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OPTIMAL CONTROL OF A VARIATIONAL INEQUALITY

WITH POSSIBLY NONSYMMETRIC LINEAR

OPERATOR. APPLICATION TO THE OBSTACLE

PROBLEMS IN MATHEMATICAL PHYSICS.

J. LOVÍŠEK

Abstract. This paper is concerned with an optimal control problem for varia-
tional inequalities, where the linear not necessary symmetric operators as well as
the convex sets of possible states depend on the control parameter. Existence of
an optimal control problem is proven on the abstract level. An abstract framework
for the theoretical study of obstacle problems in mathematical physics in the varia-
tional inequality context is presented. Moreover, some sufficient conditions for the
existence of an optimal control are given.

Introduction

In this paper we deal with the question of the existence of an optimal control

function for a stationary variational inequalities, where the linear not necessary

symmetric operators as well as the convex sets of possible states depend on the

control parameter. The optimal control problem for a system governed by an ellip-

tic variational inequality is proposed by Lions [10] and discussed in Mignot [12],

Barbu [2], Sokolowski and Zolesio [19], Haslinger and Neittaanmäki [18], Murat

[16]. In these papers authors concentrate on the case of a symmetric operator.

The most characteristic property of variational inequalities is the fact that their

solution does not depend smoothly, in general, on the control. A special type of

the convergence of sequences of sets and functionals introduced by Mosco plays

an important role in our considerations. We introduce an abstract framework for

the theoretical study of the optimal control problem in the variational inequality

context. In Section 1 we present a general theorem, yielding the existence of at

least one optimal control. We formulate the optimal control problem of an obstacle

problem in mathematical physics in Sections 2, 3 and apply the general existence

theorem. Such problems play a very important role in various branches of physics

and mechanics. The latter includes an obstacle Fourier problem occuring in the

modeling of several heat-transfer phenomena. In Section 4 we formulate the op-

timal control problem of some unilateral problems, which describe the stationary
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equilibrium of a liquid in a region Ω surrounded by a membrane ∂Ω that allows

the liquid to enter the region Ω, whereas it prevents the liquid to flow out.

1. Problem Statement and Main Result

1.1. On the convergence of sets and of functions.

Let V (Ω) be as normed linear space. Following Mosco [14] we introduce a

convergence of sequences of subsets of V (Ω).

Definition 1. A sequence {Kn(Ω)}n of subsets of V (Ω) converges to a set

K(Ω) ⊂ V (Ω) if

1. K(Ω) contains all weak limits of sequences {vnk}nk (vnk ∈ Knk(Ω)), where

{Knk(Ω)}nk are arbitrary subsequences of {Kn(Ω)}n;

2. Every element v ∈ K(Ω) is the strong limit of some sequence {vn}n,

vn ∈ Kn(Ω).

Notation. K(Ω) = Lim n→∞Kn(Ω).

Let W : V (Ω)→ (−∞,∞] be a functional. The set

epi W : = {(v, β) ∈ V (Ω)× R :W(v) ≤ β}

is called the epigraf of W, and the effective domain of W is a subset of V (Ω),

DW (or dom W) = {v :W(v) < +∞, v ∈ V (Ω)}.

Moreover, the subdifferential ∂W is an operator from V (Ω) to 2V
∗

given by

∂W(z) = {z∗ ∈ V ∗(Ω), 〈z∗, v − z〉V (Ω) ≤ W(v) − W(z) for all v ∈ V (Ω), for

z ∈ V (Ω) with W(z) <∞ and by ∂W(z) = ∅ for z ∈ V (Ω) with W(z) =∞}.

Definition 2. A sequence {Wn} of functionals from V (Ω) into (−∞,∞] con-

verges to W : V (Ω)→ (−∞,∞] in V (Ω), if

epi W = Lim
n→∞

epi Wn.

We use the notation W = Lim n→∞Wn.

Let us recall the following lemma of Mosco on the convergence of functionals

in V (Ω).

Lemma 1. Let Wn : V (Ω)→ (−∞,∞], n = 1, 2, . . . . ThenW = Lim n→∞Wn

in V (Ω) if and only if (1.) and (2.) below hold:

1. For every v ∈ V (Ω) there exists a sequence {vn}n in V (Ω) such that

limn→∞ vn = v (strongly) in V (Ω) and lim supn→∞Wn(vn) ≤ W(v).
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2. For every subsequence {Wnk}nk of {Wn}n and every sequence {vk}k in

V (Ω) weakly convergent to v ∈ V (Ω) the inequality

W(v) ≤ lim inf
n→∞

Wnk(vk)

holds.

We shall denote by E0(V (Ω)) the family of all lower semicontinuous convex

functionals W : V (Ω)→ (−∞,∞], not identically equal to +∞.

Remark 1. Due to the previous lemma the condition W = Lim n→∞Wn im-

plies that for every v ∈ V (Ω) there exists a sequence {vn}n ⊂ V (Ω) such that

limn→∞ vn = v (strongly) in V (Ω) and limn→∞Wn(vn) =W(v).

1.2. Problem statement.

Let U(Ω) be a reflexive Banach space of controls with a orm ‖ · ‖U(Ω). Let

Uad(Ω) ⊂ U(Ω) be a set of admissible controls. We assume that Uad(Ω) is compact

in U(Ω). Further, denote by V (Ω) a real Hilbert space with an inner product

(·, ·)V (Ω) and a norm ‖ · ‖V (Ω), by V ∗(Ω) its dual space with a norm ‖ · ‖V ∗(Ω) and

with the duality pairing 〈·, ·〉V (Ω).

Let constants M0, M1 (0 < M0 < M1) be given. We denote by E(M0,M1) the

class of the linear, continuous (not necessary symmetric) operators A : V (Ω) →
V ∗(Ω) such that

M0‖v‖
2
V (Ω) ≤ 〈Av, v〉V (Ω) ≤M1‖v‖

2
V (Ω), for all v ∈ V (Ω).

We introduce the systems {K(e,Ω)} , {A(e)} of convex closed subsets K(e,Ω) ⊂
V (Ω) and linear bounded operators A(e) ∈ L(V (Ω, V ∗(Ω)), e ∈ Uad(Ω), satysfying

the following assumptions:

(H1)



1◦.
⋂

e∈Uad(Ω)

K(e,Ω) 6= ∅;

2◦. en → e (strongly) in U(Ω)⇒ K(e,Ω) = Lim
n→∞

K(en,Ω);

3◦. ‖A(e)‖L(V (Ω),V ∗(Ω)) ≤M for all e ∈ Uad(Ω);

4◦. 〈A(e)v, v〉V (Ω) ≥ α‖v‖
2
V (Ω), α > 0, for all e ∈ Uad(Ω) and

v ∈ V (Ω) (a real number α not depending on e and v,

further the operator A(e) is said to be uniformly coercive

with respect to Uad(Ω));

5◦. en → e (strongly) in U(Ω) ⇒ A(en) → A(e) in

L(V (Ω), V ∗(Ω)), e, en ∈ Uad(Ω).

Thus, by virtue of ((H1), 3◦, 4◦), A(en), n = 1, 2, . . . and A(e) are elements of the

class E(α,M) for each sequence {en}n, where en → e (strongly) in U(Ω).
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Moreover, we suppose:

(E1)



1◦. There is a system of functionals {Φ(en, ·)}n on V (Ω) with

values in (−∞,∞] (not identically equal to +∞) semi-

continuous and convex on V (Ω), {v ∈ V (Ω) : Φ(en, v) <

∞} ⊂ K(en,Ω), {v ∈ V (Ω) : Φ(e, v) < ∞} ⊂ K(e,Ω),

Φ(e, ·) = Lim n→∞Φ(en, ·) as en → e (strongly) in U(Ω),

en, e ∈ Uad(Ω).

