 + v2−u2−u1

we get (v−u)1 +u1 +(v−u)2 +u2 = v1 +v2. Then we have v1−u1 = (v−u)1 ≥ 0,

v2 − u2 = (v − u)2 ≥ 0. Hence v1 ≥ u1, v2 ≥ u2. Therefore G+ is the direct

product of partially ordered semigroups A1 and B1.

(iii) =⇒ (i). Let G+ be the direct product of the po-semigroup A1 and the

commutative po-semigroup B1 and f(z) = z(A1) − z(B1) for each z ∈ G+. Let

x ∈ G+. Then x(A1) ∈ U(0, f(x)). Let y ≥ 0, y ≥ f(x). Thus y(B1) ≥ 0

y(A1) + y(B1) +x(B1) ≥ x(A1). Since G+ = A1×B1, from the last inequality we

get y(A1) ≥ x(A1) Then y = y(A1)+y(B1) ≥ x(A1). Therefore x(A1) = 0∨f(x).�

2. Theorem. Let f be a stable isometry in a directed group G. Let A1 = {x ∈
G+, f(x) = x}, B1 = {x ∈ G+, f(x) = −x}, A = A1 − A1, B = B1 − B1. Then

the following conditions are equivalent:
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(i) For each x ∈ G+ there exists the least upper bound of {0, f(x)} in G+.

(ii) For each x ∈ G+ there exists x1 ∈ G+ such that 0 ≤ x1 ≤ x, f(x) ≤ x1 ≤
f(x) + x.

(iii) G is the direct product of the po-group A and the abelian po-group B and

f(z) = z(A)− z(B) for each z ∈ G.

Proof. In view of 1 it suffices to verify that (ii) implies (iii) and (iii) implies (i).

(ii) =⇒ (iii). In [13] it was proved that A is a group, A+ = A1 [Lemma 1.8],

B is an abelian group, B+ = B1 [Lemma 1.9] and f(a+ b) = a− b for each a ∈ A,

b ∈ B [Theorem 1.13]. By 1, G+ = A1×B1. Then from Theorem 2.3 [3] it follows

that G = A×B.

(iii) =⇒ (i). Since A+ = A1 and B+ = B1, we get G+ = A1 ×B1. Then the

desired result follows from 1. �

3. Theorem. Let G be a directed group. Let for each x ∈ G+ there exists

y ∈ G+ such that x = 2y. Then for each stable isometry f in G there exists a

direct decomposition G = A×B of G with B abelian such that f(z) = z(A)−z(B)

for each z ∈ G.

Proof. Let x ∈ G+. Let y ∈ G+ such that x = 2y. From Theorem 1 [11] it

follows that y + f(y) = 0 ∨ f(x). Then the required statement follows from 2. �

Throughout the rest of this paper let f be a stable weak isometry in a po-group

G and let S be the subgroup of G generated by G+. It is clear that S is a directed

convex subgroup of G+. In [15] Shimbireva proved that S is a normal subgroup

of G.

4. Theorem. (i) f(x+ y) = f(x) + f(y) for each x, y ∈ S.

(ii) f2(x) = x for each x ∈ S.

(iii) f(S) = S.

Proof. The proof of (i) and (ii) is the same as the proof of analogous propositions

in Theorem 3 [11] concerning directed groups.

(iii) Let x ∈ S. Then x = a− b for some a, b ∈ G+. By (i), f(x) = f(a)− f(b).

Since a, b ∈ G+, from the relations |a| = |f(a)|, |b| = |f(b)| we get a ≥ f(a),

b ≥ −f(b). Hence a + b ≥ f(a)− f(b) = f(x), a + b ≥ 0. Then f(x) = (a + b) −
[−f(x) + (a+ b)] ∈ S. In view of (ii) we have f(S) = S. �

5. Corollary. Restriction of a stable weak isometry f in a po-group G to the

subgroup S is an involutory group automorphism.

Proof. It is easy to see that each stable weak isometry in G is an injection.

Then 4 ends the proof. �
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6. Theorem. Let x ∈ G+. Then

(i) f([0, x]) ⊆ [−x, x] ∩ [−x+ f(x), x+ f(x)],

(ii) if there exists the least upper bound of the set {0, f(x)} in G, then

f([0, x]) ⊆ [0 ∧ f(x), 0 ∨ f(x)].

Proof. (i) Let y ∈ [0, x]. From |x−y| = |f(x)−f(y)| we get x−y ≥ f(y)−f(x),

x−y ≥ f(x)−f(y). Then f(x)−f(y)+x ≥ y ≥ 0, f(y)−f(x)+x ≥ y ≥ 0. Hence

x+ f(x) ≥ f(y) ≥ −x+ f(x). Since x ∈ |y| = |f(y)|, we have x ≥ f(y) ≥ −x.

