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OPTIMAL CONTROL OF A VARIATIONAL INEQUALITY
WITH POSSIBLY NONSYMMETRIC LINEAR
OPERATOR. APPLICATION TO THE OBSTACLE
PROBLEMS IN MATHEMATICAL PHYSICS.

J. LOVISEK

Abstract. This paper is concerned with an optimal control problem for varia-
tional inequalities, where the linear not necessary symmetric operators as well as
the convex sets of possible states depend on the control parameter. Existence of
an optimal control problem is proven on the abstract level. An abstract framework
for the theoretical study of obstacle problems in mathematical physics in the varia-
tional inequality context is presented. Moreover, some su Lcieht conditions for the
existence of an optimal control are given.

Introduction

In this paper we deal with the question of the existence of an optimal control
function for a stationary variational inequalities, where the linear not necessary
symmetric operators as well as the convex sets of possible states depend on the
control parameter. The optimal control problem for a system governed by an ellip-
tic variational inequality is proposed by Lions [10] and discussed in Mignot [12],
Barbu [2], Sokolowski and Zolesio [19], Haslinger and Neittaanmaki [18], Murat
[16]. In these papers authors concentrate on the case of a symmetric operator.
The most characteristic property of variational inequalities is the fact that their
solution does not depend smoothly, in general, on the control. A special type of
the convergence of sequences of sets and functionals introduced by Mosco plays
an important role in our considerations. We introduce an abstract framework for
the theoretical study of the optimal control problem in the variational inequality
context. In Section 1 we present a general theorem, yielding the existence of at
least one optimal control. We formulate the optimal control problem of an obstacle
problem in mathematical physics in Sections 2, 3 and apply the general existence
theorem. Such problems play a very important role in various branches of physics
and mechanics. The latter includes an obstacle Fourier problem occuring in the
modeling of several heat-transfer phenomena. In Section 4 we formulate the op-
timal control problem of some unilateral problems, which describe the stationary
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equilibrium of a liquid in a region Q surrounded by a membrane 0Q that allows
the liquid to enter the region Q, whereas it prevents the liquid to flow out.

1. Problem Statement and Main Result

1.1. On the convergence of sets and of functions.
Let V(Q) be as normed linear space. Following Mosco [14] we introduce a
convergence of sequences of subsets of V (Q).

Definition 1. A sequence {Kn(Q)}n of subsets of V (Q) converges to a set
K(Q) CVIQ) if
1. K(Q) contains all weak limits of sequences {vn, }n, (Vn, (K, (Q)), where
{Kn. (Q)}n, are arbitrary subsequences of {Kn(Q)}n;

2. Every element v [K(Q) is the strong limit of some sequence {vn}n,
Vi [Kh(Q).

Notation. K(Q) = Limp_ o Kn(Q).
Let W: V(Q) — (—oo, o] be a functional. The set

epi W :={(v,f) CY(Q) xR :W(v) <B}
is called the epigraf of W, and the e [edtive domain of W is a subset of V (Q),
DW (or dom W) = {v: W(v) < +oo, v [VI(Q)}.

Moreover, the subdilerential OW is an operator from V (Q) to 2V Dgiven by
OW(z) = {z"'TV ), @V —zl)q = W(v) — W(2) for all v [M(Q), for
z [YI(Q) with W(z) < oo and by 0W (z) = [Ibr z [VI(Q) with W (z) = oo}.

Definition 2. A sequence {Wn} of functionals from V (Q) into (—oo, oo] con-
verges to W: V(Q) — (—oo,00] inV(Q), if
epi W = rI]_im epi Wh.

We use the notation W = Limp_ co Wh.

Let us recall the following lemma of Mosco on the convergence of functionals
in V(Q).

Lemmal. Let Wn:V(Q) » (—o0,00],n=1,2,.... Then W = Limp_ oo Wp,
in V (Q) if and only if (1.) and (2.) below hold:

1. For every v [CM(Q) there exists a sequence {vn}n in V(Q) such that
limn _ 0o Va =V (strongly) in V (Q) and limsup,, _, co Wn(vn) < W (V).
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2. For every subsequence {Whn, }n, of {Wnr}n and every sequence {vi}x in
V (Q) weakly convergent to v [CVI(Q) the inequality

W(v) < Iinm inf Wn, (Vi)

holds.

We shall denote by Eq(V (Q)) the family of all lower semicontinuous convex
functionals W: V (Q) - (—oo, oo], not identically equal to +oco.

Remark 1. Due to the previous lemma the condition W = Lim_ oo W, im-
plies that for every v [CM(Q) there exists a sequence {va}n [VI(Q) such that
limp _ o Va = Vv (strongly) in V (Q) and limp, _. .o Wn(vn) = W (V).

1.2. Problem statement.

Let U(Q) be a reflexive Banach space of controls with a orm [Clg}qy. Let
Uag(Q) CUIQ) be a set of admissible controls. We assume that U,4(Q) is compact
in U(Q). Further, denote by V (Q) a real Hilbert space with an inner product
(. )v (@ and a norm CXydgy, by V 5€Q) its dual space with a norm ) and
with the duality pairing L) [) .

Let constants Mg, M; (0 < Mg < M) be given. We denote by E(Mg, M) the
class of the linear, continuous (not necessary symmetric) operators A: V(Q) -
V &) such that

Mo VTG gy < [Bv, Vg = M; VI, for all v CVI(Q).

We introduce the systems {K(e, Q)} , {A(e)} of convex closed subsets K(e,Q) [1
V (Q) and linear bounded operators A(e) CIXAV (Q,V &), e [ULy(Q), satysfying
the following assumptions:

1

1
1° K(e, Q) & 1
e [Mdq ()
2°. en - e (strongly) in U(Q) LK, Q)= rI]_im K(en, Q);

3°. @(9) QV (Q).V t@)) <M forall e II]ad(Q),

(H1) 4°. [B(e)V, Vg = alI},,, a >0, for aIIle [Oha(Q) and
v [CM(Q) (a real number a not depending on e and v,
further the operator A(e) is said to be uniformly coercive
with respect to Uaq(Q));

5°. en — e (strongly) in U(Q) [—A(en) - A(e) in
L(V(Q),V RQ)), e, en [Uha(Q).