2◦. {L(en)}n is a sequence in V ∗(Ω) such that L(en)→ L(e)

(strongly) in V ∗(Ω) as en → e (strongly) in U(Ω), en,

e ∈ Uad(Ω).

Further we assume that for each sequence {en}, en → e (strongly) in U(Ω) there

is a bounded sequence {an}n with an ∈ K(en,Ω) and Φ(en, an) < ∞ for all n, e,

en ∈ Uad(Ω) such that

(1.1) lim sup
n→∞

Φ(en, an) <∞.

There exist two positive constants c1, c2 such that for each sequence {en}, en → e

(strongly) in U(Ω), en, e ∈ Uad(Ω),

Φ(en, vn) ≥ −c1‖vn‖V (Ω) − c2 for n = 1, 2, . . . (see [15])(1.2)

Φ(e, v) ≥ −c1‖v‖V (Ω) − c2.

Then since A(en) ∈ E(α,M) for any sequence of pairs {[en, vn]}n, e, en ∈ Uad(Ω)

n = 1, 2, . . . with ‖vn‖V (Ω) →∞ and en → e (strongly) in U(Ω) we have

(1.3)
[〈A(en)vn, vn − an〉V (Ω) + Φ(en, vn)]

‖vn‖V (Ω)
→∞.

Moreover, for each n

(1.4)
[〈A(en)v, v − an〉V (Ω) + Φ(en, v)]

‖v‖V (Ω)
→∞.

as ‖v‖V (Ω) →∞, v ∈ K(enΩ) where en ∈ Uad(Ω), n = 1, 2, . . . , n is arbitrary but

fixed in Uad(Ω), and A(en) ∈ E(α,M).

Remark 2. By virtue of ((H1), 3◦, 4◦) and (1.1) we can write

[〈A(en)vn, vn − an〉V (Ω) + Φ(en, vn)] ≥ α‖vn − an‖
2
V (Ω) − c3‖vn − an‖V (Ω) − c4,

where an is bounded in K(en,Ω) (n = 1, 2, . . . ) and when ‖vn‖V (Ω) →∞ then also

‖vn − an‖V (Ω) →∞. In a similar way (for each fixed n) we obtain relation (1.4).
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We set L(en) = f + Ben, where B ∈ L(U(Ω), V ∗(Ω)). For fixed n = 1, 2, . . . and

any given L(en) ∈ V ∗(Ω) (if we suppose (1.4) and (1.1)) there exists a unique

solution u(en) ∈ K(en,Ω) of the state inequality

〈A(en)u(en), v − u(en)〉V (Ω) + Φ(en, v)− Φ(e, u(en))(1.5)

≥ 〈L(en), v − u(en)〉V (Ω) for all v ∈ K(en,Ω).

This follows from the Kenmochi Theorem ([8]).

Further, consider a functional L : U(Ω) × V (Ω) → R for which the following

condition holds:

(E2)

{
en → e (strongly) in U(Ω), vn ⇀ in V (Ω) (weakly) =⇒
=⇒ L(e, v) ≤ lim infn→∞L(en, vn).

We shall formulate the optimal control in the following way:

Problem (P∗). Find a control e∗ ∈ Uad(Ω) such that

〈A(e∗)u(e∗), v − u(e∗)〉V (Ω) + Φ(e∗, v)− Φ(e∗, u(e∗))(1.6)

≤ 〈L(e∗), v − u(e∗)〉V (Ω) for all v ∈ K(e∗,Ω)

L(e∗, u(e∗)) = inf
e∈Uad(Ω)

L(e, u(e)).(1.7)

1.3. Main result.

Theorem 1. Let the assumption (H1), (E1), (E2), (1.1), (1.2), (1.3) be satis-

fied. Then there exist at least one solution e∗ of the optimal control problem (P∗).

Proof. As the solution u(e) of the variational inequality (1.5) is uniquely deter-

mined for every e ∈ Uad(Ω), we can introduce the functional J(e) as

(1.8) J(e) = L(e, u(e)), e ∈ Uad(Ω).

Due to the compactness of Uad(Ω) in U(Ω), there exists a sequence {en} ⊂ Uad(Ω)

such that

limJ(en) = inf
e∈Uad(Ω)

J(e)(1.9)

lim
n→∞

en = e∗ in U(Ω), e∗ ∈ Uad(Ω).(1.10)

Denoting u(en) : = un ∈ K(en,Ω) we obtain the inequality

〈A(en)un, un − v〉V (Ω) − 〈L(en), un − v〉V (Ω)(1.11)

≤ Φ(en, v)− Φ(en, un) for all v ∈ K(en,Ω).
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In particular, taking an for v in (1.11) we obtain

(1.12) 〈A(en)u(en)− L(en), un − an〉V (Ω) + φ(en, un) ≤ Φ(en, an) for every n.

Hence the relations (1.1), (1.3) and ((E1), 2◦) imply that {un}n is a bounded

sequence. This implies the existence of a subsequence {unk}k of {un}n and an

element u∗ ∈ V (Ω) such that (For simplicity we write uk, L(ek), Φ(ek, ·), ak and

A(ek) for unk , L(enk), Φ(enk , ·), ank and A(enk), respectively.)

(1.13) uk ⇀ u∗ (weakly) in V (Ω).

As uk ∈ K(ek,Ω), the assumption ((H1), 2◦) implies

(1.14) u∗ ∈ K(e∗,Ω).

Then we observe from Lemma 1, ((E1), 1◦), (1.1), (1.2) that

Φ(e∗, u∗) ≤ lim inf
k→∞

Φ(ek, uk)(1.15)

≤ lim sup
k→∞

{Φ(ek, ak)− 〈A(ek)uk − L(ek), uk − ak〉V (Ω)} <∞

since by virtue of the monotonicity of A(ek) one has

| 〈A(ek)uk, ak − uk〉V (Ω) | ≤ 〈A(ek)ak, ak〉V (Ω) + | 〈A(ek)ak, uk〉V (Ω) |

≤ 2Mc2, where ‖uk‖V (Ω), ‖ak‖V (Ω) ≤ c.

On the other hand, by virtue of Lemma 1, ((E1), 1◦) and Remark 1 there exists a

sequence {hk}k ⊂ V (Ω) such that

lim
k→∞

hk = u∗ in V (Ω)

lim
k→∞

Φ(ek, hk) = Φ(e∗, u∗).
(1.16)

Here, note that hk ∈ K(ek,Ω) for all k, which follows from the assumption

((E1), 1◦) and (1.15), (1.16), so that (inserting v := hk into (1.11))

(1.17) 〈A(ek)uk − L(ek), uk − hk〉V (Ω) ≤ Φ(ek, hk)− Φ(ek, uk), for all k.

Moreover, from ((H1), 3◦) and (1.13) we obtain

(1.18) ‖A(ek)uk‖V ∗(Ω) ≤ c for k = 1, 2, . . . .

Then there exists an element χ ∈ V ∗(Ω) and a subsequence {A(ej)uj}j of

{A(ek)uk}k such that

(1.19) A(ej)uj ⇀ χ (weakly) in V ∗(Ω).
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Combining (1.13) and (1.16, 1) we have

(uj − hj) ⇀ 0 (weakly) in V (Ω).

