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ON CRITICAL EXPONENTS FOR A SYSTEM OF HEAT

EQUATIONS COUPLED IN THE BOUNDARY CONDITIONS

K. DENG, M. FILA and H. A. LEVINE

Abstract. In this paper, we consider the system

ut = ∆u, vt = ∆v x ∈ RN+ , t > 0,

−
∂u

∂x1
= vp, −

∂v

∂x1
= uq x1 = 0, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ RN+ ,

where RN+ = {(x1, x′) | x′ ∈ RN−1, x1 > 0}, p, q > 0, and u0, v0 nonnegative.
We prove that if pq ≤ 1 every nonnegative solution is global. When pq > 1 we
let α = 1

2
p+1
pq−1

, β = 1
2
q+1
pq−1

. We show that if max(α, β) ≥ N
2

, all nontrivial

nonnegative solutions are nonglobal; whereas if max(α, β) < N
2

there exist both
global and nonglobal nonnegative solutions. When N = 1, we establish some results
for the blow up rate for the nonglobal solutions and some results for the decay rate
for the global solutions (in the supercritical case). We also construct a nontrivial
solution with vanishing initial values when pq < 1.

1. Introduction

In this paper we study the large time behavior of nonnegative solutions of a

system as follows:

ut = ∆u, vt = ∆v x ∈ RN+ , t > 0,

−
∂u

∂x1
= vp, −

∂v

∂x1
= uq x1 = 0, t > 0,(1.1)

u(x, 0) = u0(x), v(x, 0) = v0(x) x ∈ RN+ ,

where RN+ = {(x1, x
′) | x′ ∈ RN−1, x1 > 0} (N ≥ 1), p, q > 0, and both u0(x) and

v0(x) are nonnegative bounded functions satisfying the compatibility condition

(1.2) −
∂u0

∂x1
= vp0 and −

∂v0

∂x1
= uq0 at x1 = 0.
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In order to motivate some of our results for the above system, we recall an old

result of Fujita [F] for the initial problem

(1.3)
ut = ∆u+ up x ∈ RN , t > 0,

u(x, 0) = u0(x) x ∈ RN ,

with nonnegative initial data u0. He showed that (i) if 1 < p < 1+2/N , then (1.3)

possesses no global nonnegative solutions while (ii) if p > 1+2/N , both global and

nonglobal nonnegative solutions exist. The number 1 + 2/N is called the critical

exponent which turns out to belong to case (i). See [We] for an elegant proof by

Weissler as well as references to earlier proofs of this result. This result can be

reformulated in a second way. The number 1
p−1 is the (algebraic) blow up rate for

solutions of the initial value problem for the ordinary differential equation y′ = yp

for p > 1. On the other hand N
2 is the decay rate for solutions of wt = ∆w. Thus,

Fujita’s result says that there are no global, nontrivial solutions of (1.3) whenever

the blow up rate for y(t) is not smaller than the decay rate for w(x, t) while there

are both global, nontrivial solutions and nonglobal solutions of (1.3) if the blow

up rate is positive and smaller than the decay rate. If the blow up rate is negative,

all solutions of (1.3) are global.

Over the past a few years there have been a number of extensions of Fujita’s

result in various directions. These include similar results for other geometries and

nonlinear equations of different types. For further details, we refer the reader to

the survey paper by Levine [L1].

Recently, Escobedo and Herrero [EH1] investigated the initial value problem

for a weakly coupled system

(1.4)
ut = ∆u+ vp, vt = ∆v + uq x ∈ RN , t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0 x ∈ RN .

Set, when pq 6= 1,

α1 =
p+ 1

pq − 1
, β1 =

q + 1

pq − 1
.

Then α1, β1 are the blow up rates for each component of the system of ordinary

differential equations y′ = zp, z′ = yq. The decay rate for the linear “system”

wit = ∆wi is still N
2 . The results of [EH1] for (1.4) take the same form as for

the single equation with 1
p−1 replaced by max(α1, β1). When this maximum is

negative or not defined, all solutions with L∞ initial values are global.

It is possible to extend this result, in the Lipschitz case, to the system (1.4) in

a cone or in the exterior of a bounded domain. See [L2]. The decay rate for the

linear system will, in general, be different in other geometries and the method of

proof employed in the case of the initial problem does not carry over in every case

to the initial boundary value problem for (1.4) in unbounded domains.
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Galaktionov and Levine [GL] considered the boundary-value problem:

(1.5)

ut = uxx x > 0, t > 0,

−ux = up x = 0, t > 0,

u(x, 0) = u0(x) ≥ 0 x > 0;

−u′0(0) = up0(0).

They showed that if 1 < p ≤ 2, then u(x, t) blows up in a finite time for all

nontrivial u0; whereas if p > 2, then u(x, t) becomes unbounded for large u0 and

u(x, t) exists globally for small initial data. Their result extends to the half space

problem

(1.1*)

ut = ∆u x ∈ RN+ , t > 0,

−
∂u

∂x1
= up x1 = 0, t > 0,

u(x, 0) = u0(x) ≥ 0 x ∈ RN+ ,

−
∂u0

∂x1
= up0 x1 = 0.

where, with 1
p−1 replaced by 1

2(p−1) , it takes exactly the same form as the result

for (1.3). Here the ordinary differential equation that replaces y′ = yp is the equa-

tion y′ = y(2p−1). This latter equation can be loosely interpreted as a differential

equation in time for the trace of the solution of (1.5) on x = 0 (or x1 = 0 in the

case of (1.1∗)).

The purpose of this paper is threefold. First, we extend the result of [GL] to

the system (1.1). Secondly, we obtain some precise information concerning the

nature of the blow up and decay of the solutions in the special case that N = 1.

These results are intended to parallel those obtained for (1.1∗) in [FQ] in so far

as is possible. There has been a flurry of activity concerning the nature of single

point blow up for (1.3) in the last few years. However, almost nothing is known for

(1.4). Finally, we obtain a nonuniqueness result for (1.1) in one space dimension

if pq < 1. While uniqueness probably does hold for pq > 1 for (1.1), this question

remains open. However, for (1.4) this was recently established in [EH2]. It should

be possible to adapt their arguments to the present situation.

In Section 2 we establish the Fujita type global existence — global nonexistence

theorem while in Section 3 we discuss the blow up and decay rate results when

N = 1.