(ii) From the assumption it follows that there exist 0∧f(x) and 0∨−f(x) in G,

too. From |x| = |f(x)| we have x = −f(x)∨ f(x). Then [0∧ f(x)] + [0∨−f(x)] =

0∨ [f(x)∨−f(x)] = 0∨ x = x. This implies 0∨ f(x) = x− [0∨−f(x)] = x+ [0∧
f(x)] = x∧(x+f(x)), 0∧f(x) = −[0∨−f(x)] = −x+[0∨f(x)] = −x∨[−x+f(x)].

Then (i) ends the proof. �

7. Theorem. Let x ∈ G+. Then

(i) [−x, x] ∩ [−x+ f(x), x+ f(x)] ⊆ f([0, x]),

(ii) if there exists the least upper bound of the set {0, f(x)} in G, then [0 ∧
f(x), 0 ∨ f(x)] ⊆ f([0, x]).

Proof. (i) Let z ∈ G such that −x ≤ z ≤ x, −x + f(x) ≤ z ≤ x + f(x).

Then 0 ≤ z + x ≤ 2x, 0 ≤ z − f(x) + x ≤ 2x. According to 4, f(x) ∈ S. By

Theorem 1 [11], x + f(x) = 0 ∨ f(2x), −x + f(x) = 0 ∧ f(2x). Since x, f(x), z

are elements of S, from 4 and 6(ii) we get f(z) + f(x) = f(z + x) ≤ x + f(x),

f(z)− x+ f(x) = f(z − x+ f(x)) ≥ −x+ f(x). Thus 0 ≤ f(z) ≤ x. In view of 4

we have f2(z) = z ∈ f([0, x]).

(ii) By the same way as in the proof of 6(ii) we can prove that 0 ∨ f(x) =

x ∧ [x+ f(x)], 0 ∧ f(x) = −x ∨ [−x+ f(x)]. Then (i) completes the proof. �

From 6 and 7 we immediately obtain

8. Theorem. Let x ∈ G+. Then

(i) f([0, x]) = [−x, x] ∩ [−x+ f(x), x+ f(x)],

(ii) if there exists the least upper bound of the set {0, f(x)} in G, then

f([0, x]) = [0 ∧ f(x), 0 ∨ f(x)].

If C is a normal convex subgroup of a po-group H then the factor group H/C

can be partially ordered by the induced order. See [1, p. 20].

9. Theorem. The factor group G/S of a po-group G with respect to S is triv-

ially ordered with regard to induced order.

Proof. Let S+a ≤ S+ b for some a, b ∈ G. Then there exist h, g ∈ S such that

h+ a ≤ g+ b. This yields 0 ≤ −h+ g+ b− a. Thus −h+ g+ b− a ∈ S and hence

b− a ∈ S. This implies that b = (b− a) + a ∈ S + a. Therefore S + a = S + b. �
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10. Theorem. Let a ∈ G. Then f(x) = h(x − a) + f(a) for each x ∈ S + a,

where h is a stable weak isometry in S.

Proof. Let h(z) = f(z + a) − f(a) for each z ∈ G. Then h is a stable weak

isometry in G. By 4, h(S) = S. Thus the restriction h of h to S is a stable

weak isometry in S. Let x ∈ S + a. Hence x = y + a for some y ∈ S. Then

h(y) = h(x− a) = f(x)− f(a). From this we get f(x) = h(x− a) + f(a). �

11. Theorem. Let a ∈ G.Then f(S + a) = S + f(a).

Proof. From 10 it follows that f(S+a) ⊆ S+f(a). Let z = t+f(a) where t ∈ S.

By 10, f(x) = h(x−a)+f(a) for each x ∈ S+a where h is a stable weak isometry

in S. Since z − f(a) ∈ S, then there exists u ∈ S such that h(u) = z − f(a). In

view of 10 we have f(u+ a) = h(u) + f(a) = z. Therefore S + f(a) ⊆ f [S + a].�

12. Theorem. Let S + a, S + b ∈ G/S such that S + a 6= S + b. Then

f(S + a) 6= f(S + b).

Proof. Since f is an injection, it follows from 11. �

13. Theorem. If the factor group G/S is finite, then f is a bijection.

Proof. Since f is an injection, the desired assertion follows from 12. �

Remark. There exist a nontrivially ordered group H and a stable weak isom-

etry in H which is not a bijection.
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