Thus, by virtue of ((H1), 3°, 4°), A(en), n=1,2,... and A(e) are elements of the
class E(a, M) for each sequence {en}n, wWhere e, — e (strongly) in U(Q).



4 J. LOVISEK

Moreover, we SUppOSe:
1

1°. There is a system of functionals {®(en, -)}n on V (Q) with
values in (—oo, oo] (not identically equal to +oo) semi-
continuous and convex on V (Q), {v CMI(Q) : ®(en,V) <
oo} [Klen, Q), {v CM(Q) : d(e,v) < oo} [Kie, Q),

(E1) ®(e,:) = Limn_ o P(en,-) as en — e (strongly) in U(Q),
en,e [Ukg(Q).

2°. {L(en)}n is a sequence in V {(8) such that L(en) — L(e)
(strongly) in V5®) as e, — e (strongly) in U(Q), en,
e [Uhg(Q).

Further we assume that for each sequence {en}, en — € (strongly) in U(Q) there
is a bounded sequence {an}n with a, [Ki(en, Q) and ®(en, an) < oo for all n, e,
en [ULg(Q) such that

(1.1 limsup ®(en, an) < oo.

n - oo

There exist two positive constants c;, ¢, such that for each sequence {en}, en — €
(strongly) in U(Q), en,e [ULa(Q),

(1.2) ®(en,vn) = —C1 Vvl Lufgy —c2 forn=1,2,... (see [15])

®(e,v) = —c1 WIy}g) — co.
Then since A(en) [CH(a, M) for any sequence of pairs {[en, Vn]}n, €, en [ULg(Q)
n=12,... with xhL4e) - o and e, - e (strongly) in U(Q) we have

[[A(en)Vn,Vn — an l;‘(Q) + ®(en, Vn)] oo
(1.3) G Lot -

Moreover, for each n

[[B(en)v,V — anlylq) + P(en, V)]
1.4 - 00,
(14 Nlvlo

as WIylgy — oo, v [KI(enQ) where en, [ULg(Q), N =1,2,...,n is arbitrary but
fixed in Uaq(Q), and A(en) CH(a, M).

Remark 2. By virtue of ((H1), 3°, 4°) and (1.1) we can write

[[A(en)Vn,Vn — an l;‘(Q) + ®(en, Vn)l = al\h —an mg) — C3 [} — an Ldqy — €4,

where ap, is bounded in K(en, Q) (N =1,2,...) and when [V} [}y — oo then also
v} — an Llgy — oo. In a similar way (for each fixed n) we obtain relation (1.4).
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We set L(en) = f + Bep, where B [CI(U(Q),V Y(R)). For fixed n=1,2,... and
any given L(en) M) (if we suppose (1.4) and (1.1)) there exists a unique
solution u(en) CKi(en, Q) of the state inequality

(1.5) [A(en)u(en), v — u(en) ) + ®(en, v) — @(e, u(en))
= [M(en),Vv — u(en)@(g) for all v [ Kl(en, Q).

This follows from the Kenmochi Theorem ([8]).
Further, consider a functional L: U(Q) < V(Q) - R for which the following
condition holds:

I:Ien - e (strongly) in U(Q), v, [_inl (Q) (weakly) =1

(E2) =LTI{e,v) < liminfn_ o L(en, Vvn).

We shall formulate the optimal control in the following way:

Problem (P); Find a control e {UL4(Q) such that

(1.6) [A(eu(ech v —u(enhg) + ®(erv) — (e b(er))
< [M(ephv — u(eD\_@(Q) for all v [ Kl(e ;)

(1.7) Lert(e) = nf  L(e.u(e))

1.3. Main result.

Theorem 1. Let the assumption (H1), (El), (E2), (1.1), (1.2), (1.3) be satis-
fied. Then there exist at least one solution e —¢f the optimal control problem (P )

Proof. As the solution u(e) of the variational inequality (1.5) is uniquely deter-
mined for every e [ULq(Q), we can introduce the functional J(e) as

(1.8) J(e) = L(e,u(e)), e [4(Q).

Due to the compactness of Uaq(Q) in U(Q), there exists a sequence {en} [Uq(Q)
such that

1.9 limJd(en) = inf  J(e
(1.9) (en) = inf I(e)
(1.10) nIim en =ein U(Q), e ULq(Q).
Denoting u(en): = un [Kl(en, Q) we obtain the inequality

(1.11) [A(en)un,up — Vigho) — M(en), Un — Vi)
= d(en, V) — P(en,un) forall v [CKi(en, Q).
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In particular, taking an for v in (1.11) we obtain
(1.12) [A(en)u(en) — L(en), Un — anlylqy + @(en, Un) < P(en, an) for every n.

Hence the relations (1.1), (1.3) and ((El), 2°) imply that {un}n is a bounded
sequence. This implies the existence of a subsequence {un, }k of {us}n and an
element u—{VI(Q) such that (For simplicity we write uy, L(ex), ®(ex, '), ax and
A(ex) for un,, L(en,), ®P(en,, "), an, and A(en,), respectively.)

(1.13) ux Lu-d(weakly) in V (Q).

As ux [Ki(ek, Q), the assumption ((H1), 2°) implies

(1.14) urKie54).

Then we observe from Lemma 1, ((E1), 1°), (1.1), (1.2) that
(1.15) dleUh=< IikrrlLr!f d(ex, Uk)

= “Ln sup{®(ex, ak) — [B(ex)uk — L(ex), Uk — ak gy} < o0

since by virtue of the monotonicity of A(ex) one has

| B(ex)uk, ak — Uklylgy | = [B(ek)ak, ak gy + | B(ex)ax, Uklyqy |
< 2Mc?, where [Tk [y]q), [@k Lifo) < C.

On the other hand, by virtue of Lemma 1, ((E1), 1°) and Remark 1 there exists a

sequence {hx}k CV1Q) such that
lim hy = umin V(Q)
(1.16) o ke
k“m ®(ek, h) = P(ech

Here, note that hx [K(ek, Q) for all k, which follows from the assumption
((E1), 1°) and (1.15), (1.16), so that (inserting v := hy into (1.11))

(1.17) [A(ex)uk — L(ek), ux — hg @(Q) < ®(ek, hy) — P(ek, uk), for all k.
Moreover, from ((H1), 3°) and (1.13) we obtain

(1.18) [Aek)uk vy =c fork=1,2,....

