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ON ESTIMATION OF A COVARIANCE

FUNCTION OF STATIONARY ERRORS IN

A NONLINEAR REGRESSION MODEL

F. ŠTULAJTER

Abstract. A nonlinear regression model with correlated, normally distributed sta-
tionary errors is investigated. Limit properties of an approximate estimator of an
unknown covariance function of stationary errors are studied and sufficient condi-
tions under which this estimator is consistent are shown.

1. Introduction

The theory of estimation in a nonlinear regression model has been extensively

studied by many authors (see Jennrich (1969), Rattkowsky (1983), Gallant (1987)

and others). The main effort was devoted to the study of problems of estimation

of unknown regression parameters by least squares method under the assump-

tion that errors are independent and identically distributed with some unknown

variance. Under these assumptions the limit properties of an approximate least

squares estimator of regression parameters and variance were derived. In this

connection the classical results are given by Jennrich (1969), Box (1971), Clarke

(1980), Pázman (1984), Wu (1981) and others. The case of correlated errors

was studied by Hannan (1971), Gallant and Goebel (1976), Gallant (1987) and

Štulajter (1992) and was devoted mainly to problems of estimation of regression

parameters and their limit properties. Cook and Tsai (1985) studied properties of

residuals in a nonlinear regression model with uncorrelated errors.

The aim of this article is to study the problem of estimation of parameters

of random errors which are assumed to be a finite part of a stationary gaussian

random process with an unknown covariance function which should be estimated.

Let us consider a random process y following a nonlinear regression model

(1) yt = f(xt, θ) + εt; t = 1, 2, . . .

where f is a model function, xt; t = 1, 2, . . . are assumed to be known k-dimensio-

nal vectors, θ = (θ1, . . . , θp)
′ is an unknown vector of regression parameters which
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108 F. ŠTULAJTER

belongs to some open set Θ. Further we’ll assume that the vector ε = (ε1, . . . , εn)′

has N(0,Σ) distribution, where Σij = R(|i − j|); i, j = 1, 2, . . . , n and R(·) is a

covariance function of a stationary stochastic process ε = {ε(t); t = 1, 2, . . . }.
This covariance function should be estimated, using the vector y = (y1, . . . , yn)′

of observations following the model (1). We’ll derive an approximate consistent

estimator of this covariance function. This estimator can be used e.g. in a kriging

method of prediction of a stochastic process (see Stein (1988)).

2. An Approximate Least Squares

Estimator and Approximate Residuals

The problem of estimation of the covariance function R(·) will be solved using

a stochastic approximation for the least squares estimator θ̂ given by

θ̂ = arg min
θ∈Θ

n∑
t=1

[yt − f(xt; θ)]
2
.

Using the idea of Box (1971) it was shown in Štulajter (1992) that the estimator

θ̂ can be approximated by the estimator θ̃ given by

(2) θ̃ = θ +Aε + (J ′J)−1

[
(ε′Nε)−

1

2
J ′(ε′A′HAε)

]
.

Here J is the n× p matrix of derivatives of f with Jij = ∂f(xi;θ)
∂θj

, i = 1, 2, . . . , n;

j = 1, 2, . . . , p, A = (J ′J)−1J ′ is the p × n matrix, (ε′A′HAε) denotes the n × 1

random vector with components ε′A′HjAε; j = 1, 2, . . . , n, where the p×p matrix

Hj is given by

(Hj)kl =
∂2f(xj ; θ)

∂θk∂θl
; k, l = 1, 2, . . . , p; j = 1, 2, . . . , n .

All the derivatives are assumed to be continuous and are computed at the true

value of the parameter θ. Next, (ε′Nε) denotes the p × 1 random vector with

components ε′Njε; j = 1, 2, . . . , p, where the n× n matrix Nj is given by

(Nj)kl =
n∑
i=1

(HiA)jkMil .

Here M is a projection matrix, M = I − J(J ′J)−1J ′.

Using a part of the Taylor expansion of f at the point θ̃ we get

(3) f(θ̃) = f(θ) + J(θ̃ − θ) +
1

2
(θ̃ − θ)′H(θ̃ − θ)
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where f(θ) = ((f(x1; θ), . . . , f(xn; θ))′ and (θ̃ − θ)′H(θ̃ − θ) denotes the n × 1

random vector with components (θ̃ − θ)′Hj(θ̃ − θ); j = 1, 2, . . . , n.