Thus, by passing to the limit in (1.17) we have

lim sup
j→∞

〈A(ej)uj , uj − u∗〉V (Ω)(1.20)

≤ lim sup
j→∞

〈A(ej)uj − L(ej), uj − hj〉V (Ω)

≤ lim sup
j→∞

Φ(ej , hj)− lim inf
j→∞

Φ(ej , uj) ≤ 0 for all j.

However, combining the relation (1.19) with the inequality (1.20) we arrive at

(1.21) lim sup
j→∞

〈A(ej)uj, uj〉V (Ω) ≤ 〈χ, u∗〉V (Ω) .

Moreover, the monotonicity of A(ej) on V (Ω) (A(ej) ∈ E(α,M), j = 1, 2, . . . )

implies (in view of (1.21))

(1.22) 〈χ, u∗〉 ≥ lim sup
j→∞

[〈A(ej)v, uj − v〉V (Ω) + 〈A(ej)uj , v〉V (Ω)], j = 1, 2, . . . .

Relations (1.10), (1.13), (1.19) and ((H1), 5◦), (1.22) enable us to write

〈χ−A(e∗)v, u∗ − v〉V (Ω) ≥ 0 for all v ∈ V (Ω).

Let v = u∗ + t(w − u∗), t ∈ R+ and w ∈ V (Ω). Then we get

(1.23) 〈χ−A(e∗)[u∗ + t(w − u∗)], u∗ − w〉V (Ω) ≥ 0 for any w ∈ V (Ω).

For v = u∗ − t(w − u∗) we can analogously write

(1.24) 〈χ−A(e∗)[u∗ − t(w − u∗)], w − u∗〉V (Ω) ≥ 0.

Then combining (1.23) with (1.24) for t→ 0 we see that

〈χ−A(e∗)u∗, u∗ − w〉V (Ω) = 0 for any w ∈ V (Ω).

This means that

χ = A(e∗)u∗(1.25)

A(ej)uj ⇀ A(e∗)u∗ (weakly) in V ∗(Ω).(1.26)
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Using again the monotonicity of A(ej) we have

〈A(ej)uj , uj − u∗〉V (Ω) ≥ 〈A(ej)u∗, uj − u∗〉V (Ω) , j = 1, 2, . . . .

Next, by the convergences (1.10) and (1.13), by assumption ((H1), 5◦) and by the

last inequality we obtain

lim inf
j→∞

〈A(ej)uj, uj − u∗〉V (Ω) ≥ 0

which compared with (1.20) leads to

(1.27) lim
j→∞

〈A(ej)uj , uj − u∗〉V (Ω) = 0 .

Clearly (by virtue of (1.26) and (1.27))

(1.28) lim
j→∞

〈A(ej)uj , uj〉V (Ω) = 〈A(e∗)u∗, u∗〉V (Ω) .

We shall show that

(1.29) 〈A(e∗)u∗ − L(e∗)u∗ − v〉V (Ω) ≤ Φ(e∗, v)− Φ(e∗, u∗) for all v ∈ K(e∗,Ω).

Let v be any element of K(e∗,Ω). If Φ(e∗, v) = +∞, then (1.29) is trivial. Thus,

assume Φ(e∗, v) < ∞. According to Lemma 1 and ((E1), 1◦) again, there is a

sequence {ωj}j with ωj ∈ K(ej ,Ω) for all j strongly convergent to v such that

(1.30) lim
j→∞

Φ(ej , ωj) = Φ(e∗, v).

Since L(ej)→ L(e∗) (strongly) in V ∗(Ω) as j →∞ and

〈A(ej)uj − L(ej), uj − ωj〉V (Ω) ≤ Φ(ej, ωj)− L(ej, uj)

for all j, we obtain (1.29) by letting j → ∞ and using (1.15), (1.28) and (1.30).

As the element v ∈ K(e,Ω) is chosen arbitrary we get u0 ≡ u(e0) and

u(en) : (= un) ⇀ u(e∗) : (= u∗) (weakly) in V (Ω).

Then (E2), (1.9) yield

L(e∗(u, (e∗)) ≤ lim inf
j→∞

L(en, u(en)) = inf
e∈Uad(Ω)

L(e, u(e)),

hence

L(e∗, u(e∗)) = inf
e∈Uad(Ω)

L(e, u(e))

which completes the proof.

Due to A(e∗), A(en) ∈ E(α,M) for n = 1, 2, . . . , the strong convergence will

follow from relation

α lim sup
n→∞

‖u(en)− u(e∗)‖
2
V (Ω) ≤ lim

n→∞
〈A(en)(u(en)− u(e∗)), u(en)− u(e∗)〉V (Ω)

= lim
n→∞

{
〈A(en)u(en), u(en)〉V (Ω) + 〈A(en)u(e∗), u(e∗)〉V (Ω)

− 〈A(en)u(e∗), u(en)〉V (Ω) − 〈A(en)u(en), u(e∗)〉V (Ω)

}
= 0

(by virtue of ((H1), 4◦, 5◦) and (1.13), (1.28)). �
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2. Optimal Control of an Obstacle

Fourier Problem (Fixed Convex Set)

In order to motivate the study of the abstract control problem (P) we consider

the so-called obstacle Fourier problem for linear second-order elliptic partial differ-

ential operators. The obstacle Fourier problem occurs in the modelling of several

heat-transfer phenomena. On the other hand, problems of this genre can be found

in diverse fields of applications. One might as well be interested in finding the

profile which gives the minimum drag as in constructing a magnet which has a

constant magnetic field in a prescribed region. It is as easy (or as difficult) to

minimize the weight of a huge cooling tower of a modern nuclear power station as

to maximize the performance of the tiniest of transistors of a complicted silicon

chip.

2.1. Problem statement.

We start with notation. Let Ω denote an open bounded connected subset be-

longing to the 3 dimensional real space R3 (we denote by x (= {xi}3i=1) the generic

point from R3), with the boundary ∂Ω. Let a · b denote the usual scalar product

in R3, i.e. a · b =
∑3
i=1 aibi, for any a, b ∈ R3. Lp(Ω), 1 ≤ p ≤ ∞, and H1(Ω),

H1
0 (Ω) are the usual Banach spaces of real-valued functions defined on Ω, their

norms are denoted by ‖ · ‖Lp(Ω) and ‖ · ‖H1(Ω) ·H
−1(Ω) is the dual space of H1

0 (Ω)

and 〈·, ·〉H1(Ω) the generalized scalar product between these spaces. Next we sup-

pose that ∂Ω is sufficiently smooth (Lipschitz continuous, for example). We have

D(Ω) = C∞(Ω) and M0 is a linear continuous operator from H1(Ω) to L2(∂Ω)

(the trace operator).

Now we describe the optimal control problem considered here. First, let U(Ω)

(control space) = C0(Ω) and the set of admissible control functions, given by

Uad(Ω) = {e ∈W 1
∞(Ω) : 0, emin ≤ e ≤ emax, |∂e/∂xi| ≤ ci, i = 1, 2, 3}

where ci are given constants.