Throughout the remainder of this paper we let

α =
α1

2
, β =

β1

2
.
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2. The Fujita Type Blow Up Theorem

Theorem 2.1. If pq ≤ 1 all nonnegative solutions of (1.1) are global. If pq > 1

then there are no nontrivial global nonnegative solutions of (1.1) if max(α, β) ≥ N
2

while both global nontrivial and nonglobal solutions exist if max(α, β) < N
2 .

Remark 2.1. Notice that, although the blow up rates (α, β) for (1.1) are not

the same as for (1.4) (α1, β1) , the statement of this theorem is precisely the same

as the corresponding result for (1.4).

The proof proceeds by a series of lemmas.

Lemma 2.2. Assume 0 < pq ≤ 1. Every solution of (1.1) is global, that is, for

any T > 0, ‖u(·, t)‖∞ + ‖v(·, t)‖∞ ≤ C for some constant C = C(T ).

Proof. The proof follows by comparison. Suppose, without loss, that p ≤ q.

Let M
2 = max(1, ‖u0‖∞, ‖v0‖∞) and define h(x) = M + Mp−q(e−σx1 − 1) and

k(x) = M + e−σx1 − 1 with σ = M q. By introducing ū(x, t) = h(x)eσ
2t and

v̄(x, t) = k(x)e
σ2

p t, it is not hard to see that solutions of (1.1) are bounded above

by (ū, v̄). �
Of much greater difficulty are the next two lemmas.

Lemma 2.3. Suppose that max(α, β) ≥ N
2 . Then all nontrivial nonnegative

solutions of (1.1) are nonglobal.

Lemma 2.4. Suppose that max(α, β) < N
2 . Then there exist both global and

nonglobal nonnegative solutions of (1.1).

When p = q ≥ 1, we have uniqueness of solutions of (1.1). Then (1.1) reduces

to the scalar problem (1.1∗) if u0 = v0. Even when p = q < 1 and u0 = v0, it may

happen that u ≡ v. In such cases, we recover the result of Galaktionov and Levine

and our results read

Corollary 2.5. If p ≤ 1, all solutions of (1.1∗) are global. If 1 < p ≤ 1 + 1/N ,

all nontrivial nonnegative solutions of (1.1∗) are nonglobal; while if p > 1 + 1/N ,

there exist both global and nonglobal nonnegative solutions.

The plan of this section is as follows: In Section 2.1 we establish the claim

of Lemma 2.3, and then demonstrate the proof of Lemma 2.4 in Section 2.2.

To show the global existence of solutions to (1.1), we adopt the supersolution

argument. For the blow up case, the situation becomes more complicated, and we

shall employ a quite different approach, namely, the iteration method, which was

initially applied to problem (1.3) in [AW] and then successfully modified for (1.4).

However, because the representation formula for solutions of (1.1) is distinct from

that for (1.4), several notable differences appear at the technical level, and hence

the relevant arguments will be presented in detail. For definiteness, we may always

assume p ≤ q throughout the paper.
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2.1 The Case max(α, β) ≥ N
2

In this section we establish the global nonexistence claim of Theorem 2.1. Be-

cause our arguments parallel those of [EH1], we shall mainly focus on the salient

differences. Without loss, we may assume β ≥ α.

Recall that the Green’s functionG(x, y; t) for the heat equation in RN+ satisfying
∂G
∂y1

= 0 at y1 = 0 is given by

G(x, y; t) = (4πt)−
N
2 exp

(
−
|x′ − y′|2

4t

)
×

(
exp

(
−

(x1 − y1)2

4t

)
+ exp

(
−

(x1 + y1)2

4t

))
.

For any function w(x1, x
′) ∈ L1

loc(RN+ ), we then define

S(t)w(·, x′) =

∫
RN−1

(4πt)−
N−1

2 exp

(
−
|x′ − y′|2

4t

)
w(·, y′) dy′(2.1a)

and

S1(t)w(x1, ·) =

∫ ∞
0

(4πt)−
1
2

(
exp

(
−

(x1 − y1)2

4t

)
+ exp

(
−

(x1 + y1)2

4t

))
w(y1, ·) dy1.(2.1b)

We have the representation formulae for the solution of (1.1),

u(x1, x
′, t) = S(t)S1(t)u0(x1, x

′)

+

∫ t

0

(π(t− η))−
1
2 exp

(
−

x2
1

4(t− η)

)
S(t− η)vp(0, x′, η) dη(2.2a)

and

v(x1, x
′, t) = S(t)S1(t)v0(x1, x

′)

+

∫ t

0

(π(t− η))−
1
2 exp

(
−

x2
1

4(t− η)

)
S(t− η)uq(0, x′, η) dη.(2.2b)

These are the so called “variation of constants formulae” (cf. [LSU], for example).

Remark 2.2. As in [EH1] it is possible to prove local (in time) existence of

solutions for given L∞ initial values using the variation of constants formulae (2.2)

and the contraction mapping principle. The details are rather standard and we

therefore omit them.
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Lemma 2.1.1. Suppose that (u(x, t), v(x, t)) is a nontrivial solution of (1.1).

Then there exist τ = τ(u0, v0) > 0 and constants m > 0, σ > 0 such that

(2.3) v(x, τ) ≥ m exp(−σ|x|2).

Proof. Since v(x, t) 6≡ 0, we may assume, by shifting the time axis if necessary,

that v0(x) 6≡ 0 and let δ = inf{v0(y)|y ∈ Ω ⊂ RN+} > 0. By (2.2b) we then find

v(x, t) ≥ S(t)S1(t)v0(x)

≥ δ exp

(
−
|x|2

2t

)
(4πt)−

N
2

∫
y∈Ω

exp

(
−
|y|2

2t

)
dy.

For any fixed τ , letting t = τ , σ = 1
2τ , and m = δ(4πτ)−

N
2

∫
y∈Ω exp

(
− |y|

2

2τ

)
dy,

we obtain (2.3). �

We next establish several estimates for solutions of (1.1).

Lemma 2.1.2. Suppose that p ≥ 1 and ∂v0

∂x1
≤ 0. Then for any t in the

existence interval,

(2.4) tβ‖S(t)S1(t)v0(0, x′)‖∞ ≤ C,

where C = C(p, q) is a constant.