For the residuals ê = y − f(θ̃) we get, using (2) and (3), the expression

ê = y − f(θ̃) = ε− J

{
Aε + (J ′J)−1

[
(ε′Nε)−

1

2
J ′(ε′A′HAε)

]}
−

1

2

(
Aε+ (J ′J)−1

[
(ε′Nε)−

1

2
J ′(ε′A′HAε)

])′
H(

Aε+ (J ′J)−1

[
(ε′Nε)−

1

2
J ′(ε′A′HAε)

])
.

Using only the linear and quadratic (in components of ε) terms we can approximate

the residuals ε̂ by ε̃ given by

(4) ẽ = Mε−A′(ε′Nε)−
1

2
M(ε′A′HAε).

These residuals will be used for estimation the unknown covariance function R(·).
Some properties of residuals for the case of uncorrelated errors were studied by

Cook and Tsai (1985).

3. Estimation of a Covariance Function

As we have told in the introduction, we’ll assume that the vector ε has the

Nn(0,Σ) distribution with Σij = R(|i − j|). Now, let us consider the random

matrix Σ̃ given by

Σ̃ = ẽẽ′ = Mεε′M −A′(ε′Nε)ε′M −Mε(ε′Nε)′A+A′(ε′Nε)(ε′Nε)′A

−
1

2
Mε(ε′A′HAε)′M −

1

2
M(ε′A′HAε)ε′M(5)

+
1

2
A′(ε′Nε)(ε′A′HAε)′M +

1

2
M(ε′A′HAε)(ε′Nε)′A

+
1

4
M(ε′A′HAε)(ε′A′HAε)′M .

The estimators R̂(t) of R(t); t = 0, 1, . . . , n− 1 given by

(5a) R̂(t) =
1

n− t

n−t∑
s=1

(
ys+t − f(xs+t; θ̂)

)(
ys − f(xs; θ̂)

)
are the natural generalizations of the estimators of R(·) for the case when the mean

value follows a linear regression model which were studied in Štulajter (1989) and

(1991).
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The estimators R̂(t) can be approximated by the estimators

R̃(t) =
1

n− t

n−t∑
s=1

ẽt+sẽs; t = 0, 1, . . . , n− 1

with ẽ given by (4), which can be written in the form (they depend on n)

(6) R̃n(t) =
1

n− t
tr (BtΣ̃); t = 0, 1, . . . , n− 1 .

Here Bt; t = 0, 1, . . . , n− 1 are the block n× n matrices,

Bt =
1

2

[(
0 It
0 0

)
+

(
0 0

It 0

)]
with It being the (n − t) × (n − t) identity matrix and tr denotes the trace of a

matrix.

In the sequal we shall need the notion of the Euclidean inner product defined

for any n× n matrices A and B by (A,B) =
∑n
i,j=1 AijBij which can be written

as (A,B) = tr (AB′).

Thus the Schwarz inequality can be written as

| tr (AB′)| ≤ ‖A‖ ‖B‖, where ‖A‖ = (A,A)1/2.

It is easy to prove that ‖AB‖ ≤ ‖A‖ ‖B‖ for any matrices A and B and ‖ABt‖ ≤
‖A‖; t = 0, 1, . . . , n−1 for any matrix A and the matrices Bt defined in (6) (for the

proof of the last inequality we refer to Štulajter (1991)). Next, using the equality

tr (AB) = tr (BA), which holds for any matrices for which the products AB and

BA are defined and are square matrices, we can write:

tr (BtΣ̃) = ε′MBtMε− 2ε′MBtA
′(ε′Nε)− (ε′Nε)′ABtA

′(ε′Nε)

− (ε′A′HAε)′MBtMε + (ε′A′HAε)′MBtA
′(ε′Nε)

+
1

4
(ε′A′HAε)′MBtM(ε′A′HAε).

(7)

Now we shall study limit properties, as n tends to infinity, of the estimators

R̃n(t); t = 0, 1, . . . , n− 1 given by (6). The matrices Σ, M , H and others and also

their norms depend on n but this will not be announced later on.

