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ARC–TRANSITIVE NON–CAYLEY

GRAPHS FROM REGULAR MAPS

P. GVOZDJAK and J. ŠIRÁŇ

Abstract. We prove that the underlying graphs of p-gonal r-valent orientably
regular maps are arc-transitive but non-Cayley if r ≥ 3 and p is a prime greater
than r(r − 1).

1. Introduction

Orientable maps, i.e., embeddings of graphs in orientable surfaces, have been

studied in various contexts. They are interesting not only from the point of view

of embeddings themselves, but also as a tool for extracting information about

the embedded graphs and their automorphism groups. For example, the underly-

ing graph of an orientably regular map (that is, a map with the largest possible

number of orientation-preserving map automorphisms) possesses a relatively rigid

structure; it must be arc-transitive. In this note we prove that if we require fur-

ther that the map be p-gonal and r-valent, where p, r ≥ 3 and p is prime, then in

its underlying graph the number of closed p-walks emanating from a fixed vertex

must satisfy a certain congruence relation.

As an application of this result, we exhibit for every r ≥ 3 a construction of an

infinite class of maps whose underlying graphs are r-regular, arc-transitive, but

non-Cayley. This is interesting and surprising, as even constructions of vertex-

transitive non-Cayley graphs seem to be difficult to find. Note that the problem of

constructing vertex-transitive non-Cayley graphs is equivalent to the (extensively

studied) existence of certain permutation groups that do not have regular sub-

groups. Only a few families of vertex-transitive non-Cayley graphs were known in

the late eighties [W], but there has been a lot of activity in the field since then

(the most recent progress is well documented in [MP]).

2. Preliminaries

For the purpose of this note, a map is a cellular embedding of a graph in

an orientable surface (= closed 2-manifold). Let M be a map and let G be the
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corresponding graph (often called the underlying graph of M). A permutation

representation of M can be obtained in the following standard way (cf. e.g. [GT]).

Fix an orientation of the ambient surface. For each vertex v of G let Pv be the

permutation that cyclically permutes the arcs (= edges with direction) emanating

from v in accordance with the chosen orientation of the surface. The product

P =
∏
v∈V (G) Pv is called rotation of G. Further, let L be the fixed-point-free

involution that assigns to each arc its reverse. Both P and L are permutations

of the set D(G) of arcs of G (note that |D(G)| = 2|E(G)|). The group 〈P,L〉
generated by P and L is a transitive permutation group on the set D, and carries a

complete information about the map M ; we therefore write M = M(P,L). Indeed,

given a set D and two permutations P and L of D such that L is a fixed-point-free

involution and the group 〈P,L〉 is transitive on D, the topological structure of

M can be recovered easily. Vertices and edges of the underlying graph are orbits

of the permutations P and L. The boundary walks of faces of M correspond to

orbits of the permutation PL. Incidence between vertices, edges and faces is given

by a nonempty intersection of the corresponding orbits.

An automorphism of a map M(P,L) is a permutation of D = D(G) com-

muting with both P and L. The set of automorphisms of M will be denoted by

Aut M . This set is clearly a group under compositions of permutations. Since

〈P,L〉 is transitive on D, an automorphism A ∈ Aut M is uniquely determined

by its value at a fixed arc f ∈ D. Thus |Aut M | ≤ |D|. The maps for which the

equality is attained are called orientably regular. Such maps have been widely

studied; one of the best references here is [JS]. We will need the following well

known fact: If M(P,L) is orientably regular then the groups Aut M and 〈P,L〉
are isomorphic. Consequently, in an orientably regular map, if Rf = f for some

arc f ∈ D and some R ∈ 〈P,L〉 then R = 1, the identity permutation. (This

observation will be repeatedly used in the next section.) It is readily seen that if a

map is orientably regular then there are numbers n,m such that each face of the

map is bounded by a walk of length n and each vertex of the underlying graph

has valency m. In such case we say that the map is of type {n,m}.