Proof. By (2.2) one can see that

u(0, x′, t) ≥

∫ t

0

(π(t− η))−
1
2S(t− η)vp(0, x′, η) dη(2.5)

and

v(0, x′, t) ≥ S(t)S1(t)v0(0, x′).

Applying Jensen’s inequality yields

u(0, x′, t) ≥

∫ t

0

(π(t − η))−
1
2S(t− η)(S(η)S1(η)v0(0, x′))pdη

≥

∫ t

0

(π(t − η))−
1
2 (S(t− η)S(η)S1(η)v0(0, x′))pdη(2.6)

=

∫ t

0

(π(t − η))−
1
2 (S(t)S1(η)v0(0, x′))pdη.
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Since ∂v0

∂x1
≤ 0, for 0 ≤ η ≤ t,

S1(η)v0(0, ·) =

∫ ∞
0

v0(
√

4ηξ1, ·)e
−ξ2

1 dξ1

≥

∫ ∞
0

v0(
√

4tξ1, ·)e
−ξ2

1 dξ1

= S1(t)v0(0, ·),

then

u(0, x′, t) ≥

∫ t

0

(π(t − η))−
1
2 (S(t)S1(t)v0(0, x′))pdη(2.7)

= 2π−
1
2 (S(t)S1(t)v0(0, x′))pt

1
2 .

Hence

v(0, x′, t) ≥ 2qπ−
q
2

∫ t

0

(π(t− η))−
1
2S(t− η)(S(η)S1(η)v0(0, x′))pqη

q
2 dη

≥ 2qπ−(q+1)/2

∫ t

0

(t− η)−
1
2 η

q
2 (S(t)S1(t)v0(0, x′))pqdη(2.8)

= 2qπ−(q+1)/2B (1/2, q/2 + 1) (S(t)S1(t)v0(0, x′))pqt(q+1)/2,

where B(a, b) is the Beta function.

Substituting (2.8) into (2.5) leads to

u(0, x′, t) ≥ 2pqπ−((q+1)p+1)/2Bp(1/2, q/2 + 1)

×

∫ t

0

(t− η)−
1
2 η(q+1)p/2(S(t)S1(t)v0(0, x′))p

2qdη

= 2pqπ−((q+1)p+1)/2Bp(1/2, q/2 + 1)B(1/2, (q + 1)p/2 + 1)

× (S(t)S1(t)v0(0, x′))p
2qt((q+1)p+1)/2,

and consequently,

v(0, x′, t) ≥ 2pq
2

π−(q+1)(1+pq)/2Bpq(1/2, q/2 + 1)Bq(1/2, (q + 1)p/2 + 1)

×B(1/2, ((q + 1)p+ 1)q/2 + 1)(S(t)S1(t)v0(0, x′))(pq)2

t(q+1)(1+pq)/2.

Thus by induction for any integer k

v(0, x′, t) ≥ 2(1/p)(pq)kπ−(q+1)(1+pq+···+(pq)k−1)/2Ck

× (S(t)S1(t)v0(0, x′))(pq)k t(q+1)(1+pq+···+(pq)k−1)/2,(2.9)
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where

Ck = B(pq)k−1

(1/2, q/2 + 1)B(1/p)(pq)k−1

(1/2, (q + 1)p/2 + 1)

×B(pq)k−2

(1/2, ((q + 1)p+ 1)q/2 + 1)

×B(1/p)(pq)k−2

(1/2, (q + 1)(1 + pq)p/2 + 1)(2.10)

· · ·Bpq(1/2, ((q + 1)(1 + pq + · · ·+ (pq)k−3)p+ 1)q/2 + 1)

×Bq(1/2, (q + 1)(1 + pq + · · ·+ (pq)k−2)p/2 + 1)

×B(1/2, ((q + 1)(1 + pq + · · ·+ (pq)k−2)p+ 1)q/2 + 1).

Recalling the formula B(a, b) = Γ(a)Γ(b)/Γ(a+ b) with Γ(z) the Gamma func-

tion satisfying

Γ(1/2) = π
1
2 ,Γ(z + 1) = zΓ(z), and Γ′(z) > 0 for z > 3/2,

we then find

Ck ≥ (4π)((1+1/p)((pq)k−1+···+pq)+1)/2AkBk,

where Ak and Bk are similar to those given in (4.7a) and (4.7b) of [EH1], respec-

tively. Then arguing as in the proof of Lemma 4.1 of [EH1], we obtain the bound

in (2.4). �
We also present the counterpart of Lemma 2.1.2.

Lemma 2.1.3. Suppose that 0 < p < 1 and ∂v0

∂x1
≤ 0. Then for any t in the

existence interval,

(2.11) tpβ‖S(t)(S1(t)v0(0, x′))p‖∞ ≤ C.

Proof. By Jensen’s inequality, we find

u(0, x′, t) ≥

∫ t

0

(π(t− η))−
1
2S(t− η)vp(0, x′, η)dη

≥

∫ t

0

(π(t− η))−
1
2S(t− η)(S(η)S1(η)v0(0, x′))pdη

≥

∫ t

0

(π(t− η))−
1
2S(t− η)S(η)(S1(t)v0(0, x′))pdη

= 2π−
1
2S(t)(S1(t)v0(0, x′))pt

1
2 ,

and it follows that

v(0, x′, t) ≥ π−(1+1/p)/2−(q−1/p)((pq)k−1)/2(pq−1)AkBk

× (S(t)(S1(t)v0(0, x′))p)(1/p)(pq)k t(q+1)((pq)k−1)/2(pq−1)

with Ak and Bk as those in the proof of Lemma 2.1.2.

Thus proceeding as before we obtain the estimate in (2.11). �
As a consequence, we have the following:
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Lemma 2.1.4. Suppose that ∂v0

∂x1
≤ 0 and a solution of (1.1) exists for all

t > 0. Then if p ≥ 1

(2.12a) tβ‖S(t)S1(t)v(0, x′, t)‖∞ ≤ C

while

(2.12b) tpβ‖S(t)(S1(t)v(0, x′, t))p‖∞ ≤ C

for 0 < p < 1.

Proof. Since ∂v0

∂x1
≤ 0, by the maximum principle, it follows that ∂v

∂x1
≤ 0 for all

t > 0. Then making use of the autonomous nature of v, we draw the conclusion

from Lemmas 2.1.2 and 2.1.3. �
We are now ready to prove Lemma 2.3. Noticing Lemma 2.1.1 and the fact that

the system (1.1) is autonomous, without loss of generality, we may assume that

v0(x) ≥ m exp(−σ|x|2) and ∂v0

∂x1
≤ 0.