Theorem. Let in the nonlinear regression model (1)

(8) (J ′nJn)−1 =
1

n
Gn ,
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where limn→∞Gn = G and G is a nonnegative definit matrix. Next, let the fol-

lowing limits

lim
n→∞

1

n

n∑
t=1

∂f(xt; θ)

∂θi

∂2f(xt; θ)

∂θj∂θk
(9)

lim
n→∞

1

n

n∑
t=1

∂2f(xt; θ)

∂θi∂θj

∂2f(xt; θ)

∂θk∂θl
(10)

exist and are finite for every i, j, k, l. Let the errors ε have Nn(0,Σ) distribution

with Σij = R(|i− j|); i, j = 1, 2, . . . , n and let

(11) lim
n→∞

1

n
‖Σ‖ = 0 .

Then the estimators R̃n(t) given by (6) converges for every fixed t in probability

to R(t) as n tends to infinity.

Proof. It was shown in Štulajter (1991) that

lim
n→∞

E

[
1

n
ε′MBtMε−R(t)

]2

= 0 if only lim
n→∞

1

n
‖Σ‖ = 0

and thus 1
n
ε′MBtMε converges in probability to R(t) for every t as n tends to

infinity. Thus the theorem will be proved if we show that all the members appear-

ing in (7) and multiplied by 1
n converge in probability to zero. Let us consider the

term 1
nε
′MBtA

′(ε′Nε). We can write:∣∣∣∣ 1nε′MBtA
′(ε′Nε)

∣∣∣∣2 ≤ 1

n2
‖Mε‖2‖BtA

′(ε′Nε)‖2 ≤
1

n
ε′Mε

1

n
‖A′(ε′Nε)‖2.

Now we shall prove that 1
nε
′Mε

P
−→ R(0) (converges in probability to R(0)) and

1
n
‖A′(ε′Nε)‖2

P
−→ 0 and thus their product converges in probability to zero. But

1
nε
′Mε = 1

nε
′MB0Mε (since B0 = I and M2 = M) and it was already shown that

this term converges to R(0). Next we have:

(A′(ε′Nε))i =
n∑
t=1

(A′HtAε)i(Mε)t for i = 1, 2, . . . , n and

1

n
‖A′(ε′Nε)‖2 =

1

n

n∑
i=1

(
n∑
t=1

(A′HtAε)i(Mε)t

)2

≤
1

n

n∑
i=1

n∑
t=1

(A′HtAε)
2
i

n∑
t=1

(Mε)2
t =

n∑
t=1

ε′A′HtAA
′HtAε

1

n
ε′Mε .
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Since 1
nε
′Mε

P
−→ R(0), it remains to prove that

∑n
t=1 ε

′A′HtAA
′HtAε

P
−→ 0. But

E [
∑n
t=1 ε

′A′HtAA
′HtAε] =

∑n
t=1 tr (A′HtAA

′HtAΣ), since E [ε′Cε] = tr (CΣ)

for any symmetric matrix C and thus∣∣∣∣∣E
[
n∑
t=1

ε′A′HtAA
′HtAε

]∣∣∣∣∣ ≤
n∑
t=1

|tr (A′HtAA
′HtAΣ)| ≤

n∑
t=1

‖A′HtA‖
2‖Σ‖ .

Next,

n∑
t=1

‖A′HtA‖
2 =

n∑
t=1

tr (A′HtAA
′HtA) = tr

(
n∑
t=1

Ht(J
′J)−1Ht(J

′J)−1

)
,

since AA′ = (J ′J)−1. Thus we have:

lim
n→∞

E

[
n∑
t=1

ε′A′HtAA
′HtAε

]
= 0

if the assumptions (8), (10) and (11) of the theorem are fulfilled. From the same

reasons, using the expression Var (ε′Cε) = 2 tr (CΣCΣ), which holds for any sym-

metric matrix C and any random vector ε having Nn(0,Σ) distribution, we get:

lim
n→∞

Var

[
n∑
t=1

ε′A′HtAA
′HtAε

]
= 0 .

Next, | 1
n

(ε′Nε)′ABtA
′(ε′Ne)| ≤ 1

n
‖A′(ε′Nε)‖2

P
−→ 0 as we have just shown.

