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A NEW NECESSARY CONDITION FOR

MODULI OF NON–NATURAL IRREDUCIBLE

DISJOINT COVERING SYSTEM

I. POLÁCH

Abstract. A disjoint covering system S = (a1 (mod n1), . . . , ak (mod nk)) is said

to be irreducible if the union of any of its r residue classes, 1 < r < k, is not
a residue class. An irreducible disjoint covering system is non-natural if not all its
moduli are equal. The least common multiple of its moduli n1, . . . , nk will be called
the common modulus of S. The main and most interesting result of this paper
is Theorem 2.2 giving this neccesary condition: if pα is a divisor of the common
modulus of S (p a prime), then there exist at least 3 residue classes in S with the
pairwise different moduli divisible by pα. In the last section an example class of
irreducible systems with the set of moduli containing exactly 4 elements is given.

1. Introduction and Basic Properties

Denote Z the set of all integers. By symbols gcd and lcm we mean the greatest

common divisor and the least common multiple respectively. For any integers

n > 0 and a the symbol a (mod n) will denote the residue class {a+ kn; k ∈ Z }.
The numbers a and n are called the residuum and modulus.

The system

(1) S = (a1 (mod n1), . . . , ak (mod nk))

of residue classes is said to be a disjoint covering system (abbreviated: DCS) if

every integer belongs to exactly one residue class of S (in some papers it is called

exactly covering system or simply exact cover). The number m = lcm (n1, . . . , nk)

will be called the common modulus (sometimes called order of S). For more

details see references of survey papers by Znám [6] and Porubský [4].

We shall say z is covered by a (mod n) if z ∈ a (mod n) and analogously z

is covered by S if there exists a class a (mod n) ∈ S such that z is covered by

a (mod n).

Complicated DCS can be usually obtained from simpler ones by replacing one

residue class by a system of “smaller” residue classes (class b (mod d) is replaced by
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the system {b+ aid (mod nid); ai (mod ni) ∈ S} obtained from DCS S) see [5].

Korec in [3] introduced for this replacing a new operation called splitting (see

also [5]):

Definition 1.1. Let S2, S3 be DCS-s, let b (mod d) ∈ S2 and S1 be the DCS

(1). We shall say that S3 arises by the b-splitting of S2 by S1 if

S3 = (S2 − {b (mod d)}) ∪ {b+ aid (mod nid); i ∈ {1, . . . , k}} .

Disjoint covering systems that cannot be obtained from simpler ones are called

irreducible DCS:

Definition 1.2. A DCS (1) is said to be reducible if there is X ⊂ {1, . . . , k};
1 < card (X) < k such that

⋃
{ai (mod ni); i ∈ X} is a residue class.

A DCS (1) is called irreducible disjoint covering system (abbreviated:

IDCS) if k > 1 and DCS (1) is not reducible.

A DCS obtained from {0 (mod 1)} by splitting using disjoint covering systems

of the form

(2) R = (0 (mod n), . . . , n− 1 (mod n))

is called natural DCS (see [5]).

Korec in [3] proved that all natural IDCS are of the form (2), where n is a prime

and gave some necessary conditions on non-natural IDCS .

Finally — symbol µ(S) will denote the set of all moduli of the DCS S.

2. Necessary Condition for Non-Natural IDCS

Lemma 2.1. Let S be a non-natural IDCS (1), m (mod n) a residue class.

Denote

T = {ai (mod ni); ai (mod ni) ∩m (mod n) 6= ∅} .

If T ⊂ S is a proper subsystem containing at least 2 residue classes, then there

are residue classes as (mod ns) and at (mod nt) in T such that ns 6= nt.

Proof. If all such residue classes had equal moduli, then the union of T would

be a residue class m (mod gcd(n, ni)). �

Theorem 2.2. Let S be a non-natural IDCS and pα a divisor of it’s common

modulus, where p is a prime. Then there exist three pairwise distinct moduli ni,

nj, nk such that

pα | ni & pα | nj & pα | nk.
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Proof. Since the prime power pα is a divisor of the least common multiple of all

moduli, there exists at least one residue class ai (mod ni) ∈ S such that pα | ni.
Let ni be the smallest modulus with this property. Denote d = ni/p. Then

ai (mod ni) ⊂ ai (mod d).