We conclude with a few facts about Cayley graphs. Let H be a finite group and

let S be a symmetric subset of H, that is, 1 /∈ S and s ∈ S ⇔ s−1 ∈ S for all

s ∈ H. The Cayley graph C(H,S) of H with respect to S is defined as follows.

The set of vertices of C(H,S) is the set of all elements of H, and h1, h2 ∈ H are

joined in C(H,S) by an edge if and only if h−1
1 h2 ∈ S (⇔ h−1

2 h1 ∈ S). One may

observe that every vertex in C(H,S) has valency |S|, and the graph C(H,S) is

connected if and only if S is a (symmetric) generating set for the group H. Also,

note that Cayley graphs are automatically vertex-transitive; the converse is not

true.

An interesting property of Cayley graphs, based on counting closed walks, was

obtained in [FRS] . Recall that for an arbitrary graph G, a closed oriented walk
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of length n in G (starting at a vertex v0) is a sequence f1, f2, . . . , fn of arcs of G

with fi emanating from a vertex vi−1 and terminating at a vertex vi for 1 ≤ i ≤ n
(here, of course, vn = v0).

Theorem 1. [FRS] Let H be a group and let S be a symmetric subset of H.

Let p be an odd prime. Then in the Cayley graph C(H,S) the number of closed

oriented walks of length p starting at an (arbitrary but fixed) vertex v is congruent

(mod p) to the number of elements of order p in S.

This theorem will play a key role in our subsequent considerations.

3. Results

First we show that a result similar to Theorem 1 also holds true for underlying

graphs of regular maps.

Theorem 2. Let p ≥ 3 and r ≥ 3, with p prime. Let M be an orientably regular

map of type {p, r} and let v be a vertex of the underlying graph G of M . Then,

the number of closed oriented walks in G of length p, starting at v, is congruent

to kr (mod p) for some k such that 2 ≤ k ≤ r − 1.

Proof. Let M = M(P,L) be an orientably regular map with the required prop-

erties (consequently, its underlying graph contains no loops). Consider an oriented

closed walk W = f1, f2, . . . , fp, fp+1 = f1 of length p in G, starting at the vertex v.

(The repeated use of the first arc fp+1 = f1 in our notation has auxiliary reasons

only.) By regularity of M , for each i, 1 ≤ i ≤ p there exists a unique element Ri in

the group 〈P,L〉 such that fi+1 = Rifi. The fact that W is closed readily implies

(invoking regularity again) that RpRp−1 . . . R2R1 = 1. Moreover, since the termi-

nal vertex of the arc fi coincides with the initial vertex of the arc fi+1, the latter

can be obtained by reversing the direction of fi and rotating the reverse (i.e., the

arc Lfi) a suitable number of times in accordance with the chosen orientation of

the map surface; in other terms, Ri = P jiL for some ji, 0 ≤ ji ≤ r−1. Thus, with

the walk W as above we may associate the p-tuple (j1, j2, . . . , jp), 0 ≤ ji ≤ r − 1

for which

(1) P jpLP jp−1L . . . P j1L = 1 .

Conversely, given a p-tuple (j1, j2, . . . , jp) with the above property, one can check

that the sequence f1, R1f1, R2R1f1, . . . , RpRp−1 . . .R1f1, where Ri = P jiL, is an

oriented closed walk in G that starts at v and uses f1 as its first arc. Thus we

have a 1 − 1 correspondence between the set of closed oriented walks of length p

starting at v and using f1 as its first arc, and the set Ip of p-tuples (j1, j2, . . . , jp),

0 ≤ ji ≤ r−1 which satisfy (1). It also follows that there are exactly r|Ip| oriented

closed walks in G of lenght p starting at v (namely, f1 can be any of the r arcs

emanating from v).
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The key to the proof is the following observation: P jpLP jp−1L . . . P j1L = 1 if

and only if P j1LP jpLP jp−1L . . . P j2L = 1. Therefore, the mapping φ defined on