Then there exists an element x [V Q) and a subsequence {A(ej)uj}j of
{A(ex)ux}k such that

(1.19) Agj)uj Lo weakly) in V Q).
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Combining (1.13) and (1.16, 1) we have

(u; — hy) [0 Qweakly) in V (Q).

Thus, by passing to the limit in (1.17) we have

(1.20) limsup[A(ej)u;j, uj — Uyl

Jﬁoo

< limsup [A(ej)uj — L(ej), uj — hj Lo

Jjooo
< limsup ®(ej, hj) — liminf ®(ej,u;) <0 for all j.
: jo oo

J oo

However, combining the relation (1.19) with the inequality (1.20) we arrive at

(1.21) limsup [A(ej)u;j, uj I;J(Q) = X udylq -

J oo

Moreover, the monotonicity of A(ej) on V(Q) (A(g;j) CH(a, M), j = 1,2,...)
implies (in view of (1.21))

(1.22) ¢, ucbZE limsup[lA(ej)v, uj —v@(g) + m(ej)uj,v@(m], j=12,....

J oo

Relations (1.10), (1.13), (1.19) and ((H1), 5°), (1.22) enable us to write
X—A(epy,ur—r Vi) =0 for all v C1(Q).

Letv=u+tw—upht CR* and w [M1(Q). Then we get
(1.23) IX—A(ea{udt(w—u.j},uErw@(Q) =0 for any w CVI(Q).
For v = urT t(w — upywe can analogously write
(1.24) X—A(eDjurT t(w—ud],w—u@(m =0.
Then combining (1.23) with (1.24) for t — 0 we see that

XN— AU UrT Wiy =0 for any w [CLVI(Q).

This means that

(1.25) X =AM
(1.26) Aej)u; CAEADU(weakly) in V ).
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Using again the monotonicity of A(e;) we have

m(ej)uj’uj_u@(g)zm(ej)uiuj_u@(g), j :1,2,....
Next, by the convergences (1.10) and (1.13), by assumption ((H1), 5°) and by the
last inequality we obtain

liminf [A(ej)u;j, uj — Uyl gy =0
J*,oo

which compared with (1.20) leads to

(1.27) lim [A(ej)uj, uj — uclylgy = 0.
J — OO
Clearly (by virtue of (1.26) and (1.27))
(1.28) JNim AU, Uj gy = [Aeu i) -

We shall show that

(1.29) AepurT L(epyurr vl;I(Q) < d(ev) — Pleiph for all v [Ki(e ).

Let v be any element of K(eQ). If ®(erv) = +oo, then (1.29) is trivial. Thus,
assume ®(e;Vv) < oo. According to Lemma 1 and ((E1), 1°) again, there is a
sequence {w;}; with w; CKl(ej, Q) for all j strongly convergent to v such that

(1.30) jlingo d(ej, wj) = Plev).
Since L(gj) — L(eph(strongly) in V) as j — o and
[Aej)uj — L(gj), uj — wj @(Q) = ®(ej, wj) — L(&j, u;)

for all j, we obtain (1.29) by letting j — oo and using (1.15), (1.28) and (1.30).
As the element v [Kl(e, Q) is chosen arbitrary we get up = u(ep) and

u(en) : (= un) Culehby: (= uph (weakly) in V (Q).
Then (E2), (1.9) yield
Ledu, (e = ||J”1L[;1f L(en, u(en)) = e[égj(g) L(e, u(e)),
hence

Lecu(e) = eECiSI(Q) L(e, u(e))

which completes the proof.
Due to A(ep A(en) [BH(a,M) for n = 1,2,..., the strong convergence will
follow from relation

alimsup [ufen) — u(eﬁiﬁb) < lim [A(en)(u(en) —u(e),u(en) — u(eﬁ_l;!(m
n - oo |:| n - oo
= nllnlo [(A(en)u(en), U(en)@(g) + [A(en)u(erh u(elil;‘(g)

[
— [A(en)u(enh u(en) lqy — [B(en)u(en), ueilgy =0
(by virtue of ((H1), 4°, 5°) and (1.13), (1.28)). —1



OPTIMAL CONTROL PROBLEM FOR VARIATIONAL INEQUALITY 9

2. Optimal Control of an Obstacle
Fourier Problem (Fixed Convex Set)

In order to motivate the study of the abstract control problem (P) we consider
the so-called obstacle Fourier problem for linear second-order elliptic partial di Cer-
ential operators. The obstacle Fourier problem occurs in the modelling of several
heat-transfer phenomena. On the other hand, problems of this genre can be found
in diverse fields of applications. One might as well be interested in finding the
profile which gives the minimum drag as in constructing a magnet which has a
constant magnetic field in a prescribed region. It is as easy (or as di [cult) to
minimize the weight of a huge cooling tower of a modern nuclear power station as
to maximize the performance of the tiniest of transistors of a complicted silicon
chip.

2.1. Problem statement.

We start with notation. Let Q denote an open bounded connected subset be-
longing to the 3 dimensional real space R® (we denote by x (= {xi}{-,) the generic
point from R3), wiw boundary 0Q. Let a- b denote the usual scalar product
inR3, i.e.a-b= ;_ ajbj, for any a,b [CR>. Lp(Q), 1 <p < oo, and HY(Q),
H3(Q) are the usual Banach spaces of real-valued functions defined on Q, their
norms are denoted by T ](q) and Tk gy - H™H(Q) is the dual space of Hg(Q)
and L)l g the generalized scalar product between these spaces. Next we sup-
pose that 0Q is su Lciehtly smooth (Lipschitz continuous, for example). We have
D(Q) = C*=(Q) and My is a linear continuous operator from H1(Q) to L»(0Q)
(the trace operator).