Recall

(2.13) S(t) exp(−σ|x′|2) = (1 + 4σt)−
N−1

2 exp

(
−
σ|x′|2

1 + 4σt

)
,

and we find

(2.14) v(0, x′, t) ≥ S(t)S1(t)v0(0, x′) ≥ m(1 + 4σt)−
N
2 exp

(
−
σ|x′|2

1 + 4σt

)
.

We first consider the case 0 < p < 1. Combining (2.14) and (2.5), we have

u(0, x′, t) ≥ mp

∫ t

0

(π(t− η))−
1
2 (1 + 4ση)−

pN
2 S(t− η) exp

(
−
pσ|x′|2

1 + 4ση

)
dη

≥ 2mp
(σ
π

) 1
2

(1 + 4σt)−
N
2 exp

(
−
pσ|x′|2

1 + 4pσt

)
×

∫ t

0

(1 + 4ση)
N(1−p)−1

2 dη(2.15)

≥
mp(σπ)−

1
2

N(1− p) + 1
(1 + 4σt)−

N
2 (4σt)

N(1−p)+1
2 exp

(
−
pσ|x′|2

1 + 4pσt

)
.

Thus by (2.2b)

v(x1, x
′, t) ≥

∫ t

0

(π(t− η))−
1
2 exp

(
−

x2
1

4(t− η)

)
S(t− η)uq(0, x′, η) dη

≥ c(1 + 4pqσt)−
N−1

2 exp

(
−
pqσ|x′|2

1 + 4pσt

)
×

∫ t

0

(1 + 4ση)−
qN
2 (1 + 4pση)

N−1
2(2.16)

× (4ση)(N(1−p)+1)q/2(t− η)−
1
2 exp

(
−

x2
1

4(t− η)

)
dη,
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with c = mpqσ−q/2π−(q+1)/2(N(1− p) + 1)−q, and we find

S1(t)v(0, x′, t) ≥ c(1 + 4pqσt)−
N−1

2 exp

(
−
pqσ|x′|2

1 + 4pσt

)
×

∫ t

0

(1 + 4ση)−
qN
2 (1 + 4pση)

N−1
2 (4ση)(N(1−p)+1)q/2

×

∫ ∞
0

(πt(t− η))−
1
2 exp

(
−
y2

1

4t
−

y2
1

4(t− η)

)
dy1 dη(2.17)

=
c

2
(1 + 4pqσt)−

N−1
2 exp

(
−
pqσ|x′|2

1 + 4pσt

)∫ t

0

(2t− η)−
1
2

× (1 + 4ση)−
qN
2 (1 + 4pση)

N−1
2 (4ση)(N(1−p)+1)q/2 dη.

Note that 1+4pση > p(1+4ση) and 4ση > (1+4ση)/2 for η > 1/(4σ) and that

(1 + 4pqσt)−
N−1

2 ≥ (pq)−
N−1

2 (1 + 4σt)−
N−1

2 and (2t− η)−
1
2 ≥ (2σ)

1
2 (1 + 4σt)−

1
2 ,

we then have

S1(t)v(0, x′, t) ≥ c1(1 + 4σt)−
N
2 exp

(
−
pqσ|x′|2

1 + 4pσt

)∫ t

1
4σ

(1 + 4ση)λ dη,

where

λ = −
qN

2
+
N − 1

2
+

(N(1− p) + 1)q

2
=

1

2
((q + 1)− (pq − 1)N)− 1 ≥ −1,

since pq ≤ 1 + (max(p, q) + 1)/N . Hence

S1(t)v(0, x′, t) ≥ c1(1 + 4σt)−
N
2 exp

(
−
pqσ|x′|2

1 + 4pσt

)∫ t

1
4σ

(1 + 4ση)−1 dη

=
c1

4σ
(1 + 4σt)−

N
2 exp

(
−
pqσ|x′|2

1 + 4pσt

)
log

(
1 + 4σt

2

)
whenever t > 1/(4σ). In view of (2.13), we observe

S(t)(S1(t)v(0, x′, t))p ≥ c2(1 + 4σt)−
pN
2 logp

(
1 + 4σt

2

)(
1 +

4p2qσt

1 + 4pσt

)−N−1
2

× exp

(
−

p2qσ|x′|2

1 + 4pσ(1 + pq)t

)
.

In particular, setting x′ = 0, we find

(2.18) (1 + 4σt)
pN
2 S(t)(S1(t)v(0, t))p ≥ c2(1 + pq)−

N−1
2 logp

(
1 + 4σt

2

)
,
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which would contradict (2.12b) if the solution of (1.1) is global.

Next for the case p ≥ 1, after conducting a similar discussion, we finally reach

S1(t)v(0, x′, t) ≥ c3(1 + 4σt)−
N
2 exp

(
−
pqσ|x′|2

1 + 4σt

)
log

(
1 + 4σt

2

)
.

Hence

S(t)S1(t)v(0, x′, t) ≥ c3(1 + 4σt)−
N
2 log

(
1 + 4σt

2

)(
1 +

4pqσt

1 + 4σt

)−N−1
2

× exp

(
−

pqσ|x′|2

1 + 4σ(1 + pq)t

)
,

and consequently,

(2.19) (1 + 4σt)
N
2 S(t)S1(t)v(0, t) ≥ c3(1 + pq)−

N−1
2 log

(
1 + 4σt

2

)
,

which, taking (2.12a) into account, does not permit the global existence of solutions

of (1.1). The proof is then completed.

2.2 The Case max(α, β) < N
2

We begin this section by showing the global existence of solutions to (1.1) with

small initial data. We shall use a modification of an argument in [GL]. To this

end, we look for a supersolution of the self-similar type:

(2.20) ū(x, t) = (t0 + t)−αf(ζ), v̄(x, t) = (t0 + t)−βg(ζ)

where

(2.21) ζ = (ζ1, ζ
′) with ζ′ =

x′

(t0 + t)1/2
, ζ1 =

x1

(t0 + t)1/2
,

here t0 > 0 is a constant. As a supersolution, (f, g) must satisfy

(2.22) ∆f +
1

2
ζ · ∇f + αf ≤ 0, ∆g +

1

2
ζ · ∇g + βg ≤ 0

and

(2.23) −
∂f

∂ζ1
≥ gp, −

∂g

∂ζ1
≥ f q at ζ1 = 0.