Ip and given by φ(j1, j2, . . . , jp) = (j2, j3, . . . , jp, j1) is a permutation of the set Ip,

and defines an action of the cyclic group Zp on Ip. As p is prime, the orbits of this

action are either of size p or of size 1. Another consequence of the primeness of p is

the fact that the orbits of size 1 are exactly those for which j1 = j2 = · · · = jp. Let

k be the number of orbits of size 1, i.e., k = |{j : 0 ≤ j ≤ r− 1, (P jL)p = 1}|, and

let s be the number of orbits of length p. The preceding discussion implies that

|Ip| = ps + k, and so |Ip| ≡ k (mod p). We saw earlier that r|Ip| is the number

of oriented closed walks in G of length p, starting at v; therefore this number is

congruent to kr (mod p), as claimed in the theorem. The last thing to do is to

establish the inequality 2 ≤ k ≤ r − 1. Observe that (PL)p = 1 because the map

M is of type {p, r}. But then also (P r−1L)p = (P−1L)p = 1, which shows that

k ≥ 2. At last, (P 0L)p = Lp = L 6= 1, and so k ≤ r − 1. � �
Theorems 1 and 2 enable us to prove our main result stating that underlying

graphs of certain orientably regular maps cannot be Cayley graphs.

Theorem 3. Let M be an orientably regular map of type {p, r} where p is

prime, r ≥ 3 and p > r(r − 1). Then the underlying graph of M is not a Cayley

graph.

Proof. Fix a vertex v in the underlying graph G of the map M . By Theorem 2,

the number of closed oriented walks in G starting at v and having length p is

congruent to kr (mod p) for some 2 ≤ k ≤ r− 1. Now, assume that G is a Cayley

graph C(H,S) for some group H and some symmetric generating subset S of H.

Then, by Theorem 1, the number t of elements of order p contained in the set S

would have to satisfy the congruence relation t ≡ kr (mod p). As p > r(r − 1)

and k ≤ r − 1, we have t ≥ kr; in particular, t ≥ 2r because k ≥ 2. On the other

hand, since M is of type {p, r}, the graph G is regular of valency r = |S|, and so

t ≤ r, a contradiction. �

4. Conclusions

The preceding result suggests the question of whether or not there are enough

ingredients for it, that is, if there are infinitely many orientably regular maps with

the required properties. The question turns out to be equivalent with the existence

of finite groups generated by two elements, say, x and y, that satisfy the relations

xr = y2 = (xy)p = . . . = 1. This was the way how Vince [V] (originally) and Gray

and Wilson [GW] (later, a simplified version) proved that orientably regular maps

of type {q, r} exist for all pairs q, r ≥ 2 (settling thereby Grünbaum’s conjecture).

Applying Surowski’s method [S] of lifting maps by means of the canonical voltage

assignment taken in the first homology group of the surface yields immediately

the following stronger result: For each q ≥ 2 and r ≥ 2 (except the Platonic
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solids) there exist infinitely many orientably regular maps of type {q, r}. Since

the underlying graph of any orientably regular map is automatically arc-transitive,

we have the following consequence of Theorem 3 and the above discussion.

Theorem 4. For every r ≥ 3 there exist infinitely many arc-transitive r-regular

non-Cayley graphs.

Recently, quite a lot of attention has been devoted to Cayley maps. Recall

that a map M(P,L) is a Cayley map if its underlying graph is a Cayley graph

C(H,S) and the rotation P satisfies the following condition: There exists a cyclic

permutation σ of the set S such that for every arc f in C(H,S) emanating from

h and terminating at hs, the arc Pf emanates from h and terminates at hσ(s).

(Roughly speaking, the rotation P is at every vertex given by the same cyclic per-

mutation of generators.) For a recent deep study of orientable regularity of Cayley

maps we refer to [J]; it is worth noting that most of the known “small” orientably

regular maps are Cayley maps. However, as another immediate consequence of

Theorem 3 and the stronger version of the solution of Grünbaum’s conjecture we

have:

Theorem 5. Let r ≥ 3, p > r(r − 1) and let p be prime. Then there exist

infinitely many orientably regular maps of type {p, r} which are not Cayley maps.

Finally, we remark that Theorem 2 admits futher group-theoretic generaliza-

tions [JŠ].
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e-mail: siran@vox.svf.stuba.sk