Now we describe the optimal control problem considered here. First, let U(Q)
(control space) = C°(Q) and the set of admissible control functions, given by

Uad(Q) = {fe TWL(Q): 0, emin <€ < emax, |0e/0Xi| <ci, i =1,2,3}

where cj are given constants.

We note that Uaq(Q) is clearly compact in the topology of C°(Q). For an arbitrary
fixed e [W4q(Q) let the state of the control system (Fourier obstacle problem) be
given by solutions of the nonlinear elliptic boundary value problem

=] ROU=LE) inQ
u=0 on 9Qu
([A(e)lgrad u) -n+ku =H on 0Qw
@1 ([A(e)]grad u) - n + ku [Blu) on Qs
u=y a.e.on Q
(REU—LE)U—Y) =0 a.e.on Q
R(e)u = —div{([A(e)]) grad u + ([Q(e)u}

+([B(e)]) - grad u +ap(e)u
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where (3(-) is a maximal monotone operator, 0Q = 0Qy [dDy [dNs (such that
0QHy n0dQs =0, 0Qu n9Qy =0, 0Qy n 0Qs = 0), H and k are given functions
defined over 8Q, such that H [C1,(0Q), k CA°0@QH [CaNs), the function ¢
represents the obstacle and ¢ CH(Q) n C°(Q), Y(0Q) < 0, n is the outward unit
vector normal at 0Q.

[A@©)] = [A(,e(-))] = [ajj(-,e(-)] denotes a (3,3)-matrix (the system of linear
operators from R3 to R® depending upon x over Q)

[Q(e)] = [Q(.e(:N] = [ai(:, e()],
[B©)] =[B(,e(:-)]=[bi(:,e()] denotes a (1,3)-matrix

ao(e) = ap(-,e(-)) — a scalar function, e [CUL4(Q).
We assume that {[A(X, )]}, {[Q(X,e)]}, {[B(X,¢€)]}, ao(X,e) are defined on Q x
[emin, emax] and satisfies the following conditions:
1

1°. aj(,t), ai(-, v, bi(-, t), ao(, t) (i,j = 1,2, 3) are continu-
ous function on Q for every t [[8min, €max] and aij (X, -),
ai(x, ), bi(x,"), ap(x,-) are a continuous on [emin, €max]
for every x Q1L
Moreover ag(X,t) =¢o > 0 a.e. on Q.

2°. Of course, we have also to assume the ellipticity condition:
[A(X, )€ - & = al§|3s for any & [RP, for any e [Ukq(Q)
a.e. X [Q a= const. > 0 to be fullfilled.

(F1)

In the right-hand side of (2.1), L(e) (for any e [UL4(Q)) denotes a fixed functional
belonging to L,(Q).
Finally, we choose the functional

2.2) L(e,v) = 0 24[f) o) + N[ETg}g), N >0

as the cost functional of our control problem.

In this notation the optimal control problem in distributed parameters consid-
ered here reads min L(e, u) subject (2.1).

We shall briefly denote it by problem (P). Preparing our treatment we deal
with the state inequation (2.1) for an arbitrary fixed e [ULg4(Q).

Because of above assumptions we have to work in the framework of the Sobolev
space V (Q) ([CHY(Q)). This means that u CVI(Q) is a solution of (2.1) if and
only if u is a solution of the nonsymmetric operator inequation

C1

A()u=L(e) in Q

u=20 on 0Qu
(2.3) ([A(e)]grad u) -n+ku=H on 0Qn

([A(e)]grad u) - n + ku [B{u) on 0Qs

u=y a.e.on Q
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where A(e) (the nonsymmetric operator of Fourier obstacle problem) is a linear
bounded operator acting from V (Q) into V Q). It is defined by

(2.4) [Ae)v, zlggy = a(e,v,z) foranyv,z CVI(Q) and e [UL4(Q)

where on the open Q we define the bilinear (nonsymmetric) form a(e, -, -): V (Q) x
V(Q) - R forall e COL4(Q) by:

1
(2.5) a(e,v,z) = {[A(e)]lgrad v - grad z + ([Q(e)] - grad z)v

Q 1
+ ([B(e)] - grad v)z + agvz}dQ + kMovMoz ds
aQH

and the right-hand side is an element belonging to L,(Q) given by: ((e), Iy
V(Q) - R)

1 1
(2.6) D](e),vl;l(g) = Q(f + Be)vdQ + o HMgvds for any v [VI(Q),

e [Ukg(Q) and B CI(U(Q), L2(Q)).

Remark 3. Let K(Q) =V (Q) = H3(Q). Then, itis not hard to see that A(e) is
a Fredholm operator ([4]). Therefore the state equation A(e)u = L(e) is solvable
if and only if the fixed e [U,q(Q) belongs to the set H(Q) = {& [Uyq(Q) :
[M(e), viggy = 0 for any v [Her (A'(#))} where Ker (A'(¢)) is the kernel of
the adjoint operator AN®) to A(e), H(Q) is called set of admissible controls and
Z(Q) = {[e,u] [1L(Q) x H3(Q) : A(e)u = L(e), e CH(Q)} is said to be set of
admissible pairs.

2.2. Existence Theorem.

The bilinear form (2.5) can be shown to be coercive under less restrictive as-
sumption than: [Q(e)] and [B(e)] vanish identically in Q. However, we have always
to require, that the lower-order coe Lciehts be conveniently small, in some sense to
be specified, with respect to various parameters such as meas Q and the constant
a—of uniform ellipticity. The case of a noncoercive bilinear form:

We now define

[[A@]C)I = sup |[A@)IX)EI/E|rs
& [R3—{0}

27 RE@®ICIN = sup [[Q(e)(X)EI/|E|rs
& [R3—{0}

IBEIC)I = sup |[B(e)IX)E/E|rs
& [R3—{0}

Then by ((F1), 1°, 2°) we clearly find that the functions x - |[A(€)](X)], X -
[[QE)IX)| and x - |[B(e)](X)| belong to L(Q). We consider bilinear form
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m(e)v,zl@(g) on V (Q), given by (2.4) where the ajj(e), ai(e), bi(e), ao(e) ver-
ify ((F1), 1°, 2°) and
1 1

(F2) {[B(e)] - grad v + agv}dQ + kMgovds =0
Q 0QH

for any v [CVI(Q), v = 0 and for any e [ULg(Q). (We note that the assumption
(F2) corresponds, for di [erkntiable [B(e)] to the conditions: ag(e)—[B(e)]-grad v =
0inQand k+[B(e)]-n=0o0n 0Qn).