We note that Uad(Ω) is clearly compact in the topology of C0(Ω). For an arbitrary

fixed e ∈ Uad(Ω) let the state of the control system (Fourier obstacle problem) be

given by solutions of the nonlinear elliptic boundary value problem

(2.1)



R(e)u ≥ L(e) in Ω

u = 0 on ∂ΩU

([A(e)] grad u) · n+ ku = H on ∂ΩH

([A(e)] grad u) · n+ ku ∈ β(u) on ∂ΩS

u ≥ ψ a.e. on Ω

(R(e)u− L(e))(u− ψ) = 0 a.e. on Ω

R(e)u = −div{([A(e)]) grad u+ ([Q(e)])u}

+ ([B(e)]) · grad u+ a0(e)u
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where β(·) is a maximal monotone operator, ∂Ω = ∂ΩU ∪ ∂ΩH ∪ ∂ΩS (such that

∂ΩH ∩ ∂ΩS = 0, ∂ΩU ∩ ∂ΩH =0, ∂ΩU ∩ ∂ΩS = 0), H and k are given functions

defined over ∂Ω, such that H ∈ L2(∂ΩH), k ∈ C0(∂ΩH ∪ ∂ΩS), the function ψ

represents the obstacle and ψ ∈ H1(Ω)∩C0(Ω), ψ(∂Ω) < 0, n is the outward unit

vector normal at ∂Ω.

[A(e)] = [A(·, e(·))] = [aij(·, e(·)] denotes a (3, 3)-matrix (the system of linear

operators from R3 to R3 depending upon x over Ω)

[Q(e)] = [Q(·, e(·))] = [ai(·, e(·)],

[B(e)] = [B(·, e(·))] = [bi(·, e(·)] denotes a (1,3)-matrix

a0(e) = a0(·, e(·)) — a scalar function, e ∈ Uad(Ω).

We assume that {[A(x, e)]}, {[Q(x, e)]}, {[B(x, e)]}, a0(x, e) are defined on Ω×
[emin, emax] and satisfies the following conditions:

(F1)



1◦. aij(·, t), ai(·, t), bi(·, t), a0(·, t) (i, j = 1, 2, 3) are continu-

ous function on Ω for every t ∈ [emin, emax] and aij(x, ·),
ai(x, ·), bi(x, ·), a0(x, ·) are a continuous on [emin, emax]

for every x ∈ Ω.

Moreover a0(x, t) ≥ c0 > 0 a.e. on Ω.

2◦. Of course, we have also to assume the ellipticity condition:

[A(x, e)]ξ · ξ ≥ α∗|ξ|2R3 for any ξ ∈ R3, for any e ∈ Uad(Ω)

a.e. x ∈ Ω, α∗ = const. > 0 to be fullfilled.

In the right-hand side of (2.1), L(e) (for any e ∈ Uad(Ω)) denotes a fixed functional

belonging to L2(Ω).

Finally, we choose the functional

(2.2) L(e, v) = ‖v − zd‖
2
L2(Ω) +N‖e‖2U(Ω), N > 0

as the cost functional of our control problem.

In this notation the optimal control problem in distributed parameters consid-

ered here reads minL(e, u) subject (2.1).

We shall briefly denote it by problem (P). Preparing our treatment we deal

with the state inequation (2.1) for an arbitrary fixed e ∈ Uad(Ω).

Because of above assumptions we have to work in the framework of the Sobolev

space V (Ω) (⊂ H1(Ω)). This means that u ∈ V (Ω) is a solution of (2.1) if and

only if u is a solution of the nonsymmetric operator inequation

(2.3)



A(e)u ≥ L(e) in Ω

u = 0 on ∂ΩU

([A(e)] grad u) · n+ ku = H on ∂ΩH

([A(e)] grad u) · n+ ku ∈ β(u) on ∂ΩS

u ≥ ψ a.e. on Ω
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where A(e) (the nonsymmetric operator of Fourier obstacle problem) is a linear

bounded operator acting from V (Ω) into V ∗(Ω). It is defined by

(2.4) 〈A(e)v, z〉V (Ω) = a(e, v, z) for any v, z ∈ V (Ω) and e ∈ Uad(Ω)

where on the open Ω we define the bilinear (nonsymmetric) form a(e, ·, ·): V (Ω)×
V (Ω)→ R for all e ∈ Uad(Ω) by:

a(e, v, z) =

∫
Ω

{[A(e)] grad v · grad z + ([Q(e)] · grad z)v(2.5)

+ ([B(e)] · grad v)z + a0vz} dΩ +

∫
∂ΩH

kM0vM0z ds

and the right-hand side is an element belonging to L2(Ω) given by: (〈L(e), ·〉V (Ω) :

V (Ω)→ R)

(2.6) 〈L(e), v〉V (Ω) =

∫
Ω

(f +Be)v dΩ +

∫
∂ΩH

HM0v ds for any v ∈ V (Ω),

e ∈ Uad(Ω) and B ∈ L(U(Ω), L2(Ω)).

Remark 3. LetK(Ω) = V (Ω) = H1
0 (Ω). Then, it is not hard to see thatA(e) is

a Fredholm operator ([4]). Therefore the state equation A(e)u = L(e) is solvable

if and only if the fixed e ∈ Uad(Ω) belongs to the set H(Ω) = {e ∈ Uad(Ω) :

〈L(e), v〉V (Ω) = 0 for any v ∈ Ker (A∗(e))} where Ker (A∗(e)) is the kernel of

the adjoint operator A∗(e) to A(e), H(Ω) is called set of admissible controls and

Z(Ω) = {[e, u] ∈ L2(Ω) ×H1
0 (Ω) : A(e)u = L(e), e ∈ H(Ω)} is said to be set of

admissible pairs.

2.2. Existence Theorem.

The bilinear form (2.5) can be shown to be coercive under less restrictive as-

sumption than: [Q(e)] and [B(e)] vanish identically in Ω. However, we have always

to require, that the lower-order coefficients be conveniently small, in some sense to

be specified, with respect to various parameters such as meas Ω and the constant

α∗ of uniform ellipticity. The case of a noncoercive bilinear form:

We now define

|[A(e)](x)| = sup
ξ∈R3−{0}

|[A(e)](x)ξ|/|ξ|R3

|[Q(e)](x)| = sup
ξ∈R3−{0}

|[Q(e)](x)ξ|/|ξ|R3(2.7)

|[B(e)](x)| = sup
ξ∈R3−{0}

|[B(e)](x)ξ|/|ξ|R3

Then by ((F1), 1◦, 2◦) we clearly find that the functions x → |[A(e)](x)|, x →
|[Q(e)](x)| and x → |[B(e)](x)| belong to L∞(Ω). We consider bilinear form
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〈A(e)v, z〉V (Ω) on V (Ω), given by (2.4) where the aij(e), ai(e), bi(e), a0(e) ver-

ify ((F1), 1◦, 2◦) and

(F2)

∫
Ω

{[B(e)] · grad v + a0v} dΩ +

∫
∂ΩH

kM0v ds ≥ 0

for any v ∈ V (Ω), v ≥ 0 and for any e ∈ Uad(Ω). (We note that the assumption

(F2) corresponds, for differentiable [B(e)] to the conditions: a0(e)−[B(e)]·grad v ≥
0 in Ω and k + [B(e)] · n ≥ 0 on ∂ΩH).

The lower order terms imply, in general, that the bilinear form (2.5) is not coercive,

(this means that the Lions-Stampacchia theorem ([9]) is not directly applicable to

the state obstacle problem).

With respect to the Poincare inequality and the Sobolev embeddings one has, for

some Cr = Cr(Ω, ∂Ωu, r) > 0

(2.8) ‖v‖Lr(Ω) ≤ cr‖ grad v‖L2(Ω) = cr‖v‖V (Ω) for any v ∈ V (Ω)

where r = 2n/(n− 2) if n ≥ 3 and r is any number 1 < r <∞ if n = 2. Moreover,

for any ε > 0 and f ∈ Lp(Ω), 1 ≤ p <∞ we can write, ([17])

(2.9) f = f∗ + f∗∗ with ‖f∗∗‖Lp(Ω) ≤ ε and ‖f∗‖L∞(Ω) ≤M(ε).