Further, denote P = J(J ′J)−1J ′ = I −M . Then∣∣∣∣ 1n (ε′A′HAε)′MBtMε

∣∣∣∣ =
1

n
|(ε′A′HAε)(I − P )BtMε|

≤
1

n
(|ε′A′HAε)′BtMε|+ |(ε′A′HAε)PBtMε|) and(12) ∣∣∣∣ 1n (ε′A′HAε)′BtMε

∣∣∣∣ ≤ 1

n
‖(ε′A′HAε‖2

1

n
ε′Mε

≤ ε′A′Aε
1

n

n∑
t=1

ε′A′H2
t Aε

1

n
ε′Mε .

It is easy to prove that the mean values and variances of ε′A′Aε and

ε′A′ 1
n

∑n
t=1 H

2
t Aε converge to zero under the assumptions of the theorem and

thus these random variables converge to zero in probability. For the second term
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of the right hand side of the inequality (12) we have:∣∣∣∣ 1n (ε′A′HAε)′PBtMε

∣∣∣∣2 ≤ 1

n2
‖(ε′A′HAε)‖2‖PBtMε‖2

≤
1

n2
‖(ε′A′HAε)‖2‖P‖2‖BtMε‖2

≤
p

n
‖(ε′A′HAε)‖2

1

n
ε′Mε,

since P 2 = P , P = P ′ and thus ‖P‖2 = tr (P ) = rank (P ) = p.

Let us consider the last two terms of (7). We get, as before:

|(ε′A′HAε)′MBtA
′(ε′Nε)|

≤ |(ε′A′HAε)BtA
′(ε′Nε)|+ +|(ε′A′HAε)′PBtA

′(ε′Nε)| .

Next,

1

n2
|(ε′A′HAε)′BtA

′(ε′Nε)|2 ≤
1

n
‖(ε′A′HAε)‖2

1

n
‖A′(ε′Nε)‖2

and we know from our proof that both terms on the right hand side of the last

inequality converge to zero. Finally,

1

n2
|(ε′A′HAε)′PBtA

′(ε′Nε)|2 ≤
p

n
‖(ε′A′HAε)‖

1

n
‖A′(ε′Nε)‖2.

The last term of (7) can be bounded by the same way.

The proof of the theorem now follows from the derived results and from the

well known facts on convergence in probability:

a) Xn → X iff X2
n → X2

b) if Xn → X and Yn → Y , then XnYn → XY and aXn + bYn → aX + bY

c) if |Xn| ≤ |Yn| and Yn → 0, then Xn → 0 and

d) if E[Xn]→ 0 and Var [Xn]→ 0, then Xn → 0. �

Remarks. 1. The conditions (8), (9) and (10) are similar to those appearing

in Jennrich (1969), Wu (1981) and others studying the limit properties of the least

squares estimator θ̂ of θ. It was shown in Štulajter (1991) that for consistency

of estimators of a covariance function weaker conditions than for consistency of

regression parameters are requiared if the regression model is linear. A similar

situation occours in the case of nonlinear regression.

2. For estimating R(0) we have B0 = I. Two terms from (7) vanish in this

case, since MA′ = 0.

3. If the errors are uncorrelated with a common variance σ2 then 1
n
‖Σ‖ = 1

n1/2 σ
2

and the condition (11) of the theorem is fulfilled.
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4. For stationary errors we have:

‖Σ‖ =

(
nR2(0) + 2

n∑
t=1

(n− t)R2(t)

)1/2

and

1

n
‖Σ‖ ≤

(
1

n
R2(0) +

2

n

n∑
t=1

R2(t)

)1/2

.

It is easy to prove that limn→∞
1
n

∑n
t=1R

2(t) = 0 if limt→∞R(t) = 0. Thus the

condition (11) can be replaced by the more natural condition limt→∞R(t) = 0.

4. Simulation Results

Let us consider the random process y following the nonlinear regression model

y(t) = β1 + β2t+ γ1 cosλ1t+ γ2 sinλ1t+ γ3 cosλ2t+ γ4 sinλ2t+ ε(t);

t = 1, . . . , n where θ = (β1, β2, λ1, λ2, γ1, γ2, γ3, γ4)′ is an unknown vector of re-

gression parameters and ε is an AR(1) processs with an autoregression parameter

ρ and with a variance σ2 of a white noise.