Consider two cases.
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Case 1: p ≥ 1. Let

f(ζ) = Ae−σ(|ζ′|2+(ζ1+δ)2) and g(ζ) = Be−σ(|ζ′|2+(ζ1+δ)2),

where A,B, σ, and δ are positive constants. Then (2.22) is satisfied if

(2.24) (β − 2Nσ + 4σ2δ2) + σδ(8σ − 1)ζ1 + σ(4σ − 1)|ζ|2 ≤ 0

for ζ ∈ RN+ , and (2.23) is equivalent to

(2.25) 2σδAeσ(p−1)(|ζ′|2+δ2) ≥ Bp and 2σδBeσ(q−1)(|ζ′|2+δ2) ≥ Aq.

One can see that (2.24) is valid for sufficiently small δ if

β − 2Nσ < 0 and 4σ − 1 < 0,

i.e., if β < N/2.

Then letting B = (2σδA)1/pe(p−1)σδ2 , we find that (2.25) holds if A is small

enough to assure (2σδ)p+1e(pq−1)σδ2

≥ Apq−1.

Case 2: 0 < p < 1. Set

f(ζ) = Ae−σ1(|ζ′|2+(ζ1+δ)2) and g(ζ) = Be−σ2(|ζ′|2+(ζ1+δ)2)

where σ1 and σ2 are positive constants with σ1 = pσ2. Then (2.22) becomes

(2.26a) (α− 2Nσ1 + 4σ2
1δ

2) + σ1δ(8σ1 − 1)ζ1 + σ1(4σ1 − 1)|ζ|2 ≤ 0

and

(2.26b) (β − 2Nσ2 + 4σ2
2δ

2) + σ2δ(8σ2 − 1)ζ1 + σ2(4σ2 − 1)|ζ|2 ≤ 0

for ζ ∈ RN+ , and (2.23) is valid if

(2.27a) 2σ1δAe
−σ1(|ζ′|2+δ2) ≥ Bpe−pσ2(|ζ′|2+δ2)

and

(2.27b) 2σ2δBe
−σ2(δ2+|ζ′|2) ≥ Aqe−qσ1(δ2+|ζ′|2).

It is easy to check that (2.26b) holds for any 0 < δ � 1 if

β − 2Nσ2 < 0 and 4σ2 − 1 < 0,

which again implies that β < N/2. Then (2.26a) is also true, since (p + 1)/2

(pq − 1) < (p+ pq)/2(pq − 1) < 2Npσ2 = 2Nσ1.
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To ensure the validity of equations (2.27), we choose B = (2σ1δA)1/p and then

make A sufficiently small such that p−p(2σ1δ)
p+1e(pq−1)σ1δ

2

≥ Apq−1.

We now turn our attention to the blow up of solutions of (1.1) for large initial

data. We shall discuss it in a similar manner as that in [EH1]. First consider the

case 0 < p < 1.

Using (2.2) and Jensen’s inequality, we find

u(0, x′, t) ≥ S(t)S1(t)u0(0, x′) + π−
p+1

2

∫ t

0

(t− η)−
1
2S(t− η)

×

(∫ η

0

(η − τ)−
1
2S(η − τ)uq(0, x′, τ)dτ

)p
dη

≥ S(t)S1(t)u0(0, x′) + 2p−1π−
p+1

2

∫ t

0

(t− η)−
1
2 η

p−1
2

×

∫ η

0

(η − τ)−
1
2S(t− τ)upq(0, x′, τ) dτ dη(2.28)

≥ S(t)S1(t)u0(0, x′) + 2p−1π−
p+1

2 t
p−1

2

∫ t

0

∫ t

τ

((t− η)(η − τ))−
1
2

× S(t− τ)upq(0, x′, τ) dη dτ

= S(t)S1(t)u0(0, x′) + 2p−1π
1−p

2 t
p−1

2

∫ t

0

S(t− τ)upq(0, x′, τ) dτ.

Suppose that u0(x) ≥ Ce−σ|x|
2

with arbitrary σ > 0 and undetermined C ≥ 1.

Then by (2.13) we have

u(0, x′, t) ≥ S(t)S1(t)u0(0, x′)(2.29)

≥ C(1 + 4σt)−
N
2 exp

(
−
σ|x′|2

1 + 4σt

)
≡ I0(x′, t).

Define

I1(x′, t) =
t
p−1

2

2

∫ t

0

S(t− τ)Iµ0 (x′, τ) dτ,

where µ = pq.

From (2.28) and (2.29), we then obtain

u(0, x′, t) ≥ I0(x′, t) +
Cµ

2
t
p−1

2

∫ t

0

S(t− τ)(I0 + I1)µ(x′, τ) dτ

≥ I0(x′, t) + I1(x′, t) +
t
p−1

2

2

∫ t

0

S(t− τ)Iµ1 (x′, τ) dτ.

Thus setting

(2.30) Ik+1(x′, t) =
t
p−1

2

2

∫ t

0

S(t− τ)Iµk (x′, τ) dτ
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for k = 0, 1, 2, . . . , by induction we find

(2.31) u(0, x′, t) ≥
m∑
k=0

Ik(x′, t)

for any integer m > 0.

Furthermore, for k = 1, 2, . . . , Ik(x′, t) satisfies

Ik(x′, t) ≥ Cµ
k

2−µ
k−1

µ−(N−1)(µk−1+2µk−2+···+(k−1)µ+k)/2

× t(p+1)(µk−1+µk−2+···+µ+1)/2(1 + 4σt)−(N/2)µk exp

(
−
µkσ|x′|2

1 + 4σt

)
Dk,

where

Dk =

(
1

(p+ 1)µ+ 2

)µk−2 (
1

(p+ 1)(µ+ 1)µ+ 2

)µk−3

· · ·

(
1

(p+ 1)(µk−2 + µk−3 + · · ·+ 1)µ+ 2

)
.

Then proceeding as in the proof of Theorem 4 of [EH1], we conclude that if C is

large enough, then there exists a T > 0 such that Ik(0, T ) > C(1 + 4σT )−N/2 for

k = 1, 2, · · · , and consequently u(0, t)→∞ as t→ T−.