The lower order terms imply, in general, that the bilinear form (2.5) is not coercive,
(this means that the Lions-Stampacchia theorem ([9]) is not directly applicable to
the state obstacle problem).

With respect to the Poincare inequality and the Sobolev embeddings one has, for
some C, = Cr(Q,0Qq,r) >0

(2.8) VI ) (o) = ¢r Lgrad v ](q) = ¢r I}y for any v CVI(Q)

where r =2n/(n—2) if n=3 and r is any number 1 < r < oo if n = 2. Moreover,
for any e >0 and f [ILL(Q), 1 < p < oo we can write, ([17])

29)  f=f+ Fom with Firh] <€ and [FHil @) < M ().

We have the following inequalities:

(2.10) Ef([@(e)] -grad v)v dQH

< (ar/#) grad V] q) + ar30Q(e)] L, o) (E) o)
(2.11) @([B(e)] -grad v)v dQ

< (a/#) [gtad v ] q) + araUBE)I L (o) VIE] (q).

Thus (by ((H1), 2°), (2.10), (2.11), (F1)) the bilinear form (2.5) is coercive on
V (Q) relative to L»(Q):

(2.12) [A(e)v, Vi) + AN o)
= Grilyg, for v CVI(Q), e [Uhg(Q), a0

with

A= o (0RO (o) + IBEIE (o) + [@(e) [E] () + (af?)

G+ a?.
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Lemma 3. Assume (F1), (F2) and (2.12). If in addition, we assume the
following estimate

| —
(2.13) [@i(x, t) — bi(x, t) [l ay < AcA2Cy)

i=1
with r = 2p/(p—2), t [I8min, €max], then (2.12) holds with A = 0, i.e. [A(e)-, Lo
is coercive on V (Q).

Proof. Parallel to that of Proposition 7.2 ([17]). 1

Remark 4. For the general case we can apply (2.9) to ([Q(e)] — [B(e)]) to
obtain

|
[airfX, t) — bictX, t) [} (@) = a#(4Cr)
i=1
and
| 2|
[aifx, t) — bic(x, 1)) [l (@) = M (¢).
i=1
We get
E:i([Q(e)] —[B(e)]) - grad v)v dQE
¢ -

= |(([Qcte)] — [Bcfe)]) - grad v)v| dQ
o

* I(([Qcte)] — [Brte)]) - grad v)v|dQ

< M (g) I} () [gFad v} (q) + (a/A) [grad vI§] o
< (4AM?(e)/aNI] o) + (a/2) Cgrad vI§] o)

and (2.12) follows for any A = A+ 4M?(g)/a

Lemma 4. The family {A(e)}, e [ULg(Q) of operators, defined by (2.4), (2.5)
satisfies the assumptions ((H1), 3°, 4°, 5°).

Proof. We have

]
| BV 2| = Max BE] L@, HREIL @, BE] Lo,

[@d(e) [l @), C(Q KL, 90,y Mivka) Zlvig)

for any v,z [VI(Q), e [ULg(Q). (It is a simple application of Schwarz inequality
by using (2.8) since |[A()]], |[Q(E)]], I[B(e)]] [MT1o(Q) and k M1, (0QH [dNs).)
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Then from the above relation we get ((H1), 3°). On the other hand ((H1), 4°) is
immediate consequence of Lemma 3.

Let e, — e (strongly) in C%(Q) for n — oo, (e,en [Wag(Q)). Then (for
v,w [VI(Q)) one has

(2.14) |@1(eg\|/, Wyl = BB(e)V, Wiyl |

< |([A(en)] — [A(e)]) grad v - grad w| dQ
o
+ . |([Q(en)] — [Q(e)]) - grad wv| dQ

*+[([B(en)] — [B(e)]) - grad yw[dQ + ([ao(en)] — [2o(e)])vw] dQ

< maxmax |ajj(en) — aij(e)] |grad v -grad w|dQ
L] x[al
+ maxmax|ai(en) —ai(e)|] |grad w||v|dQ
I xa

+ maxmax |bi(en) —bi(e)|  |grad v||w|dQ
I x[ Q
(.
+ max|ag(en) —ao(e)]  |vw|dQ.
x Q1 Q

On the other hand by virtue of (F1) and (2.14) if we apply Theorem 3.10 ([11]),
we can write

lim max max [ajj (en) — aij(e)| = 0,
N-oo 1] xrQl

lim maxmax |aij(en) —ai(e)] =0,
x Q1

Nn - oo i

lim max max |bi(en) — bi(e)| =0,
N-co 1 xrOl

lim max |ag(en) — ap(e)| = 0.
N-eco x Qi

Inserting this into (2.14) we obtain ((H1), 5°). 1

Since B(*) in (2.3) is a maximal monotone operator on R, a convex lower contin-
uous proper functional j(-) can be determined up to an additive constant (see [2])
such that B(-) = dj(-). A convex lower semicontinuous proper functional ® () is
then defined on L,(0Qs) by the relation

1
o'(h = o i()ds if j(-) [Ib(0Qs)

and ®() = oo otherwise.
The restriction of ®°() to HY2(0Qs) is denote by ®(:). Next since ®(:) is in-
dependent on e, verification of ((E1), 1°) is trivial. It remains to chose K(Q)
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(Y1Q)). We set
K(Q) = {v YI(Q) : v(X) = Y(x) a.e. on Q}

where ¢ CH(Q) n C°(Q) and (0Q) < 0.
Lemma 5. The set K(Q) is nonempty and closed in V (Q).
Proof. See Glowinski ([7]). 1

Thus, verification of (1.3) and (1.4) is trivial (clear as K(Q) does not depend
on e). Next from (2.6) and since f [IL(Q), H [(1L(0Qx), B 1K U(Q), L2(Q))
and from the Schwarz inequality in L,(Q) and L,(0Q), we have

| 1), Vo | = (o) + Bel(e) Ml (o) + H L@an) Mov [d@ar)
= (0o + Belde + C(QHLeon)) Mvte
for v CVI(Q) and for any e [UL4(Q).
This means, that the continuity of L(e) in e is assured. The condition ((E1), 2°) is
evident. Finally, to each control e we associate a cost functional (2.2). The func-

tional L(e,Vv): Uag(Q) <V (Q) - R is weakly lower semicontinuous, consequently,
we may write immediately,

liminf L(en, va) = liminf([vh — 24 [](q) + N (&4 (o))
= V24 (] () + N [EI5}q) = L(e,V).