S is covering, so for every integer x ∈ ai (mod d) there is an index s = s(x) such

that residue class as (mod ns) contains x.

Residue classes as (mod ns) and ai (mod d) are not disjoint since x ∈ ai (mod d)

and x ∈ as (mod ns). So

gcd (d, ns) | (ai − as) .

If indices i, s are distinct, then the classes ai (mod ni) and as (mod ns) are disjoint,

so gcd(ni, ns) - (ai − as) and that is possible only if pα| ns. Thus we have proved

Modulus ns of such residue class as (mod ns) that

as (mod ns) ∩ ai (mod d) 6= ∅, is divisible by pα.
(∗)

If every x ∈ ai (mod d) were covered by an as (mod ns), with the modulus

ns = ni then by Lemma 2.1 the system S would be reducible, what contradicts

the irreducibility of S. So there exists a residue class aj (mod nj) such that pα

divides nj and nj 6= ni.

It remains now to find the third residue class ak (mod nk) with a modulus

distinct from ni and nj:

Consider the residue class y (mod ni), where y ∈ ai (mod d) ∩ aj (mod nj).

This class is a nonempty subset of Z, so there is a set of residue classes

T = (at (mod nt); at (mod nt) ∩ y (mod ni) 6= ∅) ⊆ S

such that for every x ∈ y (mod ni) there is a class at (mod nt) ∈ T covering x.

Due to (∗) every modulus in T is divisible by pα since y (mod ni) is a subset of

ai (mod d). T contains at least 2 classes, because aj (mod nj) ∈ T and ni < nj
and so no class of T has modulus equal to ni and so T cannot contain all the

residue classes of S. By Lemma 2.1 there is a residue class at (mod nt) ∈ T such

that nt 6= nj . �

Corollary 2.3. The set of moduli µ(S) of any non-natural IDCS has at least 4

elements.

Proof. By Lemma 3.2 of [3] the greatest common divisor of all moduli of S is 1.

If a prime p is a divisor of common modulus of S then by Theorem 2.2 µ(S) has 3

distinct moduli divisible by p. So there must exist a modulus that is not divisible

by p. �
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From Lemma 3.2 of [3] we receive this special case:

Corollary 2.4. Let S be a non-natural IDCS with the set of moduli µ(S) con-

taining exactly four elements. Let pα divide the common modulus. Then pα divides

exactly 3 moduli of µ(S) and p does not divide the last one.

The Theorem 2.2 gives us more. If µ(S) has exactly four elements, then knowing

the common modulus of S we can describe the set µ(S):

Corollary 2.5. Let S be a non-natural IDCS with the set of moduli containing

exactly four elements. Then

µ(S) = {d1d2d3, d1d2d4, d1d3d4, d2d3d4} ,

where d1, d2, d3, d4 are pairwise coprime and at most one of them is equal to 1 and

d1d2d3d4 is equal to the common modulus.

Proof. Let µ(S) = {b1, b2, b3, b4}. Denote

d1 = gcd (b2, b3, b4); d2 = gcd (b1, b3, b4);

d3 = gcd (b1, b2, b4); d4 = gcd (b1, b2, b3).

(i) The numbers d1, d2, d3, d4 are pairwise coprime, because if the prime p di-

vides 3 distinct moduli, then it cannot divide the last one and so every prime p is

divisor of at most one of the numbers d1, d2, d3, d4.

(ii) We will show that b4 = d1d2d3 (the proof of the equalities b1 = d2d3d4,

b2 = d1d3d4, b3 = d1d2d4, is the same). From the notation and property (i)

follows that d1d2d3 divides b1. If pα divides b1 then pα must divide other two

moduli bj and bk and so there must exist a divisor ds (s ∈ {1, 2, 3}) divisible by

pα since d1, d2, d3 are denoting the greatest common divisors of all triples of the

moduli containing b1.

(iii) We prove that at most one of the divisors d1, d2, d3, d4 is equal to 1. Let for

example d1, d2 be equal to 1. Then due to (ii) there holds that b3 = d4 and b4 = d3.

The divisors d4, d3 are coprime and so are b3 and b4. This is a contradiction since

the system S is disjoint and so there are no coprime moduli. �

3. Existence of IDCS with Four Pairwise Distinct Moduli

Theorem 2.2 gives us one new necessary condition for moduli of non-natural

IDCS . Now we shall show that the result of Theorem 2.2 is sharp.

Corollary 2.5 describes necessary condition for µ(S) where S is IDCS having

exactly four moduli. The following theorem shows that this condition is sufficient.
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Theorem 3.1. Let m = d1d2d3d4 be a decomposition of m into product of four

pairwise coprime numbers, where only d4 may be equal to 1. Then there exists an

irreducible disjoint covering system with the common modulus m and the set of

moduli

µ(S) = {d1d2d3, d1d2d4, d1d3d4, d2d3d4} .

Proof. Throughout the proof characters i, j, k, l are denoting one of the numbers

1, 2, 3, 4 (not necessary in this order) and are pairwise distinct. They are used as

indices.

Denote

D+
i = {a; 0 ≤ a < di/2}

D−i = {a; di/2 ≤ a < di} .

S1 = {a1 (mod d1) ∩ a2 (mod d2) ∩ a4 (mod d4);

[a1, a2, a4] ∈ D+
1 ×D−2 ×D+

4 ∪D−1 ×D+
2 ×D−4 }

S2 = {a2 (mod d2) ∩ a3 (mod d3) ∩ a4 (mod d4);

[a2, a3, a4] ∈ D+
2 ×D−3 ×D+

4 ∪D−2 ×D+
3 ×D−4 }

S3 = {a3 (mod d3) ∩ a1 (mod d1) ∩ a4 (mod d4);

[a3, a1, a4] ∈ D+
3 ×D−1 ×D+

4 ∪D−3 ×D+
1 ×D−4 }

S4 = {a1 (mod d1) ∩ a2 (mod d2) ∩ a3 (mod d3);

[a1, a2, a3] ∈ D+
1 ×D+

2 ×D+
3 ∪D−1 ×D−2 ×D−3 }

S = S1 ∪ S2 ∪ S3 ∪ S4.

From assumption there follows that only D−4 may be empty (that is true only

if d4 = 1) and so the sets S1,S2,S3,S4 are nonvoid.

1. We shall prove that S is a covering system. Let z be any integer. Then there

exist integers ai (1 ≤ i ≤ 4) such that

z ∈ a1 (mod d1) ∩ a2 (mod d2) ∩ a3 (mod d3) ∩ a4 (mod d4).

If [a1, a2, a3] ∈ D+
1 ×D+

2 ×D+
3 ∪D−1 ×D−2 ×D−3 then z is covered by S.

Else there are two cases :

If d4 ∈ D+
4 then one of the following conditions

a1 ∈ D+
1 & a2 ∈ D−2 or a2 ∈ D+

2 & a3 ∈ D−3 or a3 ∈ D+
3 & a1 ∈ D−1

is fulfilled and so z is covered by some Si (1 ≤ i ≤ 3). The case d4 ∈ D−4 can be

proved similarly.
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2. S is disjoint. It is enough to prove this property for each union Si∪Sj . From

definition there follows that Si (1 ≤ i ≤ 4) is disjoint. So it is enough to prove

that

(3) b (mod n) ∩ b′ (mod n′) = ∅

for b (mod n) ∈ Si and b′ (mod n′) ∈ Sj .

Let e.g. i = 1 and j = 2. From definition of S1 and S2 there follows that

there are residue classes a4 (mod d4) ⊇ b (mod n) and a′4 (mod d4) ⊃ b′ (mod n′).

If a4 6= a′4 then (3) holds. Else there are classes a2 (mod d2) ⊇ b (mod n) and

a′2 (mod d′2) ⊇ b′ (mod n′). But a2 and a′2 do not belong to the same set ( one of

them belong to D+
2 the other to D−2 ) and so (3) holds. The remaining cases are

similar.

Now it is sufficient to prove that S is irreducible. We shall proceed indirectly.

Let T be a proper subsystem of S with at least two elements such, that the union

of it’s residue classes is a residue class:

(4)
⋃

(a (mod n); a (mod n) ∈ T) = e (mod f).

The class e (mod f) contains all classes of the system T, so f is a divisor of all

moduli n ∈ µ(T) hence f divides their greatest common divisor.

The set of moduli µ(T) cannot contain all 4 moduli of S since their gratest

common divisor is 1.

It cannot contain 3 moduli too since the greatest common divisor of any 3

moduli of S is one of the numbers di (still 1 ≤ i ≤ 4). But if di 6= 1 then the

system S contains a residue class a (mod n) with the modulus coprime to di and

so coprime to f . Then

a (mod n) ∩ e (mod f) 6= ∅ & a (mod n) * e (mod f),

what is a contradiction.

Let µ(T) contain 2 distinct moduli e.g. didjdk and didjdl. Then f divides

didj , so e (mod didj) ⊆ e (mod f). Hence e (mod didj) has a nonvoid intersection

only with some of the classes from T. But every class from T is either subset of

e (mod didj) or is disjoint with this class.

So there must be a subsystem T′ of T such that⋃
(a (mod n); a (mod n) ∈ T′) = e (mod didj).

Let T′ contain classes b (mod didjdk) and c (mod didjdl). The numbers b, c belong

to e (mod didj) what implies that didj = gcd(didjdk, didjdl) divides b − c, what

contradicts the disjointness of S. Hence all classes in T′ must have equal moduli.
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We have shown, that if S contains proper subsystem T satisfying (4) then it

contains proper subsystem T′ (card (T′) ≥ 2) having all residue classes with equal

moduli.

It remains to prove that the system S cannot contain a proper subsystem T

(card (T) ≥ 2 containing classes with equal moduli.

Again by contradiction. Let all of the residue classes of T have the same

modulus didjdk. Then there is a prime p such that f | (didjdk/p) (since f | didjdk
and f 6= didjdk). Denote f ′ = didjdk/p. The class e (mod f ′) is union of a

subsystem T′ of the system T, where T′ has exactly p residue classes. The prime

p divides one of the numbers di, dj , dk. Let e.g. p divide di. Then there are residue

classes ai (mod di/p), aj (mod dj), ak (mod dk) such that

e (mod f ′) = ai (mod di/p) ∩ aj (mod dj) ∩ ak (mod dk),

where 0 ≤ ai < di/p, 0 ≤ aj < dj , 0 ≤ ak < dk.

Then every class br (mod m) of T′ is of the form

br (mod m) = (ai + rdi/p) (mod di) ∩ aj (mod dj) ∩ ak (mod dk),

where 0 ≤ r ≤ p − 1. The second and the third class of the last intersection

is the same for all the classes of T′ and so by definition of the system S all

the numbers ai + rdi/p are elemetns of D+
i or all of them are elements of D−i .

But ai < di/p ≤ di/2 what implies that ai belongs to D+
i . On the other hand

ai + (p− 1)di/p ≥ di/2 what implies that ai + (p− 1)di/p belongs to D−i , what is

contradiction. �

Remark 3.6. In [3] Korec proved that for the common modulus m there exists

a non-natural IDCS if and only if m has at least three distinct prime divisors.

Now this result is an immediate corollary of Theorems 2.2 and 3.1. Theorem 3.1

gives the direct construction of IDCS with the common modulus m.

H. Keller and G. Wirsching in [1] partially solved the problem: for which nat-

urals m there is IDCS S with common modulus m such that there is no residue

class a (mod m) ∈ S (so called IDCS without supremum). The more general

answer to their problem is given by Theorems 2.2 and 3.1:

Corollary 3.7. Let m be a natural divisible by at least 4 distinct primes. Then

there exists a non-natural IDCS S with common modulus m without supremum

(there is no residue class a (mod m) ∈ S).
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