Next for the case p ≥ 1, we have

u(0, x′, t) ≥ S(t)S1(t)u0(0, x′) + π−
p+1

2

∫ t

0

(t− η)−
1
2

×

(∫ η

0

(η − τ)−
1
2S(t− τ)uq(0, x′, τ)dτ

)p
dη

≥ S(t)S1(t)u0(0, x′) + π−
p+1

2 (2t)
1−p

2

×

(∫ t

0

∫ t

τ

((t− η)(η − τ))−
1
2S(t− τ)uq(0, x′, τ) dη dτ

)p
≥ S(t)S1(t)u0(0, x′) +

(π
2

)p−1
2

t(3−p−2q)/2

(∫ t

0

S(t− τ)u(0, x′, τ) dτ

)pq
.

Then by estimating

Ik+1(x′, t) = t(3−p−2q)/2

(∫ t

0

S(t− τ)Ik(x′, τ)dτ

)pq
for k = 0, 1, 2, . . . , with I0(x′, t) as that in (2.29), we can show that the solution

of (1.1) must blow up in a finite time.



A SYSTEM COUPLED ON THE BOUNDARY 183

3. Blow Up and Decay Rates in One Space Dimension

In this section we study the one dimensional problem:

ut = uxx, vt = vxx x > 0, t > 0,(3.1)

−ux(0, t) = vp(0, t), −vx(0, t) = uq(0, t) t > 0,(3.2)

u(·, 0) = u0 ≥ 0, v(·, 0) = v0 ≥ 0.(3.3)

We first discuss the decay rate in x for global solutions when max(α, β) < 1
2 . We

then establish the blow up rate for a suitable class of solutions which blow up in

a finite time.

We consider some explicit self-similar solutions of (3.1) which blow up in finite

time T . They are of the form

u(x, t) = (T − t)−αf−(ξ), v(x, t) = (T − t)−βg−(ξ)

where we take

ξ =
x

√
T − t

.

The functions f−, g− satisfy

f ′′−(ξ)−
ξ

2
f ′−(ξ)− αf−(ξ) = 0,

g′′−(ξ)−
ξ

2
g′−(ξ)− βg−(ξ) = 0 for ξ > 0,

(3.4)

−f ′−(0) = gp−(0),

−g′−(0) = fq−(0).
(3.5)

Lemma 3.1. Assume pq > 1. Then for any T > 0, there is a unique self-

similar solution of (3.1) which blows up at time T and stays bounded as x→ +∞
for t ∈ [0, T ). This solution has the following properties

(i) ut > 0, vt > 0 in [0,∞)× (0, T ).

(ii) u(x, T ) = k1x
−2α, v(x, T ) = k2x

−2β where

k1 = π−
1
2

(
βΓ(β + 1

2 )

Γ(β + 1)

) p
pq−1

(
αΓpq(α+ 1

2 )

Γ(α+ 1)

) 1
pq−1

and k2 is obtained from k1 by the interchange of α, β and p, q.

(iii) x2αu(x, t)→ k1 and x2βv(x, t)→ k2 as x→∞ for 0 ≤ t < T .
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Proof. As in [FQ, Lemma 3.1] one can show that the system (3.4), (3.5) has a

unique bounded solution given by

f−(ξ) = k1U(α,
1

2
,
ξ2

4
),

g−(ξ) = k2U(β,
1

2
,
ξ2

4
)

where

U(a, b, r) =
1

Γ(a)

∫ ∞
0

e−rtta−1(1 + t)b−a−1 dt.

To prove (i), we see that

ut = (T − t)−α−1(αf− +
1

2
ξf ′−)

= k1(T − t)−α−1(αU +
1

4
ξ2U3).

From this and the identity (cf. [AS])

a(1 + a− b)U(a+ 1, b, r) = aU(a, b, r) + rUr(a, b, r)

we easily see that ut > 0. The remaining assertions (ii) and (iii) follow from the

fact that

(3.6) U(a, b, r) = r−a[1 +O(r−1)] as r →∞.

�

Next we demonstrate the existence of positive global self-similar solutions

of (3.1), (3.2) when max(α, β) < 1
2 . These take the form

u(x, t) = (T0 + t)−αf+(ζ), v(x, t) = (T0 + t)−βg+(ζ)

where we take

ζ =
x

√
T0 + t

.

The functions f+, g+ satisfy

f ′′+(ζ) +
ζ

2
f ′+(ζ) + αf+(ζ) = 0,

g′′+(ζ) +
ζ

2
g′+(ζ) + βg+(ζ) = 0 for ζ > 0,

(3.7)

−f ′+(0) = gp+(0),

−g′+(0) = fq+(0).
(3.8)
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Lemma 3.2. Assume pq > 1 and max(α, β) < 1
2 . Let T0 > 0 be fixed. Then

(i) There is a unique positive global self-similar solution of (3.1), (3.2), both

of whose components decay in x like Gaussians for large x.

(ii) There is a one parameter family of positive global self-similar solutions

of (3.1), (3.2) such that u decays like x−2α and v decays like a Gaussian

for large x.

(iii) There is a one parameter family of positive global self-similar solutions

of (3.1), (3.2) such that v decays like x−2β and u decays like a Gaussian

for large x.

(iv) There is a two parameter family of positive global self-similar solutions

of (3.1), (3.2) such that u decays like x−2α and v decays like x−2β for

large x.

Proof. The general solution of (3.7) is given by

f+(ζ) = e−
ζ2

4

(
c1U(

1

2
− α,

1

2
,
ζ2

4
) + c2M(

1

2
− α,

1

2
,
ζ2

4
)

)
,

g+(ζ) = e−
ζ2

4

(
d1U(

1

2
− β,

1

2
,
ζ2

4
) + d2M(

1

2
− β,

1

2
,
ζ2

4
)

)
where

M(a, b, r) = 1 +
ar

b
+ · · ·+

a(a+ 1)...(a+ n− 1)

b(b+ 1)...(b+ n− 1)
rn + ...

and

(3.9) M(a, b, r) =
Γ(a)

Γ(b)
erra−b[1 +O(r−1)] as r → +∞

In order to satisfy (3.8) we must have c1 > 0, d1 > 0 since

f ′+(0) = −c1(
1

2
− α)

√
π

Γ(3
2 − α)

,

g′+(0) = −d1(
1

2
− β)

√
π

Γ(3
2 − β)

.