We have the following inequalities:∣∣∣∣∫Ω([Q(e)] · grad v)v dΩ

∣∣∣∣(2.10)

≤ (α∗/4)‖ grad v‖2L2(Ω) + α−2
∗ ‖[Q(e)]‖2L∞(Ω)‖v‖

2
L2(Ω)∣∣∣∣∫Ω([B(e)] · grad v)v dΩ

∣∣∣∣(2.11)

≤ (α∗/4)‖ grad v‖2L2(Ω) + α−2
∗ ‖[B(e)]‖2L∞(Ω)‖v‖

2
L2(Ω).

Thus (by ((H1), 2◦), (2.10), (2.11), (F1)) the bilinear form (2.5) is coercive on

V (Ω) relative to L2(Ω):

〈A(e)v, v〉V (Ω) + λ‖v‖2L2(Ω)(2.12)

≥ α̂∗‖v‖
2
V (Ω) for v ∈ V (Ω), e ∈ Uad(Ω), α∗ > 0

with

λ = α−1
∗ (‖[Q(e)]‖2L∞(Ω) + ‖[B(e)]‖2L∞(Ω)) + ‖a0(e)‖2L∞(Ω) + (α∗/2)

α̂∗ = α∗/2.
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Lemma 3. Assume (F1), (F2) and (2.12). If in addition, we assume the

following estimate

(2.13)
3∑
i=1

‖ai(x, t) − bi(x, t)‖Lp(Ω) ≤ α∗/(2Cr)

with r = 2p/(p−2), t ∈ [emin, emax], then (2.12) holds with λ = 0, i.e. 〈A(e)·, ·〉V (Ω)

is coercive on V (Ω).

Proof. Parallel to that of Proposition 7.2 ([17]). �

Remark 4. For the general case we can apply (2.9) to ([Q(e)] − [B(e)]) to

obtain
3∑
i=1

‖ai∗∗(x, t) − bi∗∗(x, t)‖Lp(Ω) ≤ α∗/(4Cr)

and
3∑
i=1

‖ai∗(x, t)− bi∗(x, t))‖L∞(Ω) ≤M(ε).

We get ∣∣∣∣∣
∫

Ω

(([Q(e)]− [B(e)]) · grad v)v dΩ

∣∣∣∣∣
≤

∫
Ω

|(([Q∗(e)]− [B∗(e)]) · grad v)v| dΩ

+

∫
Ω

|(([Q∗∗(e)]− [B∗∗(e)]) · grad v)v| dΩ

≤M(ε)‖v‖L2(Ω)‖ grad v‖L2(Ω) + (α∗/4)‖ grad v‖2L2(Ω)

≤ (4M2(ε)/α∗)‖v‖
2
L2(Ω) + (α∗/2)‖ grad v‖2L2(Ω)

and (2.12) follows for any λ ≥ λ∗ = 4M2(ε)/α∗.

Lemma 4. The family {A(e)}, e ∈ Uad(Ω) of operators, defined by (2.4), (2.5)

satisfies the assumptions ((H1), 3◦, 4◦, 5◦).

Proof. We have

| 〈A(e)v, z〉V (Ω) | ≤ Max
[
‖A(e)]‖L∞(Ω), ‖[Q(e)]‖L∞(Ω), ‖[B(e)]‖L∞(Ω),

‖a0(e)‖L∞(Ω), c(Ω)‖k‖L∞(∂ΩH)

]
‖v‖V (Ω)‖z‖V (Ω)

for any v, z ∈ V (Ω), e ∈ Uad(Ω). (It is a simple application of Schwarz inequality

by using (2.8) since |[A(e)]|, |[Q(e)]|, |[B(e)]| ∈ L∞(Ω) and k ∈ L∞(∂ΩH ∪ ∂ΩS).)
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Then from the above relation we get ((H1), 3◦). On the other hand ((H1), 4◦) is

immediate consequence of Lemma 3.

Let en → e (strongly) in C0(Ω) for n → ∞, (e, en ∈ Uad(Ω)). Then (for

v, w ∈ V (Ω)) one has

|〈A(en)v, w〉V (Ω)| − 〈A(e)v, w〉V (Ω) |(2.14)

≤

∫
Ω

|([A(en)]− [A(e)]) grad v · grad w| dΩ

+

∫
Ω

|([Q(en)]− [Q(e)]) · grad wv| dΩ

+ |([B(en)]− [B(e)]) · grad vw| dΩ + |([a0(en)]− [a0(e)])vw| dΩ

≤ max
i,j

max
x∈Ω
|aij(en)− aij(e)|

∫
Ω

| grad v · grad w| dΩ

+ max
i

max
x∈Ω
|ai(en)− ai(e)|

∫
Ω

| grad w| |v| dΩ

+ max
i

max
x∈Ω
|bi(en)− bi(e)|

∫
Ω

| grad v| |w| dΩ

+ max
x∈Ω
|a0(en)− a0(e)|

∫
Ω

|vw| dΩ.

On the other hand by virtue of (F1) and (2.14) if we apply Theorem 3.10 ([11]),

we can write

lim
n→∞

max
i,j

max
x∈Ω
|aij(en)− aij(e)| = 0,

lim
n→∞

max
i

max
x∈Ω
|ai(en)− ai(e)| = 0,

lim
n→∞

max
i

max
x∈Ω
|bi(en)− bi(e)| = 0,

lim
n→∞

max
x∈Ω
|a0(en)− a0(e)| = 0.

Inserting this into (2.14) we obtain ((H1), 5◦). �
Since β(·) in (2.3) is a maximal monotone operator on R, a convex lower contin-

uous proper functional j(·) can be determined up to an additive constant (see [2])

such that β(·) = ∂j(·). A convex lower semicontinuous proper functional Φ∗(·) is

then defined on L2(∂ΩS) by the relation

Φ∗(·) =

∫
∂ΩS

j(·) ds if j(·) ∈ L2(∂ΩS)

and Φ∗(·) =∞ otherwise.

The restriction of Φ∗(·) to H1/2(∂ΩS) is denote by Φ(·). Next since Φ(·) is in-

dependent on e, verification of ((E1), 1◦) is trivial. It remains to chose K(Ω)
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(⊂ V (Ω)). We set

K(Ω) = {v ∈ V (Ω) : v(x) ≥ ψ(x) a.e. on Ω}

where ψ ∈ H1(Ω) ∩ C0(Ω) and ψ(∂Ω) < 0.

Lemma 5. The set K(Ω) is nonempty and closed in V (Ω).

Proof. See Glowinski ([7]). �

Thus, verification of (1.3) and (1.4) is trivial (clear as K(Ω) does not depend

on e). Next from (2.6) and since f ∈ L2(Ω), H ∈ L2(∂ΩH), B ∈ L(U(Ω), L2(Ω))

and from the Schwarz inequality in L2(Ω) and L2(∂Ω), we have

| 〈L(e), v〉V (Ω) | ≤ (‖f‖L2(Ω) + ‖Be‖L2(Ω))‖v‖L2(Ω) + ‖H‖L2(∂ΩH)‖M0v‖L2(∂ΩH)

≤ (‖f‖L2(Ω) + ‖Be‖L2(Ω) + C(Ω)‖H‖L2(∂ΩH))‖v‖V (Ω)

for v ∈ V (Ω) and for any e ∈ Uad(Ω).