The simulation study of the least squares estimates of θ for this model are given

in Štulajter (1992). Now we’ll illustrate properties of of the estimates R̂y given by

(5a) of the covariance function of y.

We have simulated 3 realizations of the process y of the length 51, 101, 201 with

θ = (3, 2, 0.75, 0.25, 3, 2, 3, 4)′, σ2 = 1, and with different values of the autoregres-

sion parameter ρ. In the following tables corresponding values of the R̂y and for

comparison also values of estimates R̂ε computed from realizations of the AR(1)

process ε with the mean value zero are given.

n = 51 R̂y(t) R̂ε(t) R̂y(t) R̂ε(t) R̂y(t) R̂ε(t) R̂y(t) R̂ε(t) R̂y(t) R̂ε(t)

t ρ = −0.8 ρ = −0.4 ρ = 0 ρ = 0.4 ρ = 0.8

0 3.11 3.22 1.01 1.18 0.78 0.98 0.82 1.13 1.14 1.72
1 -2.69 -2.69 -0.49 -0.48 -0.07 0.00 0.29 0.41 0.71 1.18
2 2.28 2.30 0.20 0.20 -0.04 -0.03 0.02 0.06 0.41 0.67
3 -2.06 -2.08 -0.19 -0.19 -0.07 -0.12 -0.05 -0.16 0.18 0.23
4 1.92 1.86 0.21 0.07 0.07 -0.09 0.00 -0.25 0.03 -0.06
5 -1.83 -1.85 -0.27 -0.26 -0.17 -0.21 -0.20 -0.33 -0.26 -0.26
6 1.64 1.64 0.17 0.15 0.01 0.00 -0.17 -0.16 -0.41 -0.21

Table 1.
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n = 101 R̂y(t) R̂ε(t) R̂y(t) R̂ε(t) R̂y(t) R̂ε(t) R̂y(t) R̂ε(t) R̂y(t) R̂ε(t)

t ρ = −0.8 ρ = −0.4 ρ = 0 ρ = 0.4 ρ = 0.8

0 2.02 2.10 0.81 0.88 0.74 0.79 0.87 0.92 1.33 1.44
1 -1.63 -1.67 -0.26 -0.28 0.04 0.03 0.33 0.35 0.92 1.00
2 1.37 1.38 0.06 0.05 -0.08 -0.08 0.00 0.01 0.53 0.54
3 -1.27 -1.26 -0.10 -0.09 -0.08 -0.07 -0.10 -0.11 0.28 0.22
4 1.15 1.09 0.05 0.01 -0.04 -0.07 -0.13 -0.16 0.12 0.01
5 -1.12 -1.07 -0.14 -0.12 -0.11 -0.10 -0.16 -0.18 -0.03 -0.11
6 0.98 0.96 0.06 0.06 -0.01 -0.01 -0.09 -0.11 -0.09 -0.11

Table 2.

n = 201 R̂y(t) R̂ε(t) R̂y(t) R̂ε(t) R̂y(t) R̂ε(t) R̂y(t) R̂ε(t) R̂y(t) R̂ε(t)

t ρ = −0.8 ρ = −0.4 ρ = 0 ρ = 0.4 ρ = 0.8

0 1.67 1.74 0.87 0.92 0.79 0.83 0.94 0.97 1.66 1.74
1 -1.21 -1.26 -0.27 -0.30 0.03 0.02 0.37 0.37 1.22 1.27
2 0.87 0.88 0.00 0.01 -0.08 -0.08 0.05 0.06 0.80 0.83
3 -0.69 -0.64 0.02 0.06 0.00 0.02 0.00 0.01 0.52 0.53
4 0.56 0.48 -0.06 -0.11 -0.06 -0.09 -0.07 -0.10 0.25 0.23
5 -0.53 -0.46 0.01 0.04 -0.01 0.00 -0.07 -0.07 0.05 0.05
6 0.49 0.48 0.00 0.00 -0.04 -0.04 -0.11 -0.12 -0.12 -0.11

Table 3.

It can be seen from these tables that the influence of an unknown mean value,

following the nonlinear regression model with 8 dimensional vector of regression

parameters, on estimation of a covariance function is not very big even for relatively

small n (n = 51). For n = 101 and n = 201 the influence of the mean value is

negligible for all ρ’s.
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