] ||
The problem of optimal control is now to find, inf J(e) : e [U,q(Q) . Thence
Theorem 1 shows that a solution e —gxists.

3. Optimal Control of an Obstacle Problem (The
convex sets depend on the control parameter)

Let Q be a bounded open set in R? and let a bilinear form a(e, v, z) be given on
V (Q) (= H3(Q)) by (2.5) (where k = 0). The set of admissible functions (controls)
has the form

1 _
Uad(Q) = e CH*(Q) : 0 < emin < &(X) < emax 0N Q, [Elgkgy <1,
- -
e(x)dQ = cy, e(s) = v(s), on 0Q, v [T(0Q) .
Q
We suppose that c1, C2, C3, €min, €max are given constants in such a way that

Uag(Q) B CU(Q) = HY(Q) n C(Q) @]e set ﬁontrols).
Now we introduce the system of sets K(e, Q) , e [UL4(Q), K(e, Q) = {v LVI(Q) :
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v(X) = S(X) + e(x) a.e. on Q} where the obstacle is analytically described by a
function: S(x) [CH?(Q) fulfilling the condition

3.1 S(s) +v(s) =<0 forall s [CaN.

Thus, K(e, Q) is nonempty for every e [UL4(Q) due to assumption (3.1). Indeed,
we have z [Kl(e, Q), z = max{0, S +e} (see [|9i9|. It ce}ﬁ)e easily seen that K(e, Q)
is convex and closed in V (Q). The system K(e, Q) fulfils the condition ((H1),
2°). Indeed, if lim,_ o en =ein U(Q) (= HY(Q)nC(Q)), en [Uky(Q), then there
exists a subsequence {e,} weakly convergent in H?(Q) to the element e [Uky(Q).
Let zx [z @veakly) in V(Q), z« [CKR(ex,Q), k =1,2,..., z CM(Q). We then
have z (X) = S(X) + ex(X) for a.e. x [ which implies, with respect to the
compact embedding H1(Q) 3 L,(Q) z(X) = S(X) + e(x) for a.e. x and hence
z [Ki(e, Q). If v [Ki(e, Q), then we put vy, =V + (e —€). The elements {vin}
satisfy the conditions v, [Kl(em, Q), limm _ oo Vm =V (strongly) in V (Q). Hence
the condition ((H1), 2°) holds. We set

3.2 m(e)v,zL;!(Q) =a(e,v,z) foranyv,z CVI(Q) and e [UL4(Q)

where A(e) CIXV (Q),V "()).

The state function u(e) [Kl(e, Q) is a solution of the state variational inequality
3.3) [A(e)u(e),v —u(e) Ly = M(e),v — u(e) Loy » for all v [Ki(e, Q)

where the operators A(e) are given by (2.5), for (k =0 and u =0 on 0Q) and the
function, L(e) = f + Be. Let us consider the cost functional of the form

(3.4) 1(e) = L(e,v) = pa(e, Q) + [€17] o,
where pa(e, Q) is Radon measure, e [U,q(Q). From the regularity results ob-
tained by Brezis, Kinderlehrer ([2], [9]) it follows that u(e) CH?(Q) n H(Q). It
is evident that 6 + u(e) [Kl(e, Q) for any 6 [CVI(Q), 6 = 0 therefore
(3.5) [(A(e)u(e), GI;!(Q) — [M(e), 6@(9) =0 forany 8 =0, e [ULy(Q).
Hence there exists a non-negative Radon-measure pa(e, Q) given by:
(3.6) ?6 dua(e, Q) = (R(e)u(e) — L(e),0)r, )

= [A(e)u(e), 0Ly — [M(e), 6Ly forany 6 [CH*(Q)
with the property that for Z (coincidence set, x [Q: v(X) = S(x)+e(X)) compact,

Ha(e, Q\Z) = 0. (It shoud be noted that in general the set Z is not closed.)
In order to estabilish the existence of an optimal control function we have to

verify
3.7 en — e (strongly) in U(Q),
(eren [Ukg(Q)) Cu(@n) L[ u(eh) (weakly) in V(Q).

We shall proceed in a similar way as in ([3]). First we recall an important result
of F. Murat in ([16]).
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Lemma 6. If {F,} [CVIYR) is a sequence such that: F, = 0 (in the dis-
tributional sense) and F, [_E {weakly) in V 5R) then: F, — F (strongly) in
Wi Q) = (W (Q))Hor all g < 2, % + % = 1. The inequality F, = 0 in V 5(Q)
means

(3.8) (En, Vi =0 for all v CCE°(Q), v=0on Q.

Lemma 7. Let u(e) [CK(e, Q) be a (unique) solution of the inequality (3.3),
e [ULy(Q). Then the relation (3.7) holds.

Proof. Let limy_ o €en = e{strongly) in U(Q), (exen [Uaq(Q)). It results
from the form of the set U,q(Q) that

(3.9) en [ech(weakly) in W, (Q) for every p = 1.

Let us denote un: = u(en), N =1,2,.... We recall that the elements u, are the
solutions of the variational inequalities.

(3.10) ann,v - Un l;‘(Q) = EDn,V - Un l;l(Q) fOf' a” \% m(en, Q),

where we have denoted A, = A(en), Ln =L(en),n=1,2,....
In the same way as in Section 2, we can prove boundedness

(3.11) [OhGday<c, Nn=12,....

Hence there exists a subsequence of {[un,,en. ]}« (Still denoted by {[un,enl}n)
such that

(3.12) un L udd (weakly) in V (Q)

(3.13) Un — U (strongly) in Lo(Q)

(3.14) en [ech (uniformly) in U(Q)

(3.15) en [_ed (weakly) in Wpl(Q) forallp=1
(3.16) An - A in L(V(Q),V Y)).