From the definitions of U , M and equations (3.6), (3.9) we observe that f+, g+

will remain positive if and only if c2 ≥ 0, d2 ≥ 0.

If c2 = d2 = 0, then there is a unique pair (c1, d1) such that (3.8) is satisfied

and this corresponds to the unique rapidly decaying solution claimed in (i).

If d2 = 0, then there is a c∗ > 0 such that for c2 = c∗, there is a unique pair

(c1, d1) such that (3.8) is satisfied while if c2 < c∗, there are two such pairs. This

establishes (ii). Claim (iii) follows by a similar argument if c2 = 0.

In order to establish the existence of the slowly decaying solutions claimed in

(iv) we observe that for any c2 > 0, d2 > 0, sufficiently small, there are c1, d1 such

that (3.8) holds. �
From these lemmas we obtain
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Theorem 3.3. Assume pq > 1 and max(α, β) < 1
2 .

(i) If u0, v0 > 0 and

lim inf
x→∞

x2αu0(x) ≥ k1 and lim inf
x→∞

x2βv0(x) ≥ k2

where the ki are as in Lemma (3.1), then the solution (u, v) of (3.1)–(3.3)

blows up in finite time.

(ii) There are global solutions (u, v) such that

lim
x→∞

x2αu(x, t) and lim
x→∞

x2βv(x, t)

exist and are positive for all t > 0.

Proof. The first statement follows from Lemma 3.1 by comparison with the

self-similar solution for sufficiently large T . The second statement follows from

Lemma 3.2(iv). �
Remark 3.1. If we consider the scalar problem

ut = uxx x > 0, t > 0,

−ux(0, t) = up(0, t) t > 0,

u(x, 0) = u0(x) ≥ 0 x ≥ 0,

then self-similar solutions give a precise characterization of the domain of attrac-

tion of zero if p > 2. Namely, u is global and decays to zero as t → ∞ only

if

u0(x) = O(x−
1
p−1 ) as x→∞.

On the other hand, there are global solutions such that

lim
x→∞

x
1
p−1u(x, t)

exists and is positive for all t > 0.

For the system (3.1)–(3.3) we do not know whether or not a solution can be

global if for example u0(x) behaves like x−2α−ε while v0(x) behaves like x−2β+ε.

Next we show that there is a class of solutions that blow up at the same rate

in t as the self-similar solutions of Lemma 3.1.

Theorem 3.4. Assume pq > 1 and min(p, q) ≥ 1. Assume that u0, v0 ∈ C3

and that

−u′0(0) = vp0(0), −v′0(0) = uq0(0),(3.10)

−u′′′0 (0) = pvp−1(0)v′′0 (0), −v′′′0 (0) = quq−1(0)u′′0 (0),(3.11)

(−1)iu
(i)
0 ≥ 0, (−1)iv

(i)
0 ≥ 0, i = 0, 1, 2, 3, x > 0,(3.12)

lim
x→∞

u0(x) = 0, lim
x→∞

v0(x) = 0,(3.13)

u′0 ≤ −v
p
0 , v′0 ≤ −u

q
0, x > 0.(3.14)
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Then the solution blows up in finite time T > 0 and for t ∈ (0, T ), we have

c1 ≤ (T − t)αu(0, t) ≤ c2,(3.15)

c3 ≤ (T − t)βv(0, t) ≤ c4(3.16)

where

c1 =
[
αp(2p)

p−1
p+1

]−α
, c2 =

(α
2

)−α
(2q)

p
pq−1 ,

c3 =
[
βq(2p)

q−1
q+1

]−β
, c4 =

(
β

2

)−β
(2p)

q
pq−1 .

Proof. From (3.13) it follows that

(3.17) lim
x→∞

u(x, t) = lim
x→∞

v(x, t) = 0.

By the maximum principle, it follows from (3.10)–(3.12) that

u, ut, v, vt ≥ 0 and ux, uxt, vx, vxt ≤ 0

for t ∈ (0, T ), T being the time of existence.

We now exploit an idea from [FQ]:

1

2
v2p(0, t) =

1

2
u2
x(0, t) = −

∫ ∞
0

uxx(x, t)ux(x, t) dx

= −

∫ ∞
0

ut(x, t)ux(x, t) dx

= − lim
x→∞

ut(x, t)u(x, t) + ut(0, t)u(0, t) +

∫ ∞
0

uxt(x, t)u(x, t) dx.

Hence on (0, T )

(3.18)
1

2
v2p(0, t) ≤ ut(0, t)u(0, t)

and analogously

(3.19)
1

2
u2q(0, t) ≤ vt(0, t)v(0, t).

Next we derive upper bounds for ut(0, t), vt(0, t). As in [B] for example, we define

on [0,∞)× [0, T )

J(x, t) = ux(x, t) + vp(x, t), K(x, t) = vx(x, t) + uq(x, t).
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The assumption (3.14) insures that

J(x, 0) ≤ 0, K(x, 0) ≤ 0.

A routine calculation yields

Jt − Jxx = −p(p− 1)vp−2v2
x ≤ 0,

Kt −Kxx = −q(q − 1)uq−2u2
x ≤ 0.

Here we used the assumption that min(p, q) ≥ 1. From (3.17) and the additional

observation that ux(x, t), vx(x, t)→ 0 as x→∞, we have

lim
x→∞

J(x, t) = lim
x→∞

K(x, t) = 0 .

Clearly

J(0, t) = K(0, t) = 0 .

Thus, by the maximum principle J ≤ 0, K ≤ 0 in [0,∞) × [0, T ). Therefore,

for every t ∈ (0, T ), the functions J(·, t), K(·, t) attain their maximum at x = 0.

Consequently Jx(0, t), Kx(0, t) ≤ 0. Writing out these two inequalities, we see

that on (0, T )

ut(0, t) ≤ pv
p−1(0, t)uq(0, t),(3.20)

vt(0, t) ≤ qu
q−1(0, t)vp(0, t).(3.21)

Combining (3.18) with (3.20) we obtain 1
2v

2pu−1 ≤ pvp−1uq or

(3.22) u ≥ (2p)−
1
q+1 v

p+1
q+1

on (0, T ). (Here and in the rest of the proof the argument (0, t) is omitted). Using

(3.22) in (3.19) we have

(3.23) vt ≥
1

2
(2p)−

2q
2q+1 v1+ 1

β

which implies that T is finite. Writing (3.23) in the form

−β(v−
1
β )t ≥

1

2
(2p)−

2q
2q+1

and integrating over [t, T ) we obtain the second inequality in (3.16).

