A NOTE ON CONGRUENCE LATTICES OF DISTRIBUTIVE *p*-ALGEBRAS

R. BEAZER

1. INTRODUCTION

T. Katriňák [4] (see also [5]) has characterized the congruence lattices of distributive p-algebras within the class of algebraic lattices using his triple construction of distributive p-algebras. In this note we give a short, virtually self-contained proof of his result based on some fundamental properties of principal congruences of distributive lattices and p-algebras.

2. Preliminaries

A (distributive) *p*-algebra is an algebra $\langle L; \lor, \land, \ast, 0, 1 \rangle$ whose reduct $\langle L; \lor, \land, 0, 1 \rangle$ is a bounded (distributive) lattice and whose unary operation \ast is characterized by $x \leq a^{\ast}$ if and only if $a \land x = 0$. If *L* is a *p*-algebra, $B(L) = \{x \in L : x = x^{\ast\ast}\}$ and $D^{\ast}(L) = \{x \in L : x^{\ast\ast} = 1\}$ then $\langle B(L); \cup, \land, 0, 1 \rangle$ is a Boolean algebra when $a \cup b$ is defined to be $(a^{\ast} \land b^{\ast})^{\ast}$, for any $a, b \in B(L)$, $D^{\ast}(L) = \{x \lor x^{\ast} : x \in L\}$ and is a filter of *L*.

A (distributive) dual *p*-algebra is an algebra $\langle L; \lor, \land, +, 0, 1 \rangle$ whose reduct $\langle L; \lor, \land, 0, 1 \rangle$ is a bounded (distributive) lattice and whose unary operation + is characterized by $x \ge a^+$ if and only if $a \lor x = 1$. In such an algebra, $D^+(L) = \{x \in L : x^{++} = 0\}$ is an ideal of *L*. A distributive *p*-algebra (dual *p*-algebra) *L* is said to be of order 3 if and only if $D^*(L)$ ($D^+(L)$) is relatively complemented. By a congruence relation of a *p*-algebra *L* we mean a lattice congruence θ of *L* preserving * and, for $a \in L$, we denote $\{x \in L : x \equiv a(\theta)\}$ by $[a]\theta$. The relation φ defined on *L* by $(a, b) \in \varphi$ if and only if $a^* = b^*$ is a congruence called the Glivenko congruence of *L*, $L/\varphi \cong B(L)$ and $[1]\varphi = D(L)$. $\theta(a, b)(\theta_{\text{lat}}(a, b))$ will denote the principal congruence of *L* (of the lattice reduct of *L*) collapsing a pair $a, b \in L$ and, for any filter *F* of *L*, $\Theta(F)$ ($\Theta_{\text{lat}}(F)$) will denote the smallest congruence of *L* will be denoted Con (*L*): it is distributive and algebraic and its join subsemilattice of compact elements will be denoted Comp (Con (*L*)).

Received June 1, 1993.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 06D15; Secondary 06B10.

For all unexplained terminology and notation we refer the reader to [1] or [3].

3. The Theorem

The following well known description of principal congruences of distributive lattices is crucial to our proof of Katriňák's theorem.

For a distributive lattice L and $a, b \in L$ with $a \leq b$,

$$\theta_{\text{lat}}(a,b) = \{(x,y) \in L^2 : x \land a = y \land a \text{ and } x \lor b = y \lor b\}.$$

Application of this result yields the **principal intersection formula**:

$$\theta_{\rm lat}(a,b) \wedge \theta_{\rm lat}(c,d) = \theta_{\rm lat}((a \lor c) \land (b \land d), b \land d),$$

which holds for any $a, b, c, d \in L$ with $a \leq b$ and $c \leq d$. Some fundamental properties of principal congruences of *p*-algebras which will be needed are contained in the following.

Lemma. Let L be a p-algebra. (1) A congruence of L is principal if and only if it is of the form $\theta(a, 1) \vee \theta(c, d)$, for some $a \in B(L)$ and $c, d \in L$ with $c \leq d$ and $c^* = d^*$. (2) If $\theta, \psi \in \text{Con}(L)$ and $\psi \leq \varphi$ then

$$\theta \lor \psi = \imath \Longleftrightarrow \theta = \imath$$
.