As un CKi(en, Q), we have the inequalitiesu, =S+esae.onQ,n=1,2,... and
the relations (3.13), (3.14) imply: u= S +e4a.e. on Q and hence u—{Ki(e1).
Let us rewrite the inequality (3.10) in the form

(3.17) [Bnun — Lp,v—un[E0 forall v CKi(en, Q).

Taking v =un +6, 8 =0, 8 CC°(Q) we obtain

(3.18) Bpun, —Ln, 020 inVED), n=1,2,....
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Using the form (3.2), the conditions (F1), the limits (3.12), (3.13) and (3.14),
(3.16) we arrive at

(3.19) Anun — Ln CAd T L (weakly) in V 5&)

where A+ A(ep; L=+ L(ephs
Applying now Lemma 6 we obtain

(3.20) Anun — Ln — AT Li(strongly) in W t(Q), g <2.
Setting v =z + (en — ephin (3.17) for any z [Ki(e ;L) we have the relations
[Artin, Loy = ACT An)un, Z[yl gy + [Bnun, Z[y g,

= [(ArT An)un, Zl;l(Q) + [ApUn, Un l;‘(Q) + Mnh,Z —un l;‘(Q)
- IAnUn - Ln,En - e@(g) .
Using the relations (3.12), (3.15) and (3.16), (3.20) and the weak lower semicon-
tinuity
Aty gy = liminf [Artn, Unlyl o
we arrive at the inequality

|E@“IZI‘;J(Q) = E@HIU@(Q) + EDEZ - U@(Q) for all z EK'(eEgZ)

and hence u— u(ephand the relation (3.7) is verified. 1

For any fixed compact O [Q] the following estimate holds
(3.21) Ha(en,O) < ca (uniformly bounded with respect to n).

Indeed, let 6 CC°(Q), 6=10n O and 8 =0 on Q. Then we may write
1

Ha(en,O) = o 6 dpa(en, Q) = [A(en)u(en) — L(en), 9@(9)
< | [A(en)u(en) — L(en), 9@(9) |
< [Alen)u(en) — L(en) L) @lyia) < Ca.

1 1
Hs meanﬁjhat there exist a subsequence pa(en,,On) , (still denoted by
Ha(en, O) ) such that

(3.22) Ha(en,0) [uale0)

(weakly) as n — oo in V K8).
Hence, for any finite continuous function 8 on Q the following convergence
1 1

(3.23) Bdua(en, Q) -~ Bdua(ecf)
Q Q
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[ [
hold. Moreover, the family of Radon measures pa(en,Q) is denoted correct
(since the pairing [en, u(en)] is the solution of the-yariationahjinequality (3.3)).
Then, by virtue of weakly converges of measures pa(en,Q) , in particular, fol-
lows

(3.24) liminf pa(en, Q) = palesf2).
Let {en} be a minimizing sequence for the functional I (e):
nILnlo 1(en) = eEclgI(Q) 1(e)

(we put infe g, @) 1(€) = —oo, if the set {1 (e)} is not lower bounded). Since the
set Uaq(Q) is compact in U(Q), there exist g [4(Q) and a subsequence {ex}
such that limg_ . ex = €9 in U(Q).

Finally we get (using (3.24) and the semicontinuity of norm 0] o))

inf __1(e)= lim 1 = liminf L =L =1 .
el 1) = Jim 1 (&) = liminf L(ex, tk) = L(eo, u(e0)) = 1(e0)
This means that eg [UL4(Q) is an optimal control function of the optimal control
problem (P).

4. Control of Some Unilateral Problems

Let Q be a bounded open domain annulus of R? with smooth boundary 9Q =
0Q a0 Let A(e) be a second order elliptic operator in Q, given by

4.1) A(e)v = — C(F[Q(X)]) v F Fap(x)v, v LVI(Q)

where V (Q) = H(Q) and Q(X) is a linear operator from R? to R? depending upon
x over Q, [ddnotes the vector {3/dx;}2_; and e = [F, Z] is the control variable.
We suppose that the following hypotheses concerning [Q], ao, L hold:

é. [TH(Q), 3 [TL(Q), 30(x) = do (> 0) ae. on Q, a5 [Tha(Q)
nd 9a;j/0xx [Tl.(Q) forany 1=<i,j <2, k=1,2.
here exists a > 0 such that [Q(X)]§ & = 0(|E|§2 a.e. on Q for any

= {Ei}izzl [RF.

(LD

The state of the system is given by u(e), solution of the unilateral problem:

1°. A(e)u(e) = L
2°.u(e)—Z =0 ondQ—
3°. (u(e) —Z) =0, du(e)/ona =0,
(u(e) — Z2)(0u(e)/onp) =0 on 0Q

(4.2)
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In (4.2) Z is a function on 0Q which is the control variable and 0/0na denotes the
conormal derivate associated to A(e): ov/ona = (Z[Q(X)] )1 n and n = {n;} is
a normal to 0Q glirected toward the exterior of Q. The cost functional is defined

by
1 1

4.3) 1(e) = L(e,u(e)) = (Qu(e)/ona —zg)?’ds+N  Z2ds
0Q 0Q

where z4 is given in L2(0Qmhand where N is given > 0.
Let U be the set of control functions, given by:

U=U(Q)=xU(@Q) where U(Q) = L»(Q), U@OQ) =H0Q).
Let us introduce the set of admissible control functions:
Uad = Uad(Q) > Uag(0Q)
where

Uad(Q) = %‘ CHYQ) N C(Q) :0<Fmin <F(X) < Fmax
] for all x [Q, [Hlgk) <cC1
Uad(0Q) = Z CH?(0Q) : 0 < Zmin < Z(X) < Zmax -
for all x oD, [ALgkpey < C2

where positive constants Fmin, Fmax, Zmin,» Zmax, C1, C2, are chosen in such a way
that U,g & [IThe set of admissible states of the system (4.2) is defined as

(I 1
(4.4) K, Q= v IVI(Q): Mgv=2Z a.e. on 0QgMgv =Z a.e. on 0Qm.