This means, that the continuity of L(e) in e is assured. The condition ((E1), 2◦) is

evident. Finally, to each control e we associate a cost functional (2.2). The func-

tional L(e, v) : Uad(Ω)× V (Ω)→ R is weakly lower semicontinuous, consequently,

we may write immediately,

lim inf
n→∞

L(en, vn) = lim inf
n→∞

(‖vn − zd‖
2
L2(Ω) +N‖en‖

2
U(Ω))

≥ ‖v − zd‖
2
L2(Ω) +N‖e‖2U(Ω) = L(e, v).

The problem of optimal control is now to find, inf
{
J(e) : e ∈ Uad(Ω)

}
. Thence

Theorem 1 shows that a solution e∗ exists.

3. Optimal Control of an Obstacle Problem (The

convex sets depend on the control parameter)

Let Ω be a bounded open set in R2 and let a bilinear form a(e, v, z) be given on

V (Ω) (= H1
0 (Ω)) by (2.5) (where k = 0). The set of admissible functions (controls)

has the form

Uad(Ω) =
{
e ∈ H2(Ω) : 0 < emin ≤ e(x) ≤ emax on Ω, ‖e‖H2(Ω) ≤ c1,∫

Ω

e(x) dΩ = c2, e(s) = ν(s), on ∂Ω, ν ∈ C(∂Ω)
}
.

We suppose that c1, c2, c3, emin, emax are given constants in such a way that

Uad(Ω) 6= ∅. U(Ω) = H1(Ω) ∩ C(Ω) (the set of controls).

Now we introduce the system of sets
{
K(e,Ω)

}
, e ∈ Uad(Ω), K(e,Ω) = {v ∈ V (Ω) :
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v(x) ≥ S(x) + e(x) a.e. on Ω} where the obstacle is analytically described by a

function: S(x) ∈ H2(Ω) fulfilling the condition

(3.1) S(s) + ν(s) ≤ 0 for all s ∈ ∂Ω.

Thus, K(e,Ω) is nonempty for every e ∈ Uad(Ω) due to assumption (3.1). Indeed,

we have z ∈ K(e,Ω), z = max{0,S+e} (see [9]). It can be easily seen that K(e,Ω)

is convex and closed in V (Ω). The system
{
K(e,Ω)

}
fulfils the condition ((H1),

2◦). Indeed, if limn→∞ en = e in U(Ω) (= H1(Ω)∩C(Ω)), en ∈ Uad(Ω), then there

exists a subsequence {en} weakly convergent in H2(Ω) to the element e ∈ Uad(Ω).

Let zk ⇀ z (weakly) in V (Ω), zk ∈ K(ek,Ω), k = 1, 2, . . . , z ∈ V (Ω). We then

have zk(x) ≥ S(x) + ek(x) for a.e. x ∈ Ω which implies, with respect to the

compact embedding H1(Ω) ↪→ L2(Ω) z(x) ≥ S(x) + e(x) for a.e. x ∈ Ω and hence

z ∈ K(e,Ω). If v ∈ K(e,Ω), then we put vm = v + (em − e). The elements {vm}
satisfy the conditions vm ∈ K(em,Ω), limm→∞ vm = v (strongly) in V (Ω). Hence

the condition ((H1), 2◦) holds. We set

(3.2) 〈A(e)v, z〉V (Ω) = a(e, v, z) for any v, z ∈ V (Ω) and e ∈ Uad(Ω)

where A(e) ∈ L(V (Ω), V ∗(Ω)).

The state function u(e) ∈ K(e,Ω) is a solution of the state variational inequality

(3.3) 〈A(e)u(e), v − u(e)〉V (Ω) ≥ 〈L(e), v − u(e)〉V (Ω) , for all v ∈ K(e,Ω)

where the operators A(e) are given by (2.5), for (k = 0 and u = 0 on ∂Ω) and the

function, L(e) = f +Be. Let us consider the cost functional of the form

(3.4) I(e) = L(e, v) = µA(e,Ω) + ‖e‖2L2(Ω)

where µA(e,Ω) is Radon measure, e ∈ Uad(Ω). From the regularity results ob-

tained by Brezis, Kinderlehrer ([2], [9]) it follows that u(e) ∈ H2(Ω) ∩H1
0 (Ω). It

is evident that θ + u(e) ∈ K(e,Ω) for any θ ∈ V (Ω), θ ≥ 0 therefore

(3.5) 〈A(e)u(e), θ〉V (Ω) − 〈L(e), θ〉V (Ω) ≥ 0 for any θ ≥ 0, e ∈ Uad(Ω).

Hence there exists a non-negative Radon-measure µA(e,Ω) given by:∫
Ω θ dµA(e,Ω) = (R(e)u(e)− L(e), θ)L2(Ω)(3.6)

= 〈A(e)u(e), θ〉V (Ω) − 〈L(e), θ〉V (Ω) for any θ ∈ C∞0 (Ω)

with the property that for Z (coincidence set, x ∈ Ω : v(x) = S(x)+e(x)) compact,

µA(e,Ω\Z) = 0. (It shoud be noted that in general the set Z is not closed.)

In order to estabilish the existence of an optimal control function we have to

verify

en → e∗ (strongly) in U(Ω),(3.7)

(e∗, en ∈ Uad(Ω))⇒ u(en) ⇀ u(e∗) (weakly) in V (Ω).

We shall proceed in a similar way as in ([3]). First we recall an important result

of F. Murat in ([16]).
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Lemma 6. If {Fn} ⊂ V ∗(Ω) is a sequence such that: Fn ≥ 0 (in the dis-

tributional sense) and Fn ⇀ F (weakly) in V ∗(Ω) then: Fn → F (strongly) in

W−1
q (Ω) = (W 1

p (Ω))∗ for all q < 2, 1
p + 1

q = 1. The inequality Fn ≥ 0 in V ∗(Ω)

means

(3.8) 〈Fn, ν〉V (Ω) ≥ 0 for all ν ∈ C∞0 (Ω), ν ≥ 0 on Ω.

Lemma 7. Let u(e) ∈ K(e,Ω) be a (unique) solution of the inequality (3.3),

e ∈ Uad(Ω). Then the relation (3.7) holds.

Proof. Let limn→∞ en = e∗ (strongly) in U(Ω), (e∗, en ∈ Uad(Ω)). It results

from the form of the set Uad(Ω) that

(3.9) en ⇀ e∗ (weakly) in W 1
p (Ω) for every p ≥ 1.

Let us denote un : = u(en), n = 1, 2, . . . . We recall that the elements un are the

solutions of the variational inequalities.

(3.10) 〈Anun, v − un〉V (Ω) ≥ 〈Ln, v − un〉V (Ω) for all v ∈ K(en,Ω),

where we have denoted An = A(en), Ln = L(en), n = 1, 2, . . . .

In the same way as in Section 2, we can prove boundedness

(3.11) ‖un‖V (Ω) ≤ c, n = 1, 2, . . . .

Hence there exists a subsequence of {[unk , enk ]}k (still denoted by {[un, en]}n)

such that

un ⇀ u∗ (weakly) in V (Ω)(3.12)

un → u∗ (strongly) in L2(Ω)(3.13)

en ⇒ e∗ (uniformly) in U(Ω)(3.14)

en ⇀ e∗ (weakly) in W 1
p (Ω) for all p ≥ 1(3.15)

An → A∗ in L(V (Ω), V ∗(Ω)).(3.16)

As un ∈ K(en,Ω), we have the inequalities un ≥ S+en a.e. on Ω, n = 1, 2, . . . and

the relations (3.13), (3.14) imply: u ≥ S + e∗ a.e. on Ω and hence u∗ ∈ K(e∗,Ω).

