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A NOTE ON CONGRUENCE LATTICES

OF DISTRIBUTIVE p–ALGEBRAS

R. BEAZER

1. Introduction

T. Katriňák [4] (see also [5]) has characterized the congruence lattices of dis-

tributive p-algebras within the class of algebraic lattices using his triple construc-

tion of distributive p-algebras. In this note we give a short, virtually self-contained

proof of his result based on some fundamental properties of principal congruences

of distributive lattices and p-algebras.

2. Preliminaries

A (distributive) p-algebra is an algebra 〈L;∨,∧, ∗, 0, 1〉 whose reduct

〈L;∨,∧, 0, 1〉 is a bounded (distributive) lattice and whose unary operation ∗ is

characterized by x ≤ a∗ if and only if a ∧ x = 0. If L is a p-algebra, B(L) =

{ x ∈ L : x = x∗∗ } and D∗(L) = { x ∈ L : x∗∗ = 1 } then 〈B(L);∪,∧, 0, 1〉 is

a Boolean algebra when a ∪ b is defined to be (a∗ ∧ b∗)∗, for any a, b ∈ B(L),

D∗(L) = { x ∨ x∗ : x ∈ L } and is a filter of L.

A (distributive) dual p-algebra is an algebra 〈L;∨,∧,+, 0, 1〉 whose reduct

〈L;∨,∧, 0, 1〉 is a bounded (distributive) lattice and whose unary operation + is

characterized by x ≥ a+ if and only if a ∨ x = 1. In such an algebra, D+(L) =

{x ∈ L : x++ = 0} is an ideal of L. A distributive p-algebra (dual p-algebra) L is

said to be of order 3 if and only if D∗(L) (D+(L)) is relatively complemented.

By a congruence relation of a p-algebra L we mean a lattice congruence θ of L

preserving ∗ and, for a ∈ L, we denote {x ∈ L : x ≡ a(θ)} by [a]θ. The relation ϕ

defined on L by (a, b) ∈ ϕ if and only if a∗ = b∗ is a congruence called the Glivenko

congruence of L, L/ϕ ∼= B(L) and [1]ϕ = D(L). θ(a, b)(θlat(a, b)) will denote

the principal congruence of L (of the lattice reduct of L) collapsing a pair a, b ∈ L
and, for any filter F of L, Θ(F ) (Θlat(F )) will denote the smallest congruence

of L (of the lattice reduct of L) collapsing F . The congruence lattice of L will

be denoted Con (L): it is distributive and algebraic and its join subsemilattice of

compact elements will be denoted Comp (Con (L)).
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For all unexplained terminology and notation we refer the reader to [1] or [3].

3. The Theorem

The following well known description of principal congruences of distributive

lattices is crucial to our proof of Katriňák’s theorem.

For a distributive lattice L and a, b ∈ L with a ≤ b,

θlat(a, b) = {(x, y) ∈ L2 : x ∧ a = y ∧ a and x ∨ b = y ∨ b}.

Application of this result yields the principal intersection formula:

θlat(a, b) ∧ θlat(c, d) = θlat((a ∨ c) ∧ (b ∧ d), b ∧ d),

which holds for any a, b, c, d ∈ L with a ≤ b and c ≤ d. Some fundamental

properties of principal congruences of p-algebras which will be needed are contained

in the following.

Lemma. Let L be a p-algebra.

(1) A congruence of L is principal if and only if it is of the form θ(a, 1) ∨ θ(c, d),

for some a ∈ B(L) and c, d ∈ L with c ≤ d and c∗ = d∗.

(2) If θ, ψ ∈ Con (L) and ψ ≤ ϕ then

θ ∨ ψ = ı⇐⇒ θ = ı .

(3) For any c, d ∈ L satisfying c ≤ d and c∗ = d∗, θ(c, d) = θlat(c, d) and, in the

event that L is distributive and a ∈ L, θ(c, d) = θ(c ∨ c∗, d ∨ c∗) and θ(a, 1) =

θlat(a, 1).

Proof. Part (1) is proved in [2] (see also [5]). Part (2) follows from the observa-

tion that if there is a sequence 0 = x0, x1, . . . , xn = 1 in L with xi−1 ≡ xi(θ∪ψ) for

all i ∈ {1, . . . , n} then 0 ≡ 1(θ) is witnessed by the sequence 0 = x∗∗0 , x∗∗1 , . . . , x
∗∗
n =

1 since, for any k ∈ {1, . . . , n} with xk−1 ≡ xk(ψ), x∗∗k−1 ≡ x∗∗k (ϕ) and there-

fore x∗∗k−1 = x∗∗k . The very last part of (3) is a consequence of the fact that

Θ([a)) = Θlat([a)) holds for any a in any distributive p-algebra (see [1]) and the

remainer is proved in [2]. �

We are now ready to give our proof.

Theorem (T. Katriňák). An algebraic lattice is the congruence lattice of a

distributive p-algebra if and only if its join subsemilattice of compact elements is

a distributive dual p-algebra of order 3.