(3) For any $c, d \in L$ satisfying $c \leq d$ and $c^* = d^*$, $\theta(c, d) = \theta_{\text{lat}}(c, d)$ and, in the event that L is distributive and $a \in L$, $\theta(c, d) = \theta(c \vee c^*, d \vee c^*)$ and $\theta(a, 1) = \theta_{\text{lat}}(a, 1)$.

Proof. Part (1) is proved in [2] (see also [5]). Part (2) follows from the observation that if there is a sequence $0 = x_0, x_1, \ldots, x_n = 1$ in L with $x_{i-1} \equiv x_i(\theta \cup \psi)$ for all $i \in \{1, \ldots, n\}$ then $0 \equiv 1(\theta)$ is witnessed by the sequence $0 = x_0^{**}, x_1^{**}, \ldots, x_n^{**} =$ 1 since, for any $k \in \{1, \ldots, n\}$ with $x_{k-1} \equiv x_k(\psi), x_{k-1}^{**} \equiv x_k^{**}(\varphi)$ and therefore $x_{k-1}^{**} = x_k^{**}$. The very last part of (3) is a consequence of the fact that $\Theta([a)) = \Theta_{\text{lat}}([a))$ holds for any a in any distributive p-algebra (see [1]) and the remainer is proved in [2].

We are now ready to give our proof.

Theorem (T. Katriňák). An algebraic lattice is the congruence lattice of a distributive p-algebra if and only if its join subsemilattice of compact elements is a distributive dual p-algebra of order 3.

Proof. Let L be a distributive p-algebra. Henceforth, let us write $\mathscr{D} = \{\theta_{\text{lat}}(c,d) : d \ge c \in D^*(L)\}$. The join subsemilattice K = Comp(Con(L))

of Con (L) is closed under meets. Indeed, K, being the set of finite joins of principal congruences of L, consists of all congruences of the form $\theta_{\text{lat}}(a, 1) \vee \bigvee \mathscr{E}$, where $a \in B(L)$ and \mathscr{E} is a finite subset of \mathscr{D} , by parts (1) and (3) of the lemma in conjunction with the fact that $\theta(a, 1) \vee \theta(b, 1) = \theta(a \wedge b, 1)$, for any $a, b \in L$. By the distributivity of Con (L), the meet of two members of K is a finite join of congruences: one being of the form $\theta_{\text{lat}}(a, 1) \wedge \theta_{\text{lat}}(b, 1)$ while the rest are of the form $\theta_{\text{lat}}(a, 1) \wedge \theta$ or $\theta \wedge \psi$, where $a, b \in B(L)$ and $\theta, \psi \in \mathscr{D}$. However, $\theta_{\text{lat}}(a, 1) \wedge \theta_{\text{lat}}(b, 1) = \theta_{\text{lat}}(a \vee b, 1)$ and the remaining congruences in question belong to \mathscr{D} ; by the principal intersection formula, the fact that congruences of the second and third type are below φ , and part (3) of the lemma. Thus, K is a sublattice of Con (L). Next, for convenience sake, we imitate Katriňák's proof in [5] of the fact that K is dually pseudocomplemented. To this end, let $\theta, \psi \in K$. Then there exist $a, b \in B(L)$ and finite subsets \mathscr{E} , \mathscr{F} of \mathscr{D} such that

$$\theta = \theta_{\text{lat}}(a, 1) \lor \mathscr{E} \text{ and } \psi = \theta_{\text{lat}}(b, 1) \lor \mathscr{F}.$$

Now, if $\theta \lor \psi = i$ then $\theta_{\text{lat}}(a \land b, 1) = i$, by part (2) of the lemma, so that $a \land b = 0$ and therefore $b \le a^*$. Consequently, $\psi \ge \theta_{\text{lat}}(b, 1) \ge \theta_{\text{lat}}(a^*, 1)$. Furthermore,

$$\theta \lor \theta_{\mathrm{lat}}(a^*, 1) \ge \theta_{\mathrm{lat}}(a, 1) \lor \theta_{\mathrm{lat}}(a^*, 1) = \theta_{\mathrm{lat}}(a \land a^*, 1) = \theta_{\mathrm{lat}}(0, 1) = i.$$