Let us rewrite the inequality (3.10) in the form

(3.17) 〈Anun − Ln, v − un〉 ≥ 0 for all v ∈ K(en,Ω).

Taking v = un + θ, θ ≥ 0, θ ∈ C∞0 (Ω) we obtain

(3.18) 〈Anun,−Ln, θ〉 ≥ 0 in V ∗(Ω), n = 1, 2, . . . .
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Using the form (3.2), the conditions (F1), the limits (3.12), (3.13) and (3.14),

(3.16) we arrive at

(3.19) Anun − Ln ⇀ A∗u∗ − L∗ (weakly) in V ∗(Ω)

where A∗ = A(e∗), L∗ = L(e∗).

Applying now Lemma 6 we obtain

(3.20) Anun − Ln → A∗u∗ − L∗ (strongly) in W−1
q (Ω), q < 2.

Setting v = z + (en − e∗) in (3.17) for any z ∈ K(e∗,Ω) we have the relations

〈A∗un, z〉V (Ω) = 〈(A∗ −An)un, z〉V (Ω) + 〈Anun, z〉V (Ω)

≥ 〈(A∗ −An)un, z〉V (Ω) + 〈Anun, un〉V (Ω) + 〈Ln, z − un〉V (Ω)

− 〈Anun − Ln, en − e∗〉V (Ω) .

Using the relations (3.12), (3.15) and (3.16), (3.20) and the weak lower semicon-

tinuity

〈A∗u∗, u∗〉V (Ω) ≤ lim inf
n→∞

〈A∗un, un〉V (Ω)

we arrive at the inequality

〈A∗u∗, z〉V (Ω) ≥ 〈A∗u∗, u∗〉V (Ω) + 〈L∗, z − u∗〉V (Ω) for all z ∈ K(e∗,Ω)

and hence u∗ = u(e∗) and the relation (3.7) is verified. �
For any fixed compact O ⊂ Ω, the following estimate holds

(3.21) µA(en,O) ≤ cA (uniformly bounded with respect to n).

Indeed, let θ ∈ C∞0 (Ω), θ ≡ 1 on O and θ ≥ 0 on Ω. Then we may write

µA(en,O) ≤

∫
Ω

θ dµA(en,Ω) = 〈A(en)u(en)− L(en), θ〉V (Ω)

≤ | 〈A(en)u(en)− L(en), θ〉V (Ω) |

≤ ‖A(en)u(en)− L(en)‖V ∗(Ω)‖θ‖V (Ω) ≤ cA.

This means, that there exist a subsequence
{
µA(enk ,On)

}
k

(still denoted by{
µA(en,O)

}
n
) such that

(3.22) µA(en,O) ⇀ µA(e∗,O)

(weakly) as n→∞ in V ∗(Ω).

Hence, for any finite continuous function θ on Ω the following convergence

(3.23)

∫
Ω

θ dµA(en,Ω)→

∫
Ω

θ dµA(e∗,Ω)
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hold. Moreover, the family of Radon measures
{
µA(en,Ω)

}
is denoted correct

(since the pairing [en, u(en)] is the solution of the variational inequality (3.3)).

Then, by virtue of weakly converges of measures
{
µA(en,Ω)

}
n

in particular, fol-

lows

(3.24) lim inf
n→∞

µA(en,Ω) ≥ µA(e∗,Ω).

Let {en} be a minimizing sequence for the functional I(e):

lim
n→∞

I(en) = inf
e∈Uad(Ω)

I(e)

(we put infe∈Uad(Ω) I(e) = −∞, if the set {I(e)} is not lower bounded). Since the

set Uad(Ω) is compact in U(Ω), there exist e0 ∈ Uad(Ω) and a subsequence {ek}
such that limk→∞ ek = e0 in U(Ω).

Finally we get (using (3.24) and the semicontinuity of norm ‖ · ‖L2(Ω))

inf
e∈Uad(Ω)

I(e) = lim
k→∞

I(ek) = lim inf
k→∞

L(ek, uk) ≥ L(e0, u(e0)) = I(e0).

This means that e0 ∈ Uad(Ω) is an optimal control function of the optimal control

problem (P).

4. Control of Some Unilateral Problems

Let Ω be a bounded open domain annulus of R2 with smooth boundary ∂Ω =

∂Ω∗ ∪ ∂Ω∗∗. Let A(e) be a second order elliptic operator in Ω, given by

(4.1) A(e)v = −∇ · (F [Q(x)])∇v + Fa0(x)v, v ∈ V (Ω)

where V (Ω) = H1(Ω) and Q(x) is a linear operator from R2 to R2 depending upon

x over Ω, ∇ denotes the vector {∂/∂xi}2i=1 and e = [F ,Z] is the control variable.

We suppose that the following hypotheses concerning [Q], a0, L hold:

(L1)


L ∈ L2(Ω), a0 ∈ L∞(Ω), a0(x) ≥ α0 (> 0) a.e. on Ω, aij ∈ L∞(Ω)

and ∂aij/∂xk ∈ L∞(Ω) for any 1 ≤ i, j ≤ 2, k = 1, 2.

There exists α > 0 such that [Q(x)]ξ · ξ ≥ α|ξ|2R2 a.e. on Ω for any

ξ = {ξi}2i=1 ∈ R2.

The state of the system is given by u(e), solution of the unilateral problem:

(4.2)


1◦. A(e)u(e) = L

2◦. u(e)−Z = 0 on ∂Ω∗

3◦. (u(e)−Z) ≥ 0, ∂u(e)/∂nA ≥ 0,

(u(e)−Z)(∂u(e)/∂nA) = 0 on ∂Ω∗∗.
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In (4.2) Z is a function on ∂Ω which is the control variable and ∂/∂nA denotes the

conormal derivate associated to A(e): ∂v/∂nA = (Z[Q(x)]∇v) · n and n = {ni} is

a normal to ∂Ω∗∗ directed toward the exterior of Ω. The cost functional is defined

by

(4.3) I(e) = L(e, u(e)) =

∫
∂Ω∗∗

(∂u(e)/∂nA − zd)
2 ds+N

∫
∂Ω

Z2 ds

where zd is given in L2(∂Ω∗∗) and where N is given > 0.

Let U be the set of control functions, given by:

U = U(Ω)× U(∂Ω) where U(Ω) = L2(Ω), U(∂Ω) = H1(∂Ω).

Let us introduce the set of admissible control functions:

Uad = Uad(Ω)× Uad(∂Ω)

where

Uad(Ω) =
{
F ∈ H1(Ω) ∩C(Ω) : 0 < Fmin ≤ F(x) ≤ Fmax

for all x ∈ Ω, ‖F‖H1(Ω) ≤ c1
}

Uad(∂Ω) =
{
Z ∈ H2(∂Ω) : 0 < Zmin ≤ Z(x) ≤ Zmax

for all x ∈ ∂Ω, ‖Z‖H2(∂Ω) ≤ c2
}

where positive constants Fmin, Fmax, Zmin, Zmax, c1, c2, are chosen in such a way

that Uad 6= ∅. The set of admissible states of the system (4.2) is defined as

(4.4) K(e,Ω) =
{
v ∈ V (Ω) :M0v = Z a.e. on ∂Ω∗, M0v ≥ Z a.e. on ∂Ω∗∗

}
.