Combining (3.19) and (3.21) we obtain

(3.24) v ≥ (2q)−
1
p+1u

q+1
p+1 .
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From the inequalities (3.22) and (3.24), we see that u, v blow up in the same fi-

nite time T . Using (3.24) in (3.18) and integrating, we obtain the second inequality

in (3.15).

Combining (3.20) and (3.22) we have

ut ≤ p(2p)
p−1
p+1 u1+ 1

α

or

−α(u−
1
α )t ≤ p(2p)

p−1
p+1 .

Integrating this over [t, T ) gives the lower bound in (3.15). The lower bound in

(3.16) can be derived analogously using (3.21) and (3.24). �
Remark 3.2. The assumptions of Theorem 3.4 are satisfied if

u0(x) = ρ−1σ−pap+1+ρ(1−pq)(x+ a)−ρ,

v0(x) = σ−1ρ−qaq+1+σ(1−pq)(x+ a)−σ

where a > 0 is arbitrary and where ρ, σ solve the system

(ρ+ 1)(ρ+ 2) = pσ(σ + 1),(3.25)

(σ + 1)(σ + 2) = qρ(ρ+ 1)(3.26)

and satisfy the inequalities

ρ > 2α, σ > 2β.

We show that such ρ, σ exist if p, q are as in Theorem 3.4. We consider the cases

(a) 1 = p < q, (b) 1 < p = q and (c) 1 < p < q.

(a) We see that (3.25) holds if ρ = σ − 1. But then (3.26) is a quadratic in σ

with larger root

σ ≥
q + 3

q − 1
> 2β

and

ρ = σ − 1 ≥
4

q − 1
> 2α.

(b) If p = q, then φ(ρ) = φ(σ) where φ(ρ) = ρ(ρ+1)2(ρ+2). Therefore ρ = σ

if both are positive. The system then reduces to a single equation and we

have

ρ = σ =
2

p− 1
> 2α = 2β =

1

p− 1
.

(c) We will be done if we construct families of mappings Fτ and domains

Ωτ ⊂ R2, 1 ≤ τ ≤ τ0, such that

d(F1,Ω1, 0) = −1 (Here d is the Brouwer degree.),(3.27)

Fτ (ρ, σ) 6= 0 if (ρ, σ) ∈ ∂Ωτ ,(3.28)

Fτ0(ρ, σ) = 0 is equivalent to (3.25), (3.26),(3.29)

Ωτ0 ⊂ (2α,∞)× (2β,∞).(3.30)
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In order to do this set r =
√
pq, τ0 =

√
q
p ,

Fτ (ρ, σ) =

(
fτ (ρ, σ)

gτ (ρ, σ)

)
for 1 ≤ τ ≤ τ0,

fτ (ρ, σ) = (ρ+ 1)(ρ+ 2)−
r

τ
σ(σ + 1),

gτ (ρ, σ) = (σ + 1)(σ + 2)− rτρ(ρ + 1),

ρ0(τ) =
r
τ

+ 1

r2 − 1
, σ0(τ) =

rτ + 1

r2 − 1
, R =

2(r2 + 1)

r2 − 1
,

and

Ωτ = (ρ0(τ), R) × (σ0(τ), R).

With these definitions, (3.29), (3.30) hold.

By the argument in (b), (ρ1, σ1) = ( 2
r−1 ,

2
r−1) is the unique root (in Ω1)

of F1(ρ, σ) = 0. If we calculate the Jacobian JF1(ρ1, σ1) we find that

JF1(ρ1, σ1) = −
r3 + 7r2 + 7r + 1

r − 1
< 0

and (3.27) follows.

In order to establish (3.28) we first show that Fτ (ρ, σ) 6= 0 if ρ = ρ0(τ).

If gτ (ρ, σ) = 0, we find that

fτ (ρ, σ) = (1− r2)ρ(ρ+ 1) + 2(ρ+ 1) + 2
r

τ
(σ + 1)

and hence

fτ (ρ0(τ), σ) =
( r
τ

+ r2)(1− r
τ

) + 2 r
τ

(rτ + r2)

r2 − 1
> 0

if σ ≥ σ0(τ). Analogously, if fτ (ρ, σ0(τ)) = 0, then gτ (ρ, σ0(τ)) > 0 for

ρ ≥ ρ0(τ).

On the other parts of the boundary, we have:

fτ (R, σ) < −2r(r − τ−1)(R + 1) < 0 if σ ≤ R and gτ (R, σ) = 0,

gτ (ρ,R) < −2r(r − τ−1)(R + 1) < 0 if ρ ≤ R and fτ (ρ,R) = 0.

Remark 3.3. The inequalities (3.15), (3.16) give upper and lower bounds for T

in terms of u0(0), v0(0).

Finally we construct a nontrivial solution with zero initial data if pq < 1.
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Theorem 3.5. If pq < 1 then problem (3.1)–(3.3) with u0 ≡ v0 ≡ 0 has a

nontrivial, nonnegative solution.

Proof. If pq < 1 then max(α, β) < 0. We construct a self-similar solution of the

form

u(x, t) = t−αf+(ζ), v(x, t) = t−βg+(ζ) for ζ =
x
√
t

where (f+, g+) is a positive solution of (3.7), (3.8) that decays to (0, 0) as ζ →∞.

We take

f+(ζ) = c1e
− ζ

2

4 U(
1

2
− α,

1

2
,
ζ2

4
),

g+(ζ) = d1e
− ζ

2

4 U(
1

2
− β,

1

2
,
ζ2

4
)

where

c1 = π−
1
2

(
(1

2 − β)Γ(1− β)

Γ(3
2 − β)

) p
pq−1

(
(1

2 − α)Γpq(1− α)

Γ(3
2 − α)

) 1
pq−1

and where d1 is obtained from c1 by the interchange of α, β and p, q. From (3.6)

we see that (f+, g+) decays like (e−
ζ2

4 ζ2α−1, e−
ζ2

4 ζ2β−1) as ζ → ∞. From the

identity

Ur(a, b, r) = −aU(a+ 1, b+ 1, r)

we see that f+, g+ are decreasing. Therefore the solution (u, v) converges to (0, 0)

as t→ 0+ uniformly and in any [Lr(R+)]2. �
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