Thus, θ^+ exists in K and is $\theta_{\text{lat}}(a^*, 1)$. It is now easy to show that $D^+(K)$ consists of the joins of all finite subsets of \mathscr{D} . To show that $D^+(K)$ is relatively complemented it is enough to show that every interval of the form $[\omega, \theta]$ in $D^+(K)$ is Boolean and for this it suffices to show that any $\theta_{\text{lat}}(c,d) \leq \theta$, with $d \geq c \in D^*(L)$, has a complement in the interval $[\omega, \theta]$ of $D^+(K)$. We note that $\theta'(c,d) = \theta_{\text{lat}}(0,c) \vee \theta_{\text{lat}}(d,1)$ is the complement of $\theta_{\text{lat}}(c,d)$ in the congruence lattice of the lattice reduct of L and claim that $\overline{\theta}(c,d) = \theta'(c,d) \wedge \theta$ is the complement of $\theta_{\text{lat}}(c,d)$ in $[\omega, \theta]$. Obviously we need only show that $\overline{\theta}(c,d) \in D^+(K)$. Recall that $\theta \in D^+(K)$ and so is the join of a finite subset of \mathscr{D} . Therefore $\overline{\theta}(c,d)$ is the join of a finite subset of the union \mathscr{C} of

$$\{ heta_{ ext{lat}}(0,c)\wedge heta:c\in D^*(L), heta\in\mathscr{D}\} \quad ext{and}\quad \{ heta_{ ext{lat}}(d,1)\wedge heta:d\in D^*(L), heta\in\mathscr{D}\}.$$

However, the members of \mathscr{C} are below φ and so the principal congruence formula in conjunction with part (3) of the lemma shows that $\mathscr{C} = \mathscr{D}$. Thus, $\overline{\theta}(c, d) \in D^+(K)$.

Conversely, let us suppose that A is an algebraic lattice whose compact elements form a distributive dual p-algebra K of order 3. Then the dual of the lattice reduct of K, construed as a distributive p-algebra L, is of order 3. We show that $A \cong \operatorname{Con}(L)$ for which it suffices to show that $K \cong \operatorname{Comp}(\operatorname{Con}(L))$. Observe that if $d \ge c \in D^*(L)$ then there exists $e \in D^*(L)$ such that the interval [c,d] of L transposes up to [e,1], since $D^*(L)$ is relatively complemented, and so $\theta(c,d) =$ $\theta(e,1)$. Therefore $\operatorname{Comp}(\operatorname{Con}(L)) = \{\theta(x,1) : x \in L\}$, by part (1) of the lemma. Finally, note that, for $k, \ell \in L, k \leq \ell \Leftrightarrow \theta(\ell, 1) \leq \theta(k, 1)$. Indeed, if $\theta(\ell, 1) \leq \theta(k, 1)$ then $[\ell] = [1]\theta_{\text{lat}}(\ell, 1) = [1]\theta(\ell, 1) \subseteq [1]\theta(k, 1) = [1]\theta_{\text{lat}}(k, 1) = [k)$, by part (3) of the lemma, and so $k \leq \ell$. Thus, $A \cong \text{Con}(L)$.

Concluding remarks.

It is known that distributive *p*-algebras of order 3 are, in fact, Heyting algebras (see [4]). Furthermore, other characterizations of distributive *p*-algebras (dual *p*-algebras) of order 3 are known. Indeed, for a distributive *p*-algebra *L*, the following are equivalent. (1) *L* is of order 3, (2) *L* is congruence permutable, (3) there is no 3-element chain in the poset of prime ideals of *L*, (4) given any $x, y \in L$ with $x \leq y$, there exist $x', y' \in L$ such that $0 = x \wedge x', x \vee x' = y \wedge y'$ and $y \vee y' = 1$. For these and related results the reader is referred to [2] and the references therein.

References

- Balbes R. and Dwinger P., *Distributive Lattices*, University of Missouri Press, Columbia, Missouri, 1974.
- Beazer R., Principal congruence properties of some algebras with pseudocomplementation, Portugal. Math. 50 (1993), 75–86.
- 3. Grätzer G., General Lattice Theory, Birkhäuser Verlag, Basel and Stuttgart, 1978.
- 4. Katriňák T., Congruence lattices of distributive p-algebras, Algebra Univ. 7 (1977), 265–271.
- 5. _____, Congruence lattices of finite p-algebras, preprint.

R. Beazer, Department of Mathematics, University of Glasgow, Glasgow G12 8QW, Scotland