Due to the structure of (4.3) it is natural to take Z ∈ L2(∂Ω), and in order for

u(e) to make sense to add condition K(e,Ω) 6= ∅ for each e ∈ Uad. However, this is

not sufficient in general for (4.3) to make sense, since in general ∂u(e)/∂nA does

not belong to L2(∂Ω∗∗). Moreover, this is not sufficient in general for ((H1), 5◦)

to make sense (in order to characterize the dependence e → K(e,Ω) we need the

special type of convergence of sequences of sets introduced by Mosco).

In order to make (4.2) precise we define the following bilinear form on V (Ω)

a(e, v, z) =

∫
Ω

(F [Q]∇v) · ∇z dΩ +

∫
Ω

Fa0vz dΩ(4.5)

for any v, z ∈ V (Ω), e ∈ Uad.



OPTIMAL CONTROL PROBLEM FOR VARIATIONAL INEQUALITY 21

Lemma 8. The set K(e,Ω) is nonempty, convex and closed.

Proof. Suppose that a functionH ∈ V (Ω) determines the control function on ∂Ω

by its traces. Since H ∈ K(e,Ω), K(e,Ω) is nonempty. The convexity of K(e,Ω) is

obvious. If {vn}n ⊂ K(e,Ω) and vn → v (strongly) in V (Ω), then M0vn →M0v

(strongly) in L2(∂Ω), since M0 (the operator of trace): H1(Ω) → L2(∂Ω) is

continuous. Since vn ∈ K(e,Ω), M0vn = Z a.e. on ∂Ω∗ and M0vn ≥ Z a.e. on

∂Ω∗∗ for each e ∈ Uad. Therefore M0v = Z a.e. on ∂Ω∗ and M0v ≥ Z a.e. on

∂Ω∗∗. Hence v ∈ K(e,Ω) which shows that K(e,Ω) is closed.

Let us observe that if u(e) ∈ V (Ω) and satisfies ((4.2), 1◦) then ∂u(e)/∂nA is

defined and belongs to H−1/2(∂Ω∗∗). This allows us to introduce the set

N (∂Ω) =
{
Z : Z ∈ L2(∂Ω) : K(e,Ω) 6= ∅, ∂u(e)/∂nA ∈ L2(∂Ω∗∗)

}
.

Let us remark that

(4.6) Uad(∂Ω) (= H2(∂Ω)) ⊂ N(∂Ω).

Indeed if Z ∈ H2(∂Ω) then u(e) ∈ H2(Ω) so that ∂u(e)/∂nA ∈ H1/2(∂Ω∗∗) ⊂
L2(∂Ω∗∗), hence (4.6) follows. �

Lemma 9. The system of convex closed sets K(e,Ω) defined by (4.4) fulfils the

condition ((H1), 2◦).

Proof. Let en → e (strongly) in U (or Zn → Z strongly in U(∂Ω)), en ∈ Uad.
Then there exists a subsequence

{
Zk
}
k

of
{
Zn
}
n

weakly convergent in H2(∂Ω)

to the element Z ∈ Uad(∂Ω). Let vn ⇀ v weakly convergent in V (Ω), (vn ∈
K(en,Ω)). Then we have: M0vn − Zn = 0 a.e. on ∂Ω∗, M0vn − Zn ≥ 0 a.e.

on ∂Ω∗∗, which by virtue of the compact embedding H1/2(∂Ω) ↪→ L2(∂Ω) implies

that,M0v−Z = 0 a.e. on ∂Ω∗ andM0v−Z ≥ 0 a.e. on ∂Ω∗∗. Hence v ∈ K(e,Ω).

Next, let v ∈ K(e,Ω), then we put vn = v + (Hn −H). The elements {vn} satisfy

the conditions: vn ∈ K(en,Ω) and limn→∞ vn = v (strongly) in V (Ω). Hence the

condition ((H1), 2◦) holds. �
The optimal control problem in distributed parameters considered here reads:

(4.7) minL(e, u) subject to (4.2).

This means that u(e) ∈ K(e,Ω) is a solution of (4.2) if and only if u(e) is a solution

of the operator equation

(4.8) A(e)u(e) = L

where A(e) is a linear bounded operator acting from V (Ω) into V ∗(Ω). It is defined

by

(4.9) 〈A(e)v, z〉V (Ω) = a(e, v, z) for any v, z ∈ V (Ω), e ∈ Uad.
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Lemma 10. The family {A(e)}, e ∈ Uad of operators defined by (4.5) and (4.9)

satisfies the assumptions ((H1), 3◦, 4◦, 5◦).

Proof. We now define

|[Q(x)]| = sup
ξ∈R2−{0}

|[Q(x)]ξ|/|ξ|R2 ,

from (L1) we clearly find that the function x → |[Q(x)]| belongs to L∞(Ω), we

denote by ‖[Q]‖L∞(Ω) the L∞(Ω)-norm of the above function. Then, by virtue of

(4.5) and from the Schwarz inequality, we can write

|a(e, v, z)| ≤ Fmax(‖[Q]‖L∞(Ω)

(∫
Ω

|∇v2| dΩ

)1/2(∫
Ω

|∇z|2 dΩ

)1/2

(4.10)

+ ‖a0‖L∞(Ω)‖v‖L∞(Ω)‖z‖L∞(Ω)

≤ FmaxMax (‖[Q]‖L∞(Ω), ‖a0‖L∞(Ω))‖v‖V (Ω)‖z‖V (Ω)

for any v, z ∈ V (Ω) and e ∈ Uad. Relation (4.10) implies the continuity of a(e, ·, ·)
for each e ∈ Uad. On the other hand by (L1) we obtain

(4.11) a(e, v, v) ≥ FminMin (α,α0)‖v‖2V (Ω) for any v ∈ V (Ω)

and for each e ∈ Uad which shows the uniformly coercivity of a(e, ·, ·) (with respect

to Uad(Ω)). Now, ((H1), 3◦, 4◦) is an immediate consequence of (4.10) and (4.11).

Let e, en ∈ Uad be such that en → e (strongly) in U . Then

|a(en, v, z)− a(e, v, z)|(4.12)

≤ ‖en − e‖C(Ω)Max (‖[Q]‖L∞(Ω), ‖a0‖L∞(Ω))‖v‖V (Ω)‖z‖V (Ω) → 0

for every v, z ∈ V (Ω) which shows the condition ((H1), 5◦). �
Finally, from Theorem 1 and Lemmas 8, 9 we conclude that:

(4.13) u(en)→ u(e) (strongly) in V (Ω) if en → e (strongly) in U .

Moreover, due to (4.6) and (4.13) there exists a subsequeance {u(ek)} weakly

convergent in H2(Ω) to the element u(e). We then have

(4.14) ∂u(en)/∂nA ⇀ ∂u(e)/∂nA (weakly) in H1/2(∂Ω∗∗).

Let {en}n be a minimizing sequence

(4.15) I(en)→ inf I(e), e ∈ Uad.

Since the set Uad is compact in U , there exists e∗ ∈ Uad and a subsequence {ek∗}
of {ek} such that

(4.16) lim ek∗ = e∗ .

It follows from (E2) that according to (4.14) and (4.16)

I(e∗) = L(e∗, u(e∗)) ≤ lim inf
k∗→∞

L(ek∗ , u(ek∗)) = lim inf
k∗→∞

I(ek∗) = inf
e∈Uad

I(e).
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