Proof. Let L be a distributive p-algebra. Henceforth, let us write

= {θlat(c, d) : d ≥ c ∈ D∗(L)}. The join subsemilattice K = Comp (Con (L))
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of Con (L) is closed under meets. Indeed, K, being the set of finite joins of prin-

cipal congruences of L, consists of all congruences of the form θlat(a, 1) ∨
∨

,

where a ∈ B(L) and is a finite subset of , by parts (1) and (3) of the lemma

in conjunction with the fact that θ(a, 1) ∨ θ(b, 1) = θ(a ∧ b, 1), for any a, b ∈ L.

By the distributivity of Con (L), the meet of two members of K is a finite join

of congruences: one being of the form θlat(a, 1) ∧ θlat(b, 1) while the rest are of

the form θlat(a, 1) ∧ θ or θ ∧ ψ, where a, b ∈ B(L) and θ, ψ ∈ . However,

θlat(a, 1) ∧ θlat(b, 1) = θlat(a ∨ b, 1) and the remaining congruences in question

belong to ; by the principal intersection formula, the fact that congruences of

the second and third type are below ϕ, and part (3) of the lemma. Thus, K is a

sublattice of Con (L). Next, for convenience sake, we imitate Katriňák’s proof in

[5] of the fact that K is dually pseudocomplemented. To this end, let θ, ψ ∈ K.

Then there exist a, b ∈ B(L) and finite subsets , of such that

θ = θlat(a, 1) ∨ and ψ = θlat(b, 1) ∨ .

Now, if θ∨ψ = ı then θlat(a∧ b, 1) = ı, by part (2) of the lemma, so that a∧ b = 0

and therefore b ≤ a∗. Consequently, ψ ≥ θlat(b, 1) ≥ θlat(a
∗, 1). Furthermore,

θ ∨ θlat(a
∗, 1) ≥ θlat(a, 1) ∨ θlat(a

∗, 1) = θlat(a ∧ a
∗, 1) = θlat(0, 1) = ı.

Thus, θ+ exists in K and is θlat(a
∗, 1). It is now easy to show that D+(K)

consists of the joins of all finite subsets of . To show that D+(K) is relatively

complemented it is enough to show that every interval of the form [ω, θ] in D+(K)

is Boolean and for this it suffices to show that any θlat(c, d) ≤ θ, with d ≥ c ∈
D∗(L), has a complement in the interval [ω, θ] of D+(K). We note that θ′(c, d) =

θlat(0, c) ∨ θlat(d, 1) is the complement of θlat(c, d) in the congruence lattice of

the lattice reduct of L and claim that θ(c, d) = θ′(c, d) ∧ θ is the complement of

θlat(c, d) in [ω, θ]. Obviously we need only show that θ(c, d) ∈ D+(K). Recall that

θ ∈ D+(K) and so is the join of a finite subset of . Therefore θ(c, d) is the join

of a finite subset of the union of

{θlat(0, c) ∧ θ : c ∈ D∗(L), θ ∈ } and {θlat(d, 1) ∧ θ : d ∈ D∗(L), θ ∈ }.

However, the members of are below ϕ and so the principal congruence formula in

conjunction with part (3) of the lemma shows that = . Thus, θ(c, d) ∈ D+(K).

Conversely, let us suppose that A is an algebraic lattice whose compact elements

form a distributive dual p-algebra K of order 3. Then the dual of the lattice

reduct of K, construed as a distributive p-algebra L, is of order 3. We show that

A ∼= Con (L) for which it suffices to show that K ∼= Comp (Con (L)). Observe

that if d ≥ c ∈ D∗(L) then there exists e ∈ D∗(L) such that the interval [c, d] of

L transposes up to [e, 1], since D∗(L) is relatively complemented, and so θ(c, d) =

θ(e, 1). Therefore Comp (Con (L)) = {θ(x, 1) : x ∈ L}, by part (1) of the lemma.
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Finally, note that, for k, ` ∈ L, k ≤ `⇔ θ(`, 1) ≤ θ(k, 1). Indeed, if θ(`, 1) ≤ θ(k, 1)

then [`) = [1]θlat(`, 1) = [1]θ(`, 1) ⊆ [1]θ(k, 1) = [1]θlat(k, 1) = [k), by part (3) of

the lemma, and so k ≤ `. Thus, A ∼= Con (L). �

Concluding remarks.

It is known that distributive p-algebras of order 3 are, in fact, Heyting algebras

(see [4]). Furthermore, other characterizations of distributive p-algebras (dual p-

algebras) of order 3 are known. Indeed, for a distributive p-algebra L, the following

are equivalent. (1) L is of order 3, (2) L is congruence permutable, (3) there is

no 3-element chain in the poset of prime ideals of L, (4) given any x, y ∈ L with

x ≤ y, there exist x′, y′ ∈ L such that 0 = x∧x′, x∨x′ = y∧y′ and y∨y′ = 1. For

these and related results the reader is referred to [2] and the references therein.
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