Due to the structure of (4.3) it is natural to take Z [11L(0Q), and in order for
u(e) to make sense to add condition K(e, Q) 8 [Cfbr each e [L4. However, this is
not su Lcieht in general for (4.3) to make sense, since in general du(e)/dna does
not belong to Lo(0Q ) Moreover, this is not su Lcieht in general for ((H1), 5°)
to make sense (in order to characterize the dependence e — K(e, Q) we need the
special type of convergence of sequences of sets introduced by Mosco).

In order to make (4.2) precise we define the following bilinear form on V (Q)

- -
(4.5) a(e,v,z) = (F[QI [ZdQ+ FapvzdQ
Q Q

for any v, z CVI(Q), e [Ulg.
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Lemma 8. The set K(e, Q) is nonempty, convex and closed.

Proof. Suppose that a function H [V1(Q) determines the control function on 0Q
by its traces. Since H [Kl(e, Q), K(e, Q) is nonempty. The convexity of K(e, Q) is
obvious. If {vq}n [Kle, Q) and v, — Vv (strongly) in V (Q), then Mgv, - Mgv
(strongly) in L,(0Q), since Mg (the operator of trace): HY(Q) - L.(0Q) is
continuous. Since v, [Ki(e, Q), Mgvy, = Z a.e. on 0Q—and Mgv, = Z a.e. on
0Q 1for each e [,g. Therefore Mgv = Z a.e. on 0Q—and Mgv = Z a.e. on
0QmHence v [Ki(e, Q) which shows that K(e, Q) is closed.

Let us observe that if u(e) CMI(Q) and satisfies ((4.2), 1°) then du(e)/ona is
defined and belongs to H=2(dQ ) This allows us to introduce the set

[ [
N@OQ) = Z:Z [1b(0Q) : K(e,Q) & [ Iou(e)/ona [CLL(0Q ) -

Let us remark that

(4.6) Uad(0Q) (= H2(0Q)) CNKOQ).
Indeed if Z [CH?2(0Q) then u(e) [CHZ(Q) so that du(e)/ona CHY2(0Qh 1
L.(0Q 5 hence (4.6) follows. 1

Lemma 9. The system of convex closed sets K(e, Q) defined by (4.4) fulfils the
condition ((H1), 2°).

Proof. Let e, — e (strongly) ilﬁ @ Zf]:l I%Ftrongly in U(0Q)), en [g.
Then there exists a subsequence Zx |, of Z,  weakly convergent in H2(0Q)
to the element Z [U.q(0Q). Let v, [ v eakly convergent in V(Q), (vn [
K(en,Q)). Then we have: Movnh — Z, = 0 a.e. on 0QMova — Zn = 0 aee.
on dQ rrwhich by virtue of the compact embedding H/2(0Q) B L,(0Q) implies
that, Mov—Z = 0a.e. on 0Qand Mov—2Z =0 a.e. on 0QHence v [Ki(e, Q).
Next, let v [ Kl(e, Q), then we put v, = v + (Hy — H). The elements {vn} satisfy
the conditions: v, [Kl(en, Q) and limy_ o Vn = Vv (strongly) in V (Q). Hence the
condition ((H1), 2°) holds. 1

The optimal control problem in distributed parameters considered here reads:
4.7 minL(e,u) subject to (4.2).

This means that u(e) [Ki(e, Q) is a solution of (4.2) if and only if u(e) is a solution
of the operator equation

(4.8) Ae)u(e) = L

where A(e) is a linear bounded operator acting from V (Q) into V "(8). It is defined
by

4.9) m(e)v,zl;l(g) =a(e,v,z) forany v,z [CVI(Q), e [Ulg.
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Lemma 10. The family {A(e)}, e [Ukq of operators defined by (4.5) and (4.9)
satisfies the assumptions ((H1), 3°, 4°, 5°).

Proof. We now define

REIII = sup |[QE)IEI/[E|r>
& RI—{0}

from (L1) we clearly find that the function x - [[Q(X)]] belongs to L (Q), we
denote by OQ]L] (o) the Lo(Q)-norm of the above function. Then, by virtue of
(4.5) and from the Schwarz inequality, we can write

(4.10) la(e, v, 2)| = Fmax(0Q] L) (o) Q| O2)dQ Q| [ZAdQ
+ @[] (o) VL] (o) [ZT ) (o)
< FmaxMax (HQI L) (o), [@8 ] (o)) MIvio) [Z1v]a)

for any v,z [CV1(Q) and e [[ULy. Relation (4.10) implies the continuity of a(e, -, -)
for each e [Uky. On the other hand by (L1) we obtain

(4.11) a(e,v,Vv) = FminMin (0, ao) I}, for any v CVI(Q)

and for each e ULy which shows the uniformly coercivity of a(e, -, -) (with respect
to Uaq(Q)). Now, ((H1), 3°, 4°) is an immediate consequence of (4.10) and (4.11).
Let e, e, [UkLg be such that e, — e (strongly) in U. Then

(4.12) la(en, Vv, z) —a(e,v, z)|
< [e} —elelgMax (HQ] Ll (o), [@ Ll (o)) lvio) [ZLvto) — O
for every v,z [CVI(Q) which shows the condition ((H1), 5°). 1
Finally, from Theorem 1 and Lemmas 8, 9 we conclude that:
(4.13) u(en) — u(e) (strongly) in V(Q) if en — e (strongly) in U.

Moreover, due to (4.6) and (4.13) there exists a subsequeance {u(ex)} weakly
convergent in H2(Q) to the element u(e). We then have

(4.14) du(en)/ona [aufe)/ona (weakly) in H¥?(0Q 1y
Let {en}n be a minimizing sequence
(4.15) I(en) - infl(e), e [Ug.

Since the set Uag is compact in U, there exists e Ukg and a subsequence {ex }
of {ex} such that

(4.16) limex =er—
It follows from (E2) that according to (4.14) and (4.16)
I(ech= L(eu(er) < liminf L(exu(ex)) = liminf I (ex,),= inf 1(e).
K= oo K= oo